Search results for: Computer simulations
1133 Physics of Decision for Polling Place Management: A Case Study from the 2020 USA Presidential Election
Authors: Nafe Moradkhani, Frederick Benaben, Benoit Montreuil, Ali Vatankhah Barenji, Dima Nazzal
Abstract:
In the context of the global pandemic, the practical management of the 2020 presidential election in the USA was a strong concern. To anticipate and prepare for this election accurately, one of the main challenges was to confront: (i) forecasts of voter turnout, (ii) capacities of the facilities and, (iii) potential configuration options of resources. The approach chosen to conduct this anticipative study consists of collecting data about forecasts and using simulation models to work simultaneously on resource allocation and facility configuration of polling places in Fulton County, Georgia’s largest county. This article presents the results of the simulations of such places facing pre-identified potential risks. These results are oriented towards the efficiency of these places according to different criteria (health, trust, comfort). Then a dynamic framework is introduced to describe risks as physical forces perturbing the efficiency of the observed system. Finally, the main benefits and contributions resulting from this simulation campaign are presented.
Keywords: performance, decision support, simulation, artificial intelligence, risk management, election, pandemics, information system
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 6401132 On the Computation of a Common n-finger Robotic Grasp for a Set of Objects
Authors: Avishai Sintov, Roland Menassa, Amir Shapiro
Abstract:
Industrial robotic arms utilize multiple end-effectors, each for a specific part and for a specific task. We propose a novel algorithm which will define a single end-effector’s configuration able to grasp a given set of objects with different geometries. The algorithm will have great benefit in production lines allowing a single robot to grasp various parts. Hence, reducing the number of endeffectors needed. Moreover, the algorithm will reduce end-effector design and manufacturing time and final product cost. The algorithm searches for a common grasp over the set of objects. The search algorithm maps all possible grasps for each object which satisfy a quality criterion and takes into account possible external wrenches (forces and torques) applied to the object. The mapped grasps are- represented by high-dimensional feature vectors which describes the shape of the gripper. We generate a database of all possible grasps for each object in the feature space. Then we use a search and classification algorithm for intersecting all possible grasps over all parts and finding a single common grasp suitable for all objects. We present simulations of planar and spatial objects to validate the feasibility of the approach.
Keywords: Common Grasping, Search Algorithm, Robotic End-Effector.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16751131 Internal Power Recovery in Cryogenic Cooling Plants Part I: Expander Development
Authors: Ambra Giovannelli, Erika Maria Archilei
Abstract:
The amount of the electrical power required by refrigeration systems is relevant worldwide. It is evaluated in the order of 15% of the total electricity production taking refrigeration and air-conditioning into consideration. For this reason, in the last years several energy saving techniques have been proposed to reduce the power demand of such plants. The paper deals with the development of an innovative internal recovery system for cryogenic cooling plants. Such a system consists in a Compressor-Expander Group (CEG) designed on the basis of the automotive turbocharging technology. In particular, the paper is focused on the design of the expander, the critical component of the CEG system. Due to the low volumetric flow entering the expander and the high expansion ratio, a commercial turbocharger expander wheel was strongly modified. It was equipped with a transonic nozzle, designed to have a radially inflow full admission. To verify the performance of such a machine and suggest improvements, two different set of nozzles have been designed and modelled by means of the commercial Ansys-CFX software. steady-state 3D CFD simulations of the second-generation prototype are presented and compared with the initial ones.
Keywords: Energy saving, organic fluids, radial turbine, refrigeration plant, vapor compression systems.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 12191130 Air-Filled Circular Cross Sectional Cavity for Microwave Non-Destructive Testing
Authors: Mohd Tarmizi Ali, Mohd Khairul Mohd Salleh, Md. Mahfudz Md. Zan
Abstract:
Dielectric sheet perturbation to the dominant TE111 mode resonant frequency of a circular cavity is studied and presented in this paper. The dielectric sheet, placed at the middle of the airfilled cavity, introduces discontinuities and disturbs the configuration of electromagnetic fields in the cavity. For fixed dimensions of cavity and fixed thickness of the loading dielectric, the dominant resonant frequency varies quite linearly with the permittivity of the dielectric. This quasi-linear relationship is plotted using Maple software and verified using 3D electromagnetic simulations. Two probes are used in the simulation for wave excitation into and from the cavity. The best length of probe is found to be 3 mm, giving the closest resonant frequency to the one calculated using Maple. A total of fourteen different dielectrics of permittivity ranging from 1 to 12.9 are tested one by one in the simulation. The works show very close agreement between the results from Maple and the simulation. A constant difference of 0.04 GHz is found between the resonant frequencies collected during simulation and the ones from Maple. The success of this project may lead to the possibility of using the middle loaded cavity at TE111 mode as a microwave non-destructive testing of solid materials.Keywords: Middle-loaded cavity, dielectric sheet perturbation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 23441129 A Comparative Study of Additive and Nonparametric Regression Estimators and Variable Selection Procedures
Authors: Adriano Z. Zambom, Preethi Ravikumar
Abstract:
One of the biggest challenges in nonparametric regression is the curse of dimensionality. Additive models are known to overcome this problem by estimating only the individual additive effects of each covariate. However, if the model is misspecified, the accuracy of the estimator compared to the fully nonparametric one is unknown. In this work the efficiency of completely nonparametric regression estimators such as the Loess is compared to the estimators that assume additivity in several situations, including additive and non-additive regression scenarios. The comparison is done by computing the oracle mean square error of the estimators with regards to the true nonparametric regression function. Then, a backward elimination selection procedure based on the Akaike Information Criteria is proposed, which is computed from either the additive or the nonparametric model. Simulations show that if the additive model is misspecified, the percentage of time it fails to select important variables can be higher than that of the fully nonparametric approach. A dimension reduction step is included when nonparametric estimator cannot be computed due to the curse of dimensionality. Finally, the Boston housing dataset is analyzed using the proposed backward elimination procedure and the selected variables are identified.Keywords: Additive models, local polynomial regression, residuals, mean square error, variable selection.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 10101128 CFD Simulation for Air-Borne Infection Analysis in AII-Room
Authors: Young Kwon Yang, In Sung Kang, Jung Ha Hwang, Jin Chul Park
Abstract:
The present study is a foundational study for performance improvements on isolation wards to prevent proliferation of secondary infection of infectious diseases such as SARS, H1N1, and MERS inside hospitals. Accordingly, the present study conducted an analysis of the effect of sealing mechanisms and filling of openings on ensuring air tightness performance in isolation wards as well as simulation on air currents in improved isolation wards. The study method is as follows. First, previous studies on aerial infection type and mechanism were reviewed, and the review results were utilized as basic data of analysis on simulation of air current. Second, national and international legislations and regulations in relation to isolation wards as well as case studies on developed nations were investigated in order to identify the problems in isolation wards in Korea and improvement plans. Third, construction and facility plans were compared and analyzed between general and isolation wards focusing on large general hospitals in Korea, thereby conducting comparison and analysis on the performance and effects of air-tightness of general and isolation wards through CFD simulations. The study results showed that isolation wards had better air-tightness performance than that of general wards.
Keywords: AII Room, air-borne infection, CFD, computational fluid dynamics.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15211127 Finite Element Prediction on the Machining Stability of Milling Machine with Experimental Verification
Authors: Jui P. Hung, Yuan L. Lai, Hui T. You
Abstract:
Chatter vibration has been a troublesome problem for a machine tool toward the high precision and high speed machining. Essentially, the machining performance is determined by the dynamic characteristics of the machine tool structure and dynamics of cutting process, which can further be identified in terms of the stability lobe diagram. Therefore, realization on the machine tool dynamic behavior can help to enhance the cutting stability. To assess the dynamic characteristics and machining stability of a vertical milling system under the influence of a linear guide, this study developed a finite element model integrated the modeling of linear components with the implementation of contact stiffness at the rolling interface. Both the finite element simulations and experimental measurements reveal that the linear guide with different preload greatly affects the vibration behavior and milling stability of the vertical column spindle head system, which also clearly indicate that the predictions of the machining stability agree well with the cutting tests. It is believed that the proposed model can be successfully applied to evaluate the dynamics performance of machine tool systems of various configurations.Keywords: Machining stability, Vertical milling machine, Linearguide, Contact stiffness.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 26441126 Determination of Safety Distance Around Gas Pipelines Using Numerical Methods
Authors: Omid Adibi, Nategheh Najafpour, Bijan Farhanieh, Hossein Afshin
Abstract:
Energy transmission pipelines are one of the most vital parts of each country which several strict laws have been conducted to enhance the safety of these lines and their vicinity. One of these laws is the safety distance around high pressure gas pipelines. Safety distance refers to the minimum distance from the pipeline where people and equipment do not confront with serious damages. In the present study, safety distance around high pressure gas transmission pipelines were determined by using numerical methods. For this purpose, gas leakages from cracked pipeline and created jet fires were simulated as continuous ignition, three dimensional, unsteady and turbulent cases. Numerical simulations were based on finite volume method and turbulence of flow was considered using k-ω SST model. Also, the combustion of natural gas and air mixture was applied using the eddy dissipation method. The results show that, due to the high pressure difference between pipeline and environment, flow chocks in the cracked area and velocity of the exhausted gas reaches to sound speed. Also, analysis of the incident radiation results shows that safety distances around 42 inches high pressure natural gas pipeline based on 5 and 15 kW/m2 criteria are 205 and 272 meters, respectively.
Keywords: Gas pipelines, incident radiation, numerical simulation, safety distance.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 11331125 Development of Coronal Field and Solar Wind Components for MHD Interplanetary Simulations
Authors: Ljubomir Nikolic, Larisa Trichtchenko
Abstract:
The connection between solar activity and adverse phenomena in the Earth’s environment that can affect space and ground based technologies has spurred interest in Space Weather (SW) research. A great effort has been put on the development of suitable models that can provide advanced forecast of SW events. With the progress in computational technology, it is becoming possible to develop operational large scale physics based models which can incorporate the most important physical processes and domains of the Sun-Earth system. In order to enhance our SW prediction capabilities we are developing advanced numerical tools. With operational requirements in mind, our goal is to develop a modular simulation framework of propagation of the disturbances from the Sun through interplanetary space to the Earth. Here, we report and discuss on the development of coronal field and solar wind components for a large scale MHD code. The model for these components is based on a potential field source surface model and an empirical Wang-Sheeley-Arge solar wind relation.
Keywords: Space weather, numerical modeling, coronal field, solar wind.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 21391124 Automated Vehicle Traffic Control Tower: A Solution to Support the Next Level Automation
Authors: Xiaoyun Zhao, Rami Darwish, Anna Pernestål
Abstract:
Automated vehicles (AVs) have the potential to enhance road capacity, improving road safety and traffic efficiency. Research and development on AVs have been going on for many years. However, when the complicated traffic rules and real situations interacted, AVs fail to make decisions on contradicting situations, and are not able to have control in all conditions due to highly dynamic driving scenarios. This limits AVs’ usage and restricts the full potential benefits that they can bring. Furthermore, regulations, infrastructure development, and public acceptance cannot keep up at the same pace as technology breakthroughs. Facing these challenges, this paper proposes automated vehicle traffic control tower (AVTCT) acting as a safe, efficient and integrated solution for AV control. It introduces a concept of AVTCT for control, management, decision-making, communication and interaction with various aspects in transportation. With the prototype demonstrations and simulations, AVTCT has the potential to overcome the control challenges with AVs and can facilitate AV reaching their full potential. Possible functionalities, benefits as well as challenges of AVTCT are discussed, which set the foundation for the conceptual model, simulation and real application of AVTCT.
Keywords: Automated vehicle, connectivity and automation, intelligent transport system, traffic control, traffic safety.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 10731123 In silico Repopulation Model of Various Tumour Cells during Treatment Breaks in Head and Neck Cancer Radiotherapy
Authors: Loredana G. Marcu, David Marcu, Sanda M. Filip
Abstract:
Advanced head and neck cancers are aggressive tumours, which require aggressive treatment. Treatment efficiency is often hindered by cancer cell repopulation during radiotherapy, which is due to various mechanisms triggered by the loss of tumour cells and involves both stem and differentiated cells. The aim of the current paper is to present in silico simulations of radiotherapy schedules on a virtual head and neck tumour grown with biologically realistic kinetic parameters. Using the linear quadratic formalism of cell survival after radiotherapy, altered fractionation schedules employing various treatment breaks for normal tissue recovery are simulated and repopulation mechanism implemented in order to evaluate the impact of various cancer cell contribution on tumour behaviour during irradiation. The model has shown that the timing of treatment breaks is an important factor influencing tumour control in rapidly proliferating tissues such as squamous cell carcinomas of the head and neck. Furthermore, not only stem cells but also differentiated cells, via the mechanism of abortive division, can contribute to malignant cell repopulation during treatment.
Keywords: Radiation, tumour repopulation, squamous cell carcinoma, stem cell.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 19691122 Estimated Production Potential Types of Wind Turbines Connected to the Network Using Random Numbers Simulation
Authors: Saeid Nahi, Seyed Mohammad Hossein Nabavi
Abstract:
Nowadays, power systems, energy generation by wind has been very important. Noting that the production of electrical energy by wind turbines on site to several factors (such as wind speed and profile site for the turbines, especially off the wind input speed, wind rated speed and wind output speed disconnect) is dependent. On the other hand, several different types of turbines in the market there. Therefore, selecting a turbine that its capacity could also answer the need for electric consumers the efficiency is high something is important and necessary. In this context, calculating the amount of wind power to help optimize overall network, system operation, in determining the parameters of wind power is very important. In this article, to help calculate the amount of wind power plant, connected to the national network in the region Manjil wind, selecting the best type of turbine and power delivery profile appropriate to the network using Monte Carlo method has been. In this paper, wind speed data from the wind site in Manjil, as minute and during the year has been. Necessary simulations based on Random Numbers Simulation method and repeat, using the software MATLAB and Excel has been done.Keywords: wind turbine, efficiency, wind turbine work points, Random Numbers, reliability
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 14101121 Implicit Lyapunov Control of Multi-Control Hamiltonians Systems Based On the State Error
Authors: Fangfang Meng, Shuang Cong
Abstract:
In the closed quantum system, if the control system is strongly regular and all other eigenstates are directly coupled to the target state, the control system can be asymptotically stabilized at the target eigenstate by the Lyapunov control based on the state error. However, if the control system is not strongly regular or as long as there is one eigenstate not directly coupled to the target state, the situations will become complicated. In this paper, we propose an implicit Lyapunov control method based on the state error to solve the convergence problems for these two degenerate cases. And at the same time, we expand the target state from the eigenstate to the arbitrary pure state. Especially, the proposed method is also applicable in the control system with multi-control Hamiltonians. On this basis, the convergence of the control systems is analyzed using the LaSalle invariance principle. Furthermore, the relation between the implicit Lyapunov functions of the state distance and the state error is investigated. Finally, numerical simulations are carried out to verify the effectiveness of the proposed implicit Lyapunov control method. The comparisons of the control effect using the implicit Lyapunov control method based on the state distance with that of the state error are given.
Keywords: Implicit Lyapunov control, state error, degenerate cases, convergence.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15011120 Surface Flattening Assisted with 3D Mannequin Based On Minimum Energy
Authors: Shih-Wen Hsiao, Rong-Qi Chen, Chien-Yu Lin
Abstract:
The topic of surface flattening plays a vital role in the field of computer aided design and manufacture. Surface flattening enables the production of 2D patterns and it can be used in design and manufacturing for developing a 3D surface to a 2D platform, especially in fashion design. This study describes surface flattening based on minimum energy methods according to the property of different fabrics. Firstly, through the geometric feature of a 3D surface, the less transformed area can be flattened on a 2D platform by geodesic. Then, strain energy that has accumulated in mesh can be stably released by an approximate implicit method and revised error function. In some cases, cutting mesh to further release the energy is a common way to fix the situation and enhance the accuracy of the surface flattening, and this makes the obtained 2D pattern naturally generate significant cracks. When this methodology is applied to a 3D mannequin constructed with feature lines, it enhances the level of computer-aided fashion design. Besides, when different fabrics are applied to fashion design, it is necessary to revise the shape of a 2D pattern according to the properties of the fabric. With this model, the outline of 2D patterns can be revised by distributing the strain energy with different results according to different fabric properties. Finally, this research uses some common design cases to illustrate and verify the feasibility of this methodology.
Keywords: Surface flattening, Strain energy, Minimum energy, approximate implicit method, Fashion design.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 25981119 Design of IMC-PID Controller Cascaded Filter for Simplified Decoupling Control System
Authors: Le Linh, Truong Nguyen Luan Vu, Le Hieu Giang
Abstract:
In this work, the IMC-PID controller cascaded filter based on Internal Model Control (IMC) scheme is systematically proposed for the simplified decoupling control system. The simplified decoupling is firstly introduced for multivariable processes by using coefficient matching to obtain a stable, proper, and causal simplified decoupler. Accordingly, transfer functions of decoupled apparent processes can be expressed as a set of n equivalent independent processes and then derived as a ratio of the original open-loop transfer function to the diagonal element of the dynamic relative gain array. The IMC-PID controller in series with filter is then directly employed to enhance the overall performance of the decoupling control system while avoiding difficulties arising from properties inherent to simplified decoupling. Some simulation studies are considered to demonstrate the simplicity and effectiveness of the proposed method. Simulations were conducted by tuning various controllers of the multivariate processes with multiple time delays. The results indicate that the proposed method consistently performs well with fast and well-balanced closed-loop time responses.
Keywords: Coefficient matching method, internal model control scheme, PID controller cascaded filter, simplified decoupler.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 14831118 Parameters Identification of Mathematical Model of the Fission Yeast Cell Cycle Control Using Evolutionary Strategy
Authors: A. Ghaffari, A. S. Mostafavi
Abstract:
Complex assemblies of interacting proteins carry out most of the interesting jobs in a cell, such as metabolism, DNA synthesis, mitosis and cell division. These physiological properties play out as a subtle molecular dance, choreographed by underlying regulatory networks that control the activities of cyclin-dependent kinases (CDK). The network can be modeled by a set of nonlinear differential equations and its behavior predicted by numerical simulation. In this paper, an innovative approach has been proposed that uses genetic algorithms to mine a set of behavior data output by a biological system in order to determine the kinetic parameters of the system. In our approach, the machine learning method is integrated with the framework of existent biological information in a wiring diagram so that its findings are expressed in a form of system dynamic behavior. By numerical simulations it has been illustrated that the model is consistent with experiments and successfully shown that such application of genetic algorithms will highly improve the performance of mathematical model of the cell division cycle to simulate such a complicated bio-system.Keywords: Cell cycle, Cyclin-dependent kinase, Fission yeast, Genetic algorithms, Mathematical modeling, Wiring diagram
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15061117 Visualization of Sediment Thickness Variation for Sea Bed Logging using Spline Interpolation
Authors: Hanita Daud, Noorhana Yahya, Vijanth Sagayan, Muizuddin Talib
Abstract:
This paper discusses on the use of Spline Interpolation and Mean Square Error (MSE) as tools to process data acquired from the developed simulator that shall replicate sea bed logging environment. Sea bed logging (SBL) is a new technique that uses marine controlled source electromagnetic (CSEM) sounding technique and is proven to be very successful in detecting and characterizing hydrocarbon reservoirs in deep water area by using resistivity contrasts. It uses very low frequency of 0.1Hz to 10 Hz to obtain greater wavelength. In this work the in house built simulator was used and was provided with predefined parameters and the transmitted frequency was varied for sediment thickness of 1000m to 4000m for environment with and without hydrocarbon. From series of simulations, synthetics data were generated. These data were interpolated using Spline interpolation technique (degree of three) and mean square error (MSE) were calculated between original data and interpolated data. Comparisons were made by studying the trends and relationship between frequency and sediment thickness based on the MSE calculated. It was found that the MSE was on increasing trends in the set up that has the presence of hydrocarbon in the setting than the one without. The MSE was also on decreasing trends as sediment thickness was increased and with higher transmitted frequency.Keywords: Spline Interpolation, Mean Square Error, Sea Bed Logging, Controlled Source Electromagnetic
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16561116 3D Numerical Investigation of Asphalt Pavements Behaviour Using Infinite Elements
Authors: K. Sandjak, B. Tiliouine
Abstract:
This article presents the main results of three-dimensional (3-D) numerical investigation of asphalt pavement structures behaviour using a coupled Finite Element-Mapped Infinite Element (FE-MIE) model. The validation and numerical performance of this model are assessed by confronting critical pavement responses with Burmister’s solution and FEM simulation results for multi-layered elastic structures. The coupled model is then efficiently utilised to perform 3-D simulations of a typical asphalt pavement structure in order to investigate the impact of two tire configurations (conventional dual and new generation wide-base tires) on critical pavement response parameters. The numerical results obtained show the effectiveness and the accuracy of the coupled (FE-MIE) model. In addition, the simulation results indicate that, compared with conventional dual tire assembly, single wide base tire caused slightly greater fatigue asphalt cracking and subgrade rutting potentials and can thus be utilised in view of its potential to provide numerous mechanical, economic, and environmental benefits.
Keywords: Infinite elements, 3-D numerical investigation, asphalt pavements, dual and wide base tires.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 7161115 The Search of Anomalous Higgs Boson Couplings at the Large Hadron Electron Collider and Future Circular Electron Hadron Collider
Authors: Ilkay Turk Cakir, Murat Altinli, Zekeriya Uysal, Abdulkadir Senol, Olcay Bolukbasi Yalcinkaya, Ali Yilmaz
Abstract:
The Higgs boson was discovered by the ATLAS and CMS experimental groups in 2012 at the Large Hadron Collider (LHC). Production and decay properties of the Higgs boson, Standard Model (SM) couplings, and limits on effective scale of the Higgs boson’s couplings with other bosons are investigated at particle colliders. Deviations from SM estimates are parametrized by effective Lagrangian terms to investigate Higgs couplings. This is a model-independent method for describing the new physics. In this study, sensitivity to neutral gauge boson anomalous couplings with the Higgs boson is investigated using the parameters of the Large Hadron electron Collider (LHeC) and the Future Circular electron-hadron Collider (FCC-eh) with a model-independent approach. By using MadGraph5_aMC@NLO multi-purpose event generator with the parameters of LHeC and FCC-eh, the bounds on the anomalous Hγγ, HγZ and HZZ couplings in e− p → e− q H process are obtained. Detector simulations are also taken into account in the calculations.Keywords: Anomalous Couplings, Effective Lagrangian, Electron-Proton Colliders, Higgs Boson.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 8611114 Modelling an Investment Portfolio with Mandatory and Voluntary Contributions under M-CEV Model
Authors: Amadi Ugwulo Chinyere, Lewis D. Gbarayorks, Emem N. H. Inamete
Abstract:
In this paper, the mandatory contribution, additional voluntary contribution (AVC) and administrative charges are merged together to determine the optimal investment strategy (OIS) for a pension plan member (PPM) in a defined contribution (DC) pension scheme under the modified constant elasticity of variance (M-CEV) model. We assume that the voluntary contribution is a stochastic process and a portfolio consisting of one risk free asset and one risky asset modeled by the M-CEV model is considered. Also, a stochastic differential equation consisting of PPM’s monthly contributions, voluntary contributions and administrative charges is obtained. More so, an optimization problem in the form of Hamilton Jacobi Bellman equation which is a nonlinear partial differential equation is obtained. Using power transformation and change of variables method, an explicit solution of the OIS and the value function are obtained under constant absolute risk averse (CARA). Furthermore, numerical simulations on the impact of some sensitive parameters on OIS were discussed extensively. Finally, our result generalizes some existing result in the literature.
Keywords: DC pension fund, modified constant elasticity of variance, optimal investment strategies, voluntary contribution, administrative charges.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3731113 Statically Fused Unbiased Converted Measurements Kalman Filter
Authors: Zhengkun Guo, Yanbin Li, Wenqing Wang, Bo Zou
Abstract:
Active radar and sonar systems often report Doppler measurements in addition to the position measurements such as range and bearing. The tracker can perform better by making full use of the Doppler measurements. However, due to the high nonlinearity of the Doppler measurements with respect to the target state in the Cartesian coordinate systems, those measurements are not always fully exploited. This paper mainly focuses on dealing with the Doppler measurements as well as the position measurements in Polar coordinates. The Statically Fused Converted Position and Doppler Measurements Kalman Filter (SF-CMKF) with additive debiased measurement conversion has been presented. However, the exact compensation for the bias of the measurement conversion are multiplicative and depend on the statistics of the cosine of the angle measurement errors. As a result, the consistency and performance of the SF-CMKF may be suboptimal in the large angle error situations. In this paper, the multiplicative unbiased position and Doppler measurement conversion for two-dimensional (Polar-to-Cartesian) tracking are derived, and the SF-CMKF is improved by using those conversion. Monte Carlo simulations are presented to demonstrate the statistic consistency of the multiplicative unbiased conversion and the superior performance of the modified SF-CMKF (SF-UCMKF).
Keywords: Measurement conversion, Doppler, Kalman filter, estimation, tracking.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3751112 The Influence of Fiber Volume Fraction on Thermal Conductivity of Pultruded Profile
Authors: V. Lukášová, P. Peukert, V. Votrubec
Abstract:
Thermal conductivity in the x, y and z-directions was measured on a pultruded profile that was manufactured by the technology of pulling from glass fibers and a polyester matrix. The results of measurements of thermal conductivity showed considerable variability in different directions. The caused variability in thermal conductivity was expected due fraction variations. The cross-section of the pultruded profile was scanned. An image analysis illustrated an uneven distribution of the fibers and the matrix in the cross-section. The distribution of these inequalities was processed into a Voronoi diagram in the observed area of the pultruded profile cross-section. In order to verify whether the variation of the fiber volume fraction in the pultruded profile can affect its thermal conductivity, the numerical simulations in the ANSYS Fluent were performed. The simulation was based on the geometry reconstructed from image analysis. The aim is to quantify thermal conductivity numerically. Above all, images with different volume fractions were chosen. The results of the measured thermal conductivity were compared with the calculated thermal conductivity. The evaluated data proved a strong correlation between volume fraction and thermal conductivity of the pultruded profile. Based on presented results, a modification of production technology may be proposed.Keywords: Numerical simulation, pultruded profile, volume fraction, thermal conductivity.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 11831111 Thermodynamic Analysis of Ventilated Façades under Operating Conditions in Southern Spain
Authors: Carlos A. D. Torres, Antonio D. Delgado
Abstract:
In this work we study the thermodynamic behavior of some ventilated facades under summer operating conditions in Southern Spain. Under these climatic conditions, indoor comfort implies a high energetic demand due to high temperatures that usually are reached in this season in the considered geographical area.
The aim of this work is to determine if during summer operating conditions in Southern Spain, ventilated façades provide some energy saving compared to the non-ventilated façades and to deduce their behavior patterns in terms of energy efficiency.
The modelization of the air flow in the channel has been performed by using Navier-Stokes equations for thermodynamic flows. Numerical simulations have been carried out with a 2D Finite Element approach.
This way, we analyze the behavior of ventilated façades under different weather conditions as variable wind, variable temperature and different levels of solar irradiation.
CFD computations show the combined effect of the shading of the external wall and the ventilation by the natural convection into the air gap achieve a reduction of the heat load during the summer period. This reduction has been evaluated by comparing the thermodynamic performances of two ventilated and two unventilated façades with the same geometry and thermophysical characteristics.
Keywords: Passive cooling, ventilated façades, energy-efficient building, CFD, FEM.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 49491110 Computational Study of Blood Flow Analysis for Coronary Artery Disease
Authors: Radhe Tado, Ashish B. Deoghare, K. M. Pandey
Abstract:
The aim of this study is to estimate the effect of blood flow through the coronary artery in human heart so as to assess the coronary artery disease.Velocity, wall shear stress (WSS), strain rate and wall pressure distribution are some of the important hemodynamic parameters that are non-invasively assessed with computational fluid dynamics (CFD). These parameters are used to identify the mechanical factors responsible for the plaque progression and/or rupture in left coronary arteries (LCA) in coronary arteries.The initial step for CFD simulations was the construction of a geometrical model of the LCA. Patient specific artery model is constructed using computed tomography (CT) scan data with the help of MIMICS Research 19.0. For CFD analysis ANSYS FLUENT-14.5 is used.Hemodynamic parameters were quantified and flow patterns were visualized both in the absence and presence of coronary plaques. The wall pressure continuously decreased towards distal segments and showed pressure drops in stenotic segments. Areas of high WSS and high flow velocities were found adjacent to plaques deposition.
Keywords: Computational fluid dynamics, hemodynamics, velocity, strain rate, wall pressure, wall shear stress.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 14781109 Triggering Supersonic Boundary-Layer Instability by Small-Scale Vortex Shedding
Authors: Guohua Tu, Zhi Fu, Zhiwei Hu, Neil D Sandham, Jianqiang Chen
Abstract:
Tripping of boundary-layers from laminar to turbulent flow, which may be necessary in specific practical applications, requires high amplitude disturbances to be introduced into the boundary layers without large drag penalties. As a possible improvement on fixed trip devices, a technique based on vortex shedding for enhancing supersonic flow transition is demonstrated in the present paper for a Mach 1.5 boundary layer. The compressible Navier-Stokes equations are solved directly using a high-order (fifth-order in space and third-order in time) finite difference method for small-scale cylinders suspended transversely near the wall. For cylinders with proper diameter and mount location, asymmetry vortices shed within the boundary layer are capable of tripping laminar-turbulent transition. Full three-dimensional simulations showed that transition was enhanced. A parametric study of the size and mounting location of the cylinder is carried out to identify the most effective setup. It is also found that the vortex shedding can be suppressed by some factors such as wall effect.
Keywords: Boundary layer instability, boundary layer transition, vortex shedding, supersonic flows, flow control.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 6191108 Impulse Response Shortening for Discrete Multitone Transceivers using Convex Optimization Approach
Authors: Ejaz Khan, Conor Heneghan
Abstract:
In this paper we propose a new criterion for solving the problem of channel shortening in multi-carrier systems. In a discrete multitone receiver, a time-domain equalizer (TEQ) reduces intersymbol interference (ISI) by shortening the effective duration of the channel impulse response. Minimum mean square error (MMSE) method for TEQ does not give satisfactory results. In [1] a new criterion for partially equalizing severe ISI channels to reduce the cyclic prefix overhead of the discrete multitone transceiver (DMT), assuming a fixed transmission bandwidth, is introduced. Due to specific constrained (unit morm constraint on the target impulse response (TIR)) in their method, the freedom to choose optimum vector (TIR) is reduced. Better results can be obtained by avoiding the unit norm constraint on the target impulse response (TIR). In this paper we change the cost function proposed in [1] to the cost function of determining the maximum of a determinant subject to linear matrix inequality (LMI) and quadratic constraint and solve the resulting optimization problem. Usefulness of the proposed method is shown with the help of simulations.Keywords: Equalizer, target impulse response, convex optimization, matrix inequality.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 17121107 Modelling of Organic Rankine Cycle for Waste Heat Recovery Process in Supercritical Condition
Authors: Jahedul Islam Chowdhury, Bao Kha Nguyen, David Thornhill, Roy Douglas, Stephen Glover
Abstract:
Organic Rankine Cycle (ORC) is the most commonly used method for recovering energy from small sources of heat. The investigation of the ORC in supercritical condition is a new research area as it has a potential to generate high power and thermal efficiency in a waste heat recovery system. This paper presents a steady state ORC model in supercritical condition and its simulations with a real engine’s exhaust data. The key component of ORC, evaporator, is modelled using finite volume method, modelling of all other components of the waste heat recovery system such as pump, expander and condenser are also presented. The aim of this paper is to investigate the effects of mass flow rate and evaporator outlet temperature on the efficiency of the waste heat recovery process. Additionally, the necessity of maintaining an optimum evaporator outlet temperature is also investigated. Simulation results show that modification of mass flow rate is the key to changing the operating temperature at the evaporator outlet.
Keywords: Organic Rankine cycle, supercritical condition, steady state model, waste heat recovery.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 30731106 Determination of the Optimal DG PV Interconnection Location Using Losses and Voltage Regulation as Assessment Indicators Case Study: ECG 33 kV Sub-Transmission Network
Authors: Ekow A. Kwofie, Emmanuel K. Anto, Godfred Mensah
Abstract:
In this paper, CYME Distribution software has been used to assess the impacts of solar Photovoltaic (PV) distributed generation (DG) plant on the Electricity Company of Ghana (ECG) 33 kV sub-transmission network at different PV penetration levels. As ECG begins to encourage DG PV interconnections within its network, there has been the need to assess the impacts on the sub-transmission losses and voltage contribution. In Tema, a city in Accra - Ghana, ECG has a 33 kV sub-transmission network made up of 20 No. 33 kV buses that was modeled. Three different locations were chosen: The source bus, a bus along the sub-transmission radial network and a bus at the tail end to determine the optimal location for DG PV interconnection. The optimal location was determined based on sub-transmission technical losses and voltage impact. PV capacities at different penetration levels were modeled at each location and simulations performed to determine the optimal PV penetration level. Interconnection at a bus along (or in the middle of) the sub-transmission network offered the highest benefits at an optimal PV penetration level of 80%. At that location, the maximum voltage improvement of 0.789% on the neighboring 33 kV buses and maximum loss reduction of 6.033% over the base case scenario were recorded. Hence, the optimal location for DG PV integration within the 33 kV sub-transmission utility network is at a bus along the sub-transmission radial network.
Keywords: Distributed generation photovoltaic, DG PV, optimal location, penetration level, sub-transmission network.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 13201105 CFD Parametric Study of Mixers Performance
Authors: Mikhail Strongin
Abstract:
The mixing of two or more liquids is very common in many industrial applications from automotive to food processing. CFD simulations of these processes require comparison with test results. In many cases it is practically impossible. Therefore, comparison provides with scalable tests. So, parameterization of the problem is sufficient to capture the performance of the mixer.
However, the influence of geometrical and thermo-physical parameters on the mixing is not well understood.
In this work influence of geometrical and thermal parameters was studied. It was shown that for full developed turbulent flows (Re > 104), Pet»const and concentration of secondary fluid ~ F(r/l).
In other words, the mixing is practically independent of total flow rate and scale for a given geometry and ratio of flow rates of mixing flows. This statement was proved in present work for different geometries and mixtures such as EGR and water-urea mixture.
Present study has been shown that the best way to improve the mixing is to establish geometry with the lowest Pet number possible by intensifying the turbulence in the domain. This is achievable by using step geometry, impinging flow EGR on a wall, or EGR jets, with a strong change in the flow direction, or using swirler like flow in the domain or combination all of these factors. All of these results are applicable to any mixtures of no compressible fluids.
Keywords: CFD, mixing, fluids, parameterization, scalability.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 19591104 Buckling of Plates on Foundation with Different Types of Sides Support
Authors: Ali N. Suri, Ahmad A. Al-Makhlufi
Abstract:
In this paper the problem of buckling of plates on foundation of finite length and with different side support is studied.
The Finite Strip Method is used as tool for the analysis. This method uses finite strip elastic, foundation, and geometric matrices to build the assembly matrices for the whole structure, then after introducing boundary conditions at supports, the resulting reduced matrices is transformed into a standard Eigenvalue-Eigenvector problem. The solution of this problem will enable the determination of the buckling load, the associated buckling modes and the buckling wave length.
To carry out the buckling analysis starting from the elastic, foundation, and geometric stiffness matrices for each strip a computer program FORTRAN list is developed.
Since stiffness matrices are function of wave length of buckling, the computer program used an iteration procedure to find the critical buckling stress for each value of foundation modulus and for each boundary condition.
The results showed the use of elastic medium to support plates subject to axial load increase a great deal the buckling load, the results found are very close with those obtained by other analytical methods and experimental work.
The results also showed that foundation compensates the effect of the weakness of some types of constraint of side support and maximum benefit found for plate with one side simply supported the other free.
Keywords: Buckling, Finite Strip, Different Sides Support, Plates on Foundation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2147