Search results for: thermal sensors.
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 1823

Search results for: thermal sensors.

1733 Assessment of Thermal Comfort at Manual Car Body Assembly Workstation

Authors: A. R. Ismail, N. Jusoh, M. Z. Nuawi, B. M. Deros, N. K. Makhtar, M. N. A. Rahman

Abstract:

The objective of this study is to determine the thermal comfort among worker at Malaysian automotive industry. One critical manual assembly workstation had been chosen as a subject for the study. The human subjects for the study constitute operators at Body Assembly Station of the factory. The environment examined was the Relative Humidity (%), Airflow (m/s), Air Temperature (°C) and Radiant Temperature (°C) of the surrounding workstation area. The environmental factors were measured using Babuc apparatus, which is capable to measure simultaneously those mentioned environmental factors. The time series data of fluctuating level of factors were plotted to identify the significant changes of factors. Then thermal comfort of the workers were assessed by using ISO Standard 7730 Thermal sensation scale by using Predicted Mean Vote (PMV). Further Predicted percentage dissatisfied (PPD) is used to estimate the thermal comfort satisfaction of the occupant. Finally the PPD versus PMV were plotted to present the thermal comfort scenario of workers involved in related workstation. The result of PMV at the related industry is between 1.8 and 2.3, where PPD at that building is between 60% to 84%. The survey result indicated that the temperature more influenced comfort to the occupants

Keywords: Thermal, Comfort, Temperature, PPD, PMV

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1897
1732 Energy-Efficient Sensing Concept for a Micromachined Yaw Rate Sensor

Authors: D. Oshinubi, M. Rocznik, K. Dostert

Abstract:

The need for micromechanical inertial sensors is increasing in future electronic stability control (ESC) and other positioning, navigation and guidance systems. Due to the rising density of sensors in automotive and consumer devices the goal is not only to get high performance, robustness and smaller package sizes, but also to optimize the energy management of the overall sensor system. This paper presents an evaluation concept for a surface micromachined yaw rate sensor. Within this evaluation concept an energy-efficient operation of the drive mode of the yaw rate sensor is enabled. The presented system concept can be realized within a power management subsystem.

Keywords: inertial sensors, micromachined gyros, gyro sensing concepts, power management, FPGA

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1505
1731 Thermal Cracking Respone of Reinforced Concrete Beam to Gradient Temperature

Authors: L. Dahmani, M.Kouane

Abstract:

In this paper are illustrated the principal aspects connected with the numerical evaluation of thermal stress induced by high gradient temperature in the concrete beam. The reinforced concrete beam has many advantages over steel beam, such as high resistance to high temperature, high resistance to thermal shock, Better resistance to fatigue and buckling, strong resistance against, fire, explosion, etc. The main drawback of the reinforced concrete beam is its poor resistance to tensile stresses. In order to investigate the thermal induced tensile stresses, a numerical model of a transient thermal analysis is presented for the evaluation of thermo-mechanical response of concrete beam to the high temperature, taking into account the temperature dependence of the thermo physical properties of the concrete like thermal conductivity and specific heat.

Keywords: Cracking, Gradient Temperature, Reinforced Concrete beam, Thermo-mechanical analysis.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3693
1730 Structural Damage Detection Using Sensors Optimally Located

Authors: Carlos Alberto Riveros, Edwin Fabián García, Javier Enrique Rivero

Abstract:

The measured data obtained from sensors in continuous monitoring of civil structures are mainly used for modal identification and damage detection. Therefore, when modal identification analysis is carried out the quality in the identification of the modes will highly influence the damage detection results. It is also widely recognized that the usefulness of the measured data used for modal identification and damage detection is significantly influenced by the number and locations of sensors. The objective of this study is the numerical implementation of two widely known optimum sensor placement methods in beam-like structures.

Keywords: Optimum sensor placement, structural damage detection, modal identification, beam-like structures.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2291
1729 Thermal Insulating Silicate Materials Suitable for Thermal Insulation and Rehabilitation Structures

Authors: J. Hroudova, M. Sedlmajer, J. Zach

Abstract:

Problems insulation of building structures is often closely connected with the problem of moisture remediation. In the case of historic buildings or if only part of the redevelopment of envelope of structures, it is not possible to apply the classical external thermal insulation composite systems. This application is mostly effective thermal insulation plasters with high porosity and controlled capillary properties which assures improvement of thermal properties construction, its diffusion openness towards the external environment and suitable treatment capillary properties of preventing the penetration of liquid moisture and salts thereof toward the outer surface of the structure. With respect to the current trend of reducing the energy consumption of building structures and reduce the production of CO2 is necessary to develop capillary-active materials characterized by their low density, low thermal conductivity while maintaining good mechanical properties. The aim of researchers at the Faculty of Civil Engineering, Brno University of Technology is the development and study of hygrothermal behaviour of optimal materials for thermal insulation and rehabilitation of building structures with the possible use of alternative, less energy demanding binders in comparison with conventional, frequently used binder, which represents cement. The paper describes the evaluation of research activities aimed at the development of thermal insulation and repair materials using lightweight aggregate and alternative binders such as metakaolin and finely ground fly ash.

Keywords: Thermal insulating plasters, rehabilitation materials, thermal conductivity, lightweight aggregate, alternative binders.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2181
1728 Experimental Observation on Air-Conditioning Using Radiant Chilled Ceiling in Hot Humid Climate

Authors: Ashmin Aryal, Pipat Chaiwiwatworakul, Surapong Chirarattananon

Abstract:

Radiant chilled ceiling (RCC) has been perceived to save more energy and provide better thermal comfort than the traditional air conditioning system. However, its application has been rather limited by some reasons e.g., the scarce information about the thermal characteristic in the radiant room and the local climate influence on the system performance, etc. To bridge such gap, an office-like experiment room with a RCC was constructed in the hot and humid climate of Thailand. This paper presents exemplarily results from the RCC experiments to give an insight into the thermal environment in a radiant room and the cooling load associated to maintain the room's comfort condition. It gave a demonstration of the RCC system operation for its application to achieve thermal comfort in offices in a hot humid climate, as well.

Keywords: Radiant chilled ceiling, thermal comfort, cooling load, outdoor air unit.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 499
1727 Best Timing for Capturing Satellite Thermal Images, Asphalt, and Concrete Objects

Authors: Toufic Abd El-Latif Sadek

Abstract:

The asphalt object represents the asphalted areas like roads, and the concrete object represents the concrete areas like concrete buildings. The efficient extraction of asphalt and concrete objects from one satellite thermal image occurred at a specific time, by preventing the gaps in times which give the close and same brightness values between asphalt and concrete, and among other objects. So that to achieve efficient extraction and then better analysis. Seven sample objects were used un this study, asphalt, concrete, metal, rock, dry soil, vegetation, and water. It has been found that, the best timing for capturing satellite thermal images to extract the two objects asphalt and concrete from one satellite thermal image, saving time and money, occurred at a specific time in different months. A table is deduced shows the optimal timing for capturing satellite thermal images to extract effectively these two objects.

Keywords: Asphalt, concrete, satellite thermal images, timing.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1293
1726 Thermal Resistance Analysis of Flexible Composites Based on Al2O3 Aerogels

Authors: Jianzheng Wei, Duo Zhen, Zhihan Yang, Huifeng Tan

Abstract:

The deployable descent technology is a lightweight entry method using an inflatable heat shield. The heatshield consists of a pressurized core which is covered by different layers of thermal insulation and flexible ablative materials in order to protect against the thermal loads. In this paper, both aluminum and silicon-aluminum aerogels were prepared by freeze-drying method. The latter material has bigger specific surface area and nano-scale pores. Mullite fibers are used as the reinforcing fibers to prepare the aerogel matrix to improve composite flexibility. The flexible composite materials were performed as an insulation layer to an underlying aramid fabric by a thermal shock test at a heat flux density of 120 kW/m2 and uniaxial tensile test. These results show that the aramid fabric with untreated mullite fibers as the thermal protective layer is completely carbonized at the heat of about 60 s. The aramid fabric as a thermal resistance layer of the composite material still has good mechanical properties at the same heat condition.

Keywords: Aerogel, aramid fabric, flexibility, thermal resistance.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 806
1725 Correlation to Predict Thermal Performance According to Working Fluids of Vertical Closed-Loop Pulsating Heat Pipe

Authors: Niti Kammuang-lue, Kritsada On-ai, Phrut Sakulchangsatjatai, Pradit Terdtoon

Abstract:

The objectives of this paper are to investigate effects of dimensionless numbers on thermal performance of the vertical closed-loop pulsating heat pipe (VCLPHP) and to establish a correlation to predict the thermal performance of the VCLPHP. The CLPHPs were made of long copper capillary tubes with inner diameters of 1.50, 1.78, and 2.16mm and bent into 26 turns. Then, both ends were connected together to form a loop. The evaporator, adiabatic, and condenser sections length were equal to 50 and 150 mm. R123, R141b, acetone, ethanol, and water were chosen as variable working fluids with constant filling ratio of 50% by total volume. Inlet temperature of heating medium and adiabatic section temperature was constantly controlled at 80 and 50oC, respectively. Thermal performance was represented in a term of Kutateladze number (Ku). It can be concluded that when Prandtl number of liquid working fluid (Prl), and Karman number (Ka) increases, thermal performance increases. On contrary, when Bond number (Bo), Jacob number (Ja), and Aspect ratio (Le/Di) increases, thermal performance decreases. Moreover, the correlation to predict more precise thermal performance has been successfully established by analyzing on all dimensionless numbers that have effect on the thermal performance of the VCLPHP.

Keywords: Vertical closed-loop pulsating heat pipe, working fluid, thermal performance, dimensionless parameter.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2336
1724 Numerical Study on Improving Indoor Thermal Comfort Using a PCM Wall

Authors: M. Faraji, F. Berroug

Abstract:

A one-dimensional mathematical model was developed in order to analyze and optimize the latent heat storage wall. The governing equations for energy transport were developed by using the enthalpy method and discretized with volume control scheme. The resulting algebraic equations were next solved iteratively by using TDMA algorithm. A series of numerical investigations were conducted in order to examine the effects of the thickness of the PCM layer on the thermal behavior of the proposed heating system. Results are obtained for thermal gain and temperature fluctuation. The charging discharging process was also presented and analyzed.

Keywords: Phase change material, Building, Concrete, Latent heat, Thermal control.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2145
1723 Impacts of the Courtyard with Glazed Roof on House Winter Thermal Conditions

Authors: Bin Su

Abstract:

The 'wind-rain' house has a courtyard with glazed roof, which allows more direct sunlight to come into indoor spaces during the winter. The glazed roof can be partially opened or closed and automatically controlled to provide natural ventilation in order to adjust for indoor thermal conditions and the roof area can be shaded by reflective insulation materials during the summer. Two field studies for evaluating indoor thermal conditions of the two 'windrain' houses have been carried out by author in 2009 and 2010. Indoor and outdoor air temperature and relative humidity adjacent to floor and ceiling of the two sample houses were continuously tested at 15-minute intervals, 24 hours a day during the winter months. Based on field study data, this study investigates relationships between building design and indoor thermal condition of the 'windrain' house to improve the future house design for building thermal comfort and energy efficiency

Keywords: Courtyard, house design, indoor thermal comfort, 'wind-rain' house

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1694
1722 A Prototype of Augmented Reality for Visualising Large Sensors’ Datasets

Authors: Folorunso Olufemi Ayinde, Mohd Shahrizal Sunar, Sarudin Kari, Dzulkifli Mohamad

Abstract:

In this paper we discuss the development of an Augmented Reality (AR) - based scientific visualization system prototype that supports identification, localisation, and 3D visualisation of oil leakages sensors datasets. Sensors generates significant amount of multivariate datasets during normal and leak situations. Therefore we have developed a data model to effectively manage such data and enhance the computational support needed for the effective data explorations. A challenge of this approach is to reduce the data inefficiency powered by the disparate, repeated, inconsistent and missing attributes of most available sensors datasets. To handle this challenge, this paper aim to develop an AR-based scientific visualization interface which automatically identifies, localise and visualizes all necessary data relevant to a particularly selected region of interest (ROI) along the virtual pipeline network. Necessary system architectural supports needed as well as the interface requirements for such visualizations are also discussed in this paper.

Keywords: Sensor Leakages Datasets, Augmented Reality, Sensor Data-Model, Scientific Visualization.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1680
1721 Design of a Low Cost Motion Data Acquisition Setup for Mechatronic Systems

Authors: Barış Can Yalçın

Abstract:

Motion sensors have been commonly used as a valuable component in mechatronic systems, however, many mechatronic designs and applications that need motion sensors cost enormous amount of money, especially high-tech systems. Design of a software for communication protocol between data acquisition card and motion sensor is another issue that has to be solved. This study presents how to design a low cost motion data acquisition setup consisting of MPU 6050 motion sensor (gyro and accelerometer in 3 axes) and Arduino Mega2560 microcontroller. Design parameters are calibration of the sensor, identification and communication between sensor and data acquisition card, interpretation of data collected by the sensor.

Keywords: Calibration of sensors, data acquisition.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 4336
1720 Thermal Regions for Unmanned Aircraft Systems Route Planning

Authors: Resul Fikir

Abstract:

Unmanned Aircraft Systems (UAS) become indispensable parts of modern airpower as force multiplier. One of the main advantages of UAS is long endurance. UAS have to take extra payloads to accomplish different missions but these payloads decrease endurance of aircraft because of increasing drag. There are continuing researches to increase the capability of UAS. There are some vertical thermal air currents, which can cause climb and increase endurance, in nature. Birds and gliders use thermals to gain altitude with no effort. UAS have wide wings which can use thermals like birds and gliders. Thermal regions, which is area of 2000-3000 meter (1 NM), exist all around the world. It is natural and infinite source. This study analyses if thermal regions can be adopted and implemented as an assistant tool for UAS route planning. First and second part of study will contain information about the thermal regions and current applications about UAS in aviation and climbing performance with a real example. Continuing parts will analyze the contribution of thermal regions to UAS endurance. Contribution is important because planning declaration of UAS navigation rules will be in 2015.

Keywords: Airways, Thermals, UAS, UAS Roadmap.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1604
1719 Biodegradable Cellulose-Based Materials for the Use in Food Packaging

Authors: Azza A. Al-Ghamdi, Abir S. Abdel-Naby

Abstract:

Cellulose acetate (CA) is a natural biodegradable polymer. It forms transparent films by the casting technique. CA suffers from high degree of water permeability as well as the low thermal stability at high temperatures. To adjust the CA polymeric films to the manufacture of food packaging, its thermal and mechanical properties should be improved. The modification of CA by grafting it with N-Amino phenyl maleimide (N-APhM) led to the construction of hydrophobic branches throughout the polymeric matrix which reduced its wettability as compared to the parent CA. The branches built onto the polymeric chains had been characterized by UV/Vis, 13C-NMR and ESEM. The improvement of the thermal properties was investigated and compared to the parent CA using thermal gravimetric analysis (TGA), differential scanning calorimetry (DSC), differential thermal analysis (DTA), contact angle and mechanical testing measurements. The results revealed that the water-uptake was reduced by increasing the graft percentage. The thermal and mechanical properties were also improved.

Keywords: Cellulose acetate, food packaging, graft copolymerization.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1593
1718 Low Cost Real-Time Communication Braille Hand-Glove for Visually Impaired Using Slot Sensors and Vibration Motors

Authors: Mukul Bandodkar, Virat Chourasia

Abstract:

Visually impaired people find it extremely difficult to acquire basic and vital information necessary for their living. Therefore, they are at a very high risk of being socially excluded as a result of poor access to information. In recent years, several attempts have been made in improving the communication methods for visually impaired people which involve tactile sensation such as finger Braille, manual alphabets and the print on palm method and several other electronic devices. But, there are some problems which arise in such methods such as lack of privacy and lack of compatibility to computer environment. This paper describes a low cost Braille hand glove for blind people using slot sensors and vibration motors with the help of which they can read and write emails, text messages and read e-books. This glove allows the person to type characters based on different Braille combination using six slot sensors. The vibration in six different positions of the glove which matches to the Braille code allows them to read characters.

Keywords: Braille, Braille Hand-Glove, Slot sensors, Vibration motors.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 4189
1717 Influence of IMV on Space Station

Authors: Fu Shiming, Pei Yifei

Abstract:

To study the impact of the inter-module ventilation (IMV) on the space station, the Computational Fluid Dynamic (CFD) model under the influence of IMV, the mathematical model, boundary conditions and calculation method are established and determined to analyze the influence of IMV on cabin air flow characteristics and velocity distribution firstly; and then an integrated overall thermal mathematical model of the space station is used to consider the impact of IMV on thermal management. The results show that: the IMV has a significant influence on the cabin air flow, the flowrate of IMV within a certain range can effectively improve the air velocity distribution in cabin, if too much may lead to its deterioration; IMV can affect the heat deployment of the different modules in space station, thus affecting its thermal management, the use of IMV can effectively maintain the temperature levels of the different modules and help the space station to dissipate the waste heat.

Keywords: CFD, Environment control and life support, Space station, Thermal management, Thermal mathematical model.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2059
1716 Transient Hydrodynamic and Thermal Behaviors of Fluid Flow in a Vertical Porous Microchannel under the Effect of Hyperbolic Heat Conduction Model

Authors: A. F. Khadrawi

Abstract:

The transient hydrodynamics and thermal behaviors of fluid flow in open-ended vertical parallel-plate porous microchannel are investigated semi-analytically under the effect of the hyperbolic heat conduction model. The model that combines both the continuum approach and the possibility of slip at the boundary is adopted in the study. The Effects of Knudsen number , Darcy number , and thermal relaxation time  on the microchannel hydrodynamics and thermal behaviors are investigated using the hyperbolic heat conduction models. It is found that as  increases the slip in the hydrodynamic and thermal boundary condition increases. This slip in the hydrodynamic boundary condition increases as  increases. Also, the slip in the thermal boundary condition increases as  decreases especially the early stage of time.

Keywords: free convection, hyperbolic heat conduction, macroscopic heat conduction models in microchannel, porous media, vertical microchannel, microchannel thermal, hydrodynamic behavior.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1927
1715 Analyzing of Temperature-Dependent Thermal Conductivity Effect in the Numerical Modeling of Fin-Tube Radiators: Introduction of a New Method

Authors: Farzad Bazdidi-Tehrani, Mohammad Hadi Kamrava

Abstract:

In all industries which are related to heat, suitable thermal ranges are defined for each device to operate well. Consideration of these limits requires a thermal control unit beside the main system. The Satellite Thermal Control Unit exploits from different methods and facilities individually or mixed. For enhancing heat transfer between primary surface and the environment, utilization of radiating extended surfaces are common. Especially for large temperature differences; variable thermal conductivity has a strong effect on performance of such a surface .In most literatures, thermo-physical properties, such as thermal conductivity, are assumed as constant. However, in some recent researches the variation of these parameters is considered. This may be helpful for the evaluation of fin-s temperature distribution in relatively large temperature differences. A new method is introduced to evaluate temperature-dependent thermal conductivity values. The finite volume method is employed to simulate numerically the temperature distribution in a space radiating fin. The present modeling is carried out for Aluminum as fin material and compared with previous method. The present results are also compared with those of two other analytical methods and good agreement is shown.

Keywords: Variable thermal conductivity, New method, Finitevolume method, Combined heat transfer, Extended Surface

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2328
1714 Low-Cost Inertial Sensors Modeling Using Allan Variance

Authors: A. A. Hussen, I. N. Jleta

Abstract:

Micro-electromechanical system (MEMS) accelerometers and gyroscopes are suitable for the inertial navigation system (INS) of many applications due to low price, small dimensions and light weight. The main disadvantage in a comparison with classic sensors is a worse long term stability. The estimation accuracy is mostly affected by the time-dependent growth of inertial sensor errors, especially the stochastic errors. In order to eliminate negative effects of these random errors, they must be accurately modeled. In this paper, the Allan variance technique will be used in modeling the stochastic errors of the inertial sensors. By performing a simple operation on the entire length of data, a characteristic curve is obtained whose inspection provides a systematic characterization of various random errors contained in the inertial-sensor output data.

Keywords: Allan variance, accelerometer, gyroscope, stochastic errors.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 5277
1713 An Application-Driven Procedure for Optimal Signal Digitization of Automotive-Grade Ultrasonic Sensors

Authors: Mohamed Shawki Elamir, Heinrich Gotzig, Raoul Zoellner, Patrick Maeder

Abstract:

In this work, a methodology is presented for identifying the optimal digitization parameters for the analog signal of ultrasonic sensors. These digitization parameters are the resolution of the analog to digital conversion and the sampling rate. This is accomplished though the derivation of characteristic curves based on Fano inequality and the calculation of the mutual information content over a given dataset. The mutual information is calculated between the examples in the dataset and the corresponding variation in the feature that needs to be estimated. The optimal parameters are identified in a manner that ensures optimal estimation performance while preventing inefficiency in using unnecessarily powerful analog to digital converters.

Keywords: Analog to digital conversion, digitization, sampling rate, ultrasonic sensors.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 446
1712 Experimental Study of Thermal Environment in a Room with Mixing Ventilation

Authors: Dong-Mei Pan, Liang XIA, Ming-Yin Chan

Abstract:

This paper reports an experimental study on a sleeping thermal manikin in a room equipped with a mixing ventilation system. In the experimental work, heat loss from the sleeping thermal manikin was measured under different conditions. The supply air temperature was in a range of 17°C to 27°C. Apart from the heat loss of the sleeping thermal manikin, the velocity distributions and temperature distributions were also measured in the experiments for subsequent analysis.

Keywords: Sleeping Environment, Mixing Ventilation System

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1759
1711 Application of Fractional Model Predictive Control to Thermal System

Authors: Aymen Rhouma, Khaled Hcheichi, Sami Hafsi

Abstract:

The article presents an application of Fractional Model Predictive Control (FMPC) to a fractional order thermal system using Controlled Auto Regressive Integrated Moving Average (CARIMA) model obtained by discretization of a continuous fractional differential equation. Moreover, the output deviation approach is exploited to design the K -step ahead output predictor, and the corresponding control law is obtained by solving a quadratic cost function. Experiment results onto a thermal system are presented to emphasize the performances and the effectiveness of the proposed predictive controller.

Keywords: Fractional model predictive control, fractional order systems, thermal system.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1226
1710 Influence of Channel Depth on the Performance of Wavy Fin Absorber Solar Air Heater

Authors: Abhishek Priyam, Prabha Chand

Abstract:

Channel depth is an important design parameter to be fixed in designing a solar air heater. In this paper, a mathematical model has been developed to study the influence of channel duct on the thermal performance of solar air heaters. The channel depth has been varied from 1.5 cm to 3.5 cm for the mass flow range 0.01 to 0.11 kg/s. Based on first law of thermodynamics, the channel depth of 1.5 cm shows better thermal performance for all the mass flow range. Also, better thermohydraulic performance has been found up to 0.05 kg/s, and beyond this, thermohydraulic efficiency starts decreasing. It has been seen that, with the increase in the mass flow rate, the difference between thermal and thermohydraulic efficiency increases because of the increase in pressure drop. At lower mass flow rate, 0.01 kg/s, the thermal and thermohydraulic efficiencies for respective channel depth remain the same.

Keywords: Channel depth, thermal efficiency, wavy fin, thermohydraulic efficiency.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1063
1709 Thermal Modeling of Dry-Transformers and Estimating Temperature Rise

Authors: M. Ghareh, L. Sepahi

Abstract:

Temperature rise in a transformer depends on variety of parameters such as ambient temperature, output current and type of the core. Considering these parameters, temperature rise estimation is still complicated procedure. In this paper, we present a new model based on simple electrical equivalent circuit. This method avoids the complication associated to accurate estimation and is in very good agreement with practice.

Keywords: Thermal modeling, temperature rise, equivalent thermal circuit.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3811
1708 Performance of Partially Covered N Number of Photovoltaic Thermal (PVT) - Compound Parabolic Concentrator (CPC) Series Connected Water Heating System

Authors: Rohit Tripathi, Sumit Tiwari, G. N. Tiwari

Abstract:

In present study, an approach is adopted where photovoltaic thermal flat plate collector is integrated with compound parabolic concentrator. Analytical expression of temperature dependent electrical efficiency of N number of partially covered Photovoltaic Thermal (PVT) - Compound Parabolic Concentrator (CPC) water collector connected in series has been derived with the help of basic thermal energy balance equations. Analysis has been carried for winter weather condition at Delhi location, India. Energy and exergy performance of N - partially covered Photovoltaic Thermal (PVT) - Compound Parabolic Concentrator (CPC) Water collector system has been compared for two cases: (i) 25% area of water collector covered by PV module, (ii) 75% area of water collector covered by PV module. It is observed that case (i) has been best suited for thermal performance and case (ii) for electrical energy as well as overall exergy.

Keywords: Compound parabolic concentrator, Energy, Photovoltaic thermal, Temperature dependent electrical efficiency.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1620
1707 Measurement of VIP Edge Conduction Using Vacuum Guarded Hot Plate

Authors: Bongsu Choi, Tae-Ho Song

Abstract:

Vacuum insulation panel (VIP) is a promising thermal insulator for buildings, refrigerator, LNG carrier and so on. In general, it has the thermal conductivity of 2~4 mW/m·K. However, this thermal conductivity is that measured at the center of VIP. The total effective thermal conductivity of VIP is larger than this value due to the edge conduction through the envelope. In this paper, the edge conduction of VIP is examined theoretically, numerically and experimentally. To confirm the existence of the edge conduction, numerical analysis is performed for simple two-dimensional VIP model and a theoretical model is proposed to calculate the edge conductivity. Also, the edge conductivity is measured using the vacuum guarded hot plate and the experiment is validated against numerical analysis. The results show that the edge conductivity is dependent on the width of panel and thickness of Al-foil. To reduce the edge conduction, it is recommended that the VIP should be made as big as possible or made of thin Al film envelope.

Keywords: Envelope, Edge conduction, Thermal conductivity, Vacuum insulation panel.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2667
1706 Economical Operation of Hydro-Thermal Power System based on Multi-path Adaptive Tabu Search

Authors: J. Kluabwang

Abstract:

An economic operation scheduling problem of a hydro-thermal power generation system has been properly solved by the proposed multipath adaptive tabu search algorithm (MATS). Four reservoirs with their own hydro plants and another one thermal plant are integrated to be a studied system used to formulate the objective function under complicated constraints, eg water managements, power balance and thermal generator limits. MATS with four subsearch units (ATSs) and two stages of discarding mechanism (DM), has been setting and trying to solve the problem through 25 trials under function evaluation criterion. It is shown that MATS can provide superior results with respect to single ATS and other previous methods, genetic algorithms (GA) and differential evolution (DE).

Keywords: Hydro-thermal scheduling problem, economic dispatch, adaptive tabu search, multipath adaptive tabu search

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1694
1705 Mutual Authentication for Sensor-to-Sensor Communications in IoT Infrastructure

Authors: Shadi Janbabaei, Hossein Gharaee Garakani, Naser Mohammadzadeh

Abstract:

Internet of things is a new concept that its emergence has caused ubiquity of sensors in human life, so that at any time, all data are collected, processed and transmitted by these sensors. In order to establish a secure connection, the first challenge is authentication between sensors. However, this challenge also requires some features so that the authentication is done properly. Anonymity, untraceability, and being lightweight are among the issues that need to be considered. In this paper, we have evaluated the authentication protocols and have analyzed the security vulnerabilities found in them. Then an improved light weight authentication protocol for sensor-to-sensor communications is presented which uses the hash function and logical operators. The analysis of protocol shows that security requirements have been met and the protocol is resistant against various attacks. In the end, by decreasing the number of computational cost functions, it is argued that the protocol is lighter than before.

Keywords: Anonymity, authentication, Internet of Things, lightweight, untraceablity.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 819
1704 Determination of Thermophysical Properties of Water Based Magnetic Nanofluids

Authors: Eyüphan Manay, Bayram Sahin, Emre Mandev, Ibrahim Ates, Tuba Yetim

Abstract:

In this study, it was aimed to determine the thermophysical properties of two different magnetic nanofluids (NiFe2O4-water and CoFe2O4-water). Magnetic nanoparticles were dispersed into the pure water at different volume fractions from 0 vol.% to 4 vol.%. The measurements were performed in the temperature range of 15 oC-55 oC. In order to get better idea on the temperature dependent thermophysical properties of magnetic nanofluids (MNFs), viscosity and thermal conductivity measurements were made. SEM images of both NiFe2O4 and CoFe2O4 nanoparticles were used in order to confirm the average dimensions. The measurements showed that the thermal conductivity of MNFs increased with an increase in the volume fraction as well as viscosity. Increase in the temperature of both MNFs resulted in an increase in the thermal conductivity and a decrease in the viscosity. Based on the measured data, the correlations for both the viscosity and the thermal conductivity were presented with respect to solid volume ratio and temperature. Effective thermal conductivity of the prepared MNFs was also calculated. The results indicated that water based NiFe2O4 nanofluid had higher thermal conductivity than that of the CoFe2O4. Once the viscosity values of both MNFs were compared, almost no difference was observed.

Keywords: Magnetic nanofluids, thermal conductivity, Viscosity, NiFe2O4-water, CoFe2O4-water.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1842