Search results for: porosity/water absorption.
2710 Effect of Stitching Pattern on Composite Tubular Structures Subjected to Quasi-Static Crushing
Authors: Ali Rabiee, Hessam Ghasemnejad
Abstract:
Extensive experimental investigation on the effect of stitching pattern on tubular composite structures was conducted. The effect of stitching reinforcement through thickness on using glass flux yarn on energy absorption of fiber-reinforced polymer (FRP) was investigated under high speed loading conditions at axial loading. Keeping the mass of the structure at 125 grams and applying different pattern of stitching at various locations in theory enables better energy absorption, and also enables the control over the behaviour of force-crush distance curve. The study consists of simple non-stitch absorber comparison with single and multi-location stitching behaviour and its effect on energy absorption capabilities. The locations of reinforcements are 10 mm, 20 mm, 30 mm, 10-20 mm, 10-30 mm, 20-30 mm, 10-20-30 mm and 10-15-20-25-30-35 mm from the top of the specimen. The effect of through the thickness reinforcements has shown increase in energy absorption capabilities and crushing load. The significance of this is that as the stitching locations are closer, the crushing load increases and consequently energy absorption capabilities are also increased. The implementation of this idea would improve the mean force by applying stitching and controlling the behaviour of force-crush distance curve.Keywords: Through-thickness, stitching, reinforcement, Tulbular composite structures, energy absorption.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 14302709 Numerical Investigation of Unsteady MHD Flow of Second Order Fluid in a Tube of Elliptical Cross-Section on the Porous Boundary
Authors: S. B. Kulkarni, Hasim A. Chikte, V. Murali Mohan
Abstract:
Exact solution of an unsteady MHD flow of elasticoviscous fluid through a porous media in a tube of elliptic cross section under the influence of magnetic field and constant pressure gradient has been obtained in this paper. Initially, the flow is generated by a constant pressure gradient. After attaining the steady state, the pressure gradient is suddenly withdrawn and the resulting fluid motion in a tube of elliptical cross section by taking into account of the porosity factor and magnetic parameter of the bounding surface is investigated. The problem is solved in two-stages the first stage is a steady motion in tube under the influence of a constant pressure gradient, the second stage concern with an unsteady motion. The problem is solved employing separation of variables technique. The results are expressed in terms of a non-dimensional porosity parameter, magnetic parameter and elastico-viscosity parameter, which depends on the Non-Newtonian coefficient. The flow parameters are found to be identical with that of Newtonian case as elastic-viscosity parameter, magnetic parameter tends to zero, and porosity tends to infinity. The numerical results were simulated in MATLAB software to analyze the effect of Elastico-viscous parameter, porosity parameter, and magnetic parameter on velocity profile. Boundary conditions were satisfied. It is seen that the effect of elastico-viscosity parameter, porosity parameter and magnetic parameter of the bounding surface has significant effect on the velocity parameter.Keywords: Elastico-viscous fluid, Porous media, Elliptic cross-section, Magnetic parameter, Numerical Simulation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 18162708 Numerical Modeling of Steel-Composite Hybrid Tubes Subject to Static and Dynamic Loading
Authors: Y. S. Tai, M. Y. Huang, H. T. Hu
Abstract:
The commercial finite element program LS-DYNA was employed to evaluate the response and energy absorbing capacity of cylindrical metal tubes that are externally wrapped with composite. The effects of composite wall thickness, loading conditions and fiber ply orientation were examined. The results demonstrate that a wrapped composite can be utilized effectively to enhance the crushing characteristics and energy absorbing capacity of the tubes. Increasing the thickness of the composite increases the mean force and the specific energy absorption under both static and dynamic crushing. The ply pattern affects the energy absorption capacity and the failure mode of the metal tube and the composite material property is also significant in determining energy absorption efficiency.
Keywords: fiber-reinforced metal tubes, energy absorption, axial crushing, impact loading.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 25242707 Optical Fiber Data Throughput in a Quantum Communication System
Authors: Arash Kosari, Ali Araghi
Abstract:
A mathematical model for an optical-fiber communication channel is developed which results in an expression that calculates the throughput and loss of the corresponding link. The data are assumed to be transmitted by using of separate photons with different polarizations. The derived model also shows the dependency of data throughput with length of the channel and depolarization factor. It is observed that absorption of photons affects the throughput in a more intensive way in comparison with that of depolarization. Apart from that, the probability of depolarization and the absorption of radiated photons are obtained.Keywords: Absorption, data throughput, depolarization, optical fiber.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16842706 Global and Local Structure of Supported Pd Catalysts
Authors: V. Rednic, N. Aldea, P. Marginean, D. Macovei, C. M. Teodorescu, E. Dorolti, F. Matei
Abstract:
The supported Pd catalysts were analyzed by X-ray diffraction and X-ray absorption spectroscopy in order to determine their global and local structure. The average particle size of the supported Pd catalysts was determined by X-ray diffraction method. One of the main purposes of the present contribution is to focus on understanding the specific role of the Pd particle size determined by X-ray diffraction and that of the support oxide. Based on X-ray absorption fine structure spectroscopy analysis we consider that the whole local structure of the investigated samples are distorted concerning the atomic number but the distances between atoms are almost the same as for standard Pd sample. Due to the strong modifications of the Pd cluster local structure, the metal-support interface may influence the electronic properties of metal clusters and thus their reactivity for absorption of the reactant molecules.Keywords: metal-support interaction, supported metal catalysts, synchrotron radiation, X-ray absorption spectroscopy, X-raydiffraction
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15352705 Unsteady Poiseuille Flow of an Incompressible Elastico-Viscous Fluid in a Tube of Spherical Cross Section on a Porous Boundary
Authors: Sanjay Baburao Kulkarni
Abstract:
Exact solution of an unsteady flow of elastico-viscous fluid through a porous media in a tube of spherical cross section under the influence of constant pressure gradient has been obtained in this paper. Initially, the flow is generated by a constant pressure gradient. After attaining the steady state, the pressure gradient is suddenly withdrawn and the resulting fluid motion in a tube of spherical cross section by taking into account of the porosity factor of the bounding surface is investigated. The problem is solved in twostages the first stage is a steady motion in tube under the influence of a constant pressure gradient, the second stage concern with an unsteady motion. The problem is solved employing separation of variables technique. The results are expressed in terms of a nondimensional porosity parameter (K) and elastico-viscosity parameter (β), which depends on the Non-Newtonian coefficient. The flow parameters are found to be identical with that of Newtonian case as elastic-viscosity parameter tends to zero and porosity tends to infinity. It is seen that the effect of elastico-viscosity parameter, porosity parameter of the bounding surface has significant effect on the velocity parameter.
Keywords: Elastico-viscous fluid, Porous media, Second order fluids, Spherical cross-section.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 21162704 Assessment of Carbon Dioxide Separation by Amine Solutions Using Electrolyte Non-Random Two-Liquid and Peng-Robinson Models: Carbon Dioxide Absorption Efficiency
Authors: Arash Esmaeili, Zhibang Liu, Yang Xiang, Jimmy Yun, Lei Shao
Abstract:
A high pressure carbon dioxide (CO2) absorption from a specific gas in a conventional column has been evaluated by the Aspen HYSYS simulator using a wide range of single absorbents and blended solutions to estimate the outlet CO2 concentration, absorption efficiency and CO2 loading to choose the most proper solution in terms of CO2 capture for environmental concerns. The property package (Acid Gas-Chemical Solvent) which is compatible with all applied solutions for the simulation in this study, estimates the properties based on an electrolyte non-random two-liquid (E-NRTL) model for electrolyte thermodynamics and Peng-Robinson equation of state for the vapor and liquid hydrocarbon phases. Among all the investigated single amines as well as blended solutions, piperazine (PZ) and the mixture of piperazine and monoethanolamine (MEA) have been found as the most effective absorbents respectively for CO2 absorption with high reactivity based on the simulated operational conditions.
Keywords: Absorption, amine solutions, Aspen HYSYS, carbon dioxide, simulation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 5842703 Unsteady Flow of an Incompressible Elastico-Viscous Fluid of Second order Type in Tube of Ellipsoidal Cross Section on a Porous Boundary
Authors: Sanjay Baburao Kulkarni
Abstract:
Exact solution of an unsteady flow of elastico-viscous fluid through a porous media in a tube of ellipsoidal cross section under the influence of constant pressure gradient has been obtained in this paper. Initially, the flow is generated by a constant pressure gradient. After attaining the steady state, the pressure gradient is suddenly withdrawn and the resulting fluid motion in a tube of ellipsoidal cross section by taking into account of the porosity factor of the bounding surface is investigated. The problem is solved in twostages the first stage is a steady motion in tube under the influence of a constant pressure gradient, the second stage concern with an unsteady motion. The problem is solved employing separation of variables technique. The results are expressed in terms of a nondimensional porosity parameter (K) and elastico-viscosity parameter (β), which depends on the Non-Newtonian coefficient. The flow parameters are found to be identical with that of Newtonian case as elastic-viscosity parameter tends to zero and porosity tends to infinity. It is seen that the effect of elastico-viscosity parameter and the porosity parameter of the bounding surface has significant effect on the velocity parameter.
Keywords: Elastico-viscous fluid, Ellipsoidal cross-section, Porous media, Second order fluids.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16932702 Performance of an Absorption Refrigerator Using a Solar Thermal Collector
Authors: Abir Hmida, Nihel Chekir, Ammar Ben Brahim
Abstract:
In the present paper, we investigate the feasibility of a thermal solar driven cold room in Gabes, southern region of Tunisia. The cold room of 109 m3 is refrigerated using an ammonia absorption machine. It is destined to preserve dates during the hot months of the year. A detailed study of the cold room leads previously to the estimation of the cooling load of the proposed storage room in the operating conditions of the region. The next step consists of the estimation of the required heat in the generator of the absorption machine to ensure the desired cold temperature. A thermodynamic analysis was accomplished and complete description of the system is determined. We propose, here, to provide the needed heat thermally from the sun by using vacuum tube collectors. We found that at least 21m² of solar collectors are necessary to accomplish the work of the solar cold room.
Keywords: Absorption, ammonia, cold room, solar collector, vacuum tube.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 7342701 Unsteady MHD Flow of an Incompressible Elastico-Viscous Fluid in a Tube of Spherical Cross Section on a Porous Boundary
Authors: Sanjay Baburao Kulkarni
Abstract:
Exact solution of an unsteady MHD flow of elasticoviscous fluid through a porous media in a tube of spherical cross section under the influence of magnetic field and constant pressure gradient has been obtained in this paper. Initially, the flow is generated by a constant pressure gradient. After attaining the steady state, the pressure gradient is suddenly withdrawn and the resulting fluid motion in a tube of spherical cross section by taking into account of the porosity factor and magnetic parameter of the bounding surface is investigated. The problem is solved in two-stages the first stage is a steady motion in tube under the influence of a constant pressure gradient, the second stage concern with an unsteady motion. The problem is solved employing separation of variables technique. The results are expressed in terms of a non-dimensional porosity parameter (K), magnetic parameter (m) and elasticoviscosity parameter (β), which depends on the Non-Newtonian coefficient. The flow parameters are found to be identical with that of Newtonian case as elastic-viscosity parameter and magnetic parameter tends to zero and porosity tends to infinity. It is seen that the effect of elastico-viscosity parameter, porosity parameter and magnetic parameter of the bounding surface has significant effect on the velocity parameter.
Keywords: Elastico-viscous fluid, Porous media, Second order fluids, Spherical cross-section, Magnetic parameter.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16352700 Laser-Ultrasonic Method for Measuring the Local Elastic Moduli of Porous Isotropic Composite Materials
Authors: Alexander A. Karabutov, Natalia B. Podymova, Elena B. Cherepetskaya, Vladimir A. Makarov, Yulia G. Sokolovskaya
Abstract:
The laser-ultrasonic method is realized for quantifying the influence of porosity on the local Young’s modulus of isotropic composite materials. The method is based on a laser thermooptical method of ultrasound generation combined with measurement of the phase velocity of longitudinal and shear acoustic waves in samples. The main advantage of this method compared with traditional ultrasonic research methods is the efficient generation of short and powerful probing acoustic pulses required for reliable testing of ultrasound absorbing and scattering heterogeneous materials. Using as an example samples of a metal matrix composite with reinforcing microparticles of silicon carbide in various concentrations, it is shown that to provide an effective increase in Young’s modulus with increasing concentration of microparticles, the porosity of the final sample should not exceed 2%.Keywords: Laser ultrasonic, longitudinal and shear ultrasonic waves, porosity, composite, local elastic moduli.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15492699 Effect of Silver Nanoparticles Size Prepared by Photoreduction Method on Optical Absorption Spectra of TiO2/Ag/N719 Dye Composite Films
Authors: C. Photiphitak, P. Rakkwamsuk, P. Muthitamongkol, C. Sae-Kung, C. Thanachayanont
Abstract:
TiO2/Ag composite films were prepared by incorporating Ag in the pores of mesoporous TiO2 films using a photoreduction method. The Ag nanoparticle sizes were in a range of 3.66-38.56 nm. The TiO2/Ag composite films were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM) and transmission electron microscropy (TEM). The TiO2 films and TiO2/Ag composite films were immersed in a 0.3 mM N719 dye solution and characterized by UV-Vis spectrophotometer. The TiO2/Ag/N719 composite film showed that an optimal size of Ag nanoparticles was 19.12 nm and, hence, gave the maximum optical absorption spectra. The improved absorption was due to surface plasmon resonance induced by the Ag nanoparticles to enhance the absorption coefficient of the dye.Keywords: Silver nanoparticle, TiO2/Ag composite films, Optical properties, surface plasmon resonance
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 26032698 Absorption Spectra of Artificial Atoms in Presence of THz Fields
Authors: B. Dahiya, K.Batra, V.Prasad
Abstract:
Artificial atoms are growing fields of interest due to their physical and optoelectronicapplications. The absorption spectra of the proposed artificial atom inpresence of Tera-Hertz field is investigated theoretically. We use the non-perturbativeFloquet theory and finite difference method to study the electronic structure of ArtificialAtom. The effect of static electric field on the energy levels of artificial atom is studied.The effect of orientation of static electric field on energy levels and diploe matrix elementsis also highlighted.
Keywords: Absorption spectra, Artificial atom, Floquet Theory, THz fields
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16992697 Energy Absorption and Axial Tearing Behaviour of Metallic Tubes Using Angled Dies: Experimental and Numerical Simulation
Authors: V. K. Bheemineni, B. Käfer, H. Lammer, M. Kotnik, F. O. Riemelmoser
Abstract:
This paper concerns about the experimental and numerical investigations of energy absorption and axial tearing behaviour of aluminium 6060 circular thin walled tubes under static axial compression. The tubes are received in T66 heat treatment condition with fixed outer diameter of 42mm, thickness of 1.5mm and length of 120mm. The primary variables are the conical die angles (15°, 20° and 25°). Numerical simulations are carried on ANSYS/LS-DYNA software tool, for investigating the effect of friction between the tube and the die.
Keywords: Angled die, ANSYS/LS-DYNA, Axial tearing, Energy absorption.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 25602696 The Photo-Absorption and Surface Feature of Nano-Structured TIO2 Coatings
Authors: Maryamossadat Bozorgtabar, Mohammadreza Rahimipour, Mehdi Salehi, Mohammadreza Jafarpour
Abstract:
Titanium dioxide coatings were deposited by utilizing atmospheric plasma spraying (APS) system. The agglomerated nanopowder and different spraying parameters were used to determine their influences on the microstructure surface feature and photoabsorption of the coatings. The microstructure of as-sprayed TiO2 coatings were characterized by scanning electron microscope (SEM). Surface characteristics were investigated by Fourier Transform Infrared (FT-IR). The photo absorption was determined by UV-VIS spectrophotometer. It is found that the spray parameters have an influence on the microstructure, surface feature and photo-absorption of the TiO2 coatings.Keywords: APS, TiO2, Nanostructured Coating, Photoabsorption
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 17152695 Influence of Hydrolytic Degradation on Properties of Moisture Membranes Used in Fire-Protective Clothing
Authors: Rachid El Aidani, Phuong Nguyen-Tri, Toan Vu-Khanh
Abstract:
This study intends to show the influence of the hydrolytic degradation on the properties of the e-PTFE/NOMEX® membranes used in fire-protective clothing. The modification of water vapour permeability, morphology and chemical structure was examined by MOCON Permatran, electron microscopy scanning (SEM), and ATR-FTIR, respectively. A decrease in permeability to water vapour of the aged samples was observed following closure of transpiration pores. Analysis of fiber morphology indicates the appearance of defects at the fibers surface with the presence of micro cavities. ATR-FTIR analysis reveals the presence of a new absorption band attributed to carboxylic acid terminal groups generated during the amide bond hydrolysis.Keywords: Hydrolytic ageing, moisture membrane; water vapor permeability, morphology.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 23652694 Development of Wave-Dissipating Block Installation Simulation for Inexperienced Worker Training
Authors: Hao Min Chuah, Tatsuya Yamazaki, Ryosui Iwasawa, Tatsumi Suto
Abstract:
In recent years, with the advancement of digital technology, the movement to introduce so-called ICT (Information and Communication Technology), such as computer technology and network technology, to civil engineering construction sites and construction sites is accelerating. As part of this movement, attempts are being made in various situations to reproduce actual sites inside computers and use them for designing and construction planning, as well as for training inexperienced engineers. The installation of wave-dissipating blocks on coasts, etc., is a type of work that has been carried out by skilled workers based on their years of experience and is one of the tasks that is difficult for inexperienced workers to carry out on site. Wave-dissipating blocks are structures that are designed to protect coasts, beaches, and so on from erosion by reducing the energy of ocean waves. Wave-dissipating blocks usually weigh more than 1 t and are installed by being suspended by a crane, so it would be time-consuming and costly for inexperienced workers to train on-site. In this paper, therefore, a block installation simulator is developed based on Unity 3D, a game development engine. The simulator computes porosity. Porosity is defined as the ratio of the total volume of the wave breaker blocks inside the structure to the final shape of the ideal structure. Using the evaluation of porosity, the simulator can determine how well the user is able to install the blocks. The voxelization technique is used to calculate the porosity of the structure, simplifying the calculations. Other techniques, such as raycasting and box overlapping, are employed for accurate simulation. In the near future, the simulator will install an automatic block installation algorithm based on combinatorial optimization solutions and compare the user-demonstrated block installation and the appropriate installation solved by the algorithm.
Keywords: 3D simulator, porosity, user interface, voxelization, wave-dissipating blocks.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 692693 Acoustic Behavior of Polymer Foam Composite of Shorea leprosula after UV-Irradiation Exposure
Authors: Anika Zafiah M. Rus, S. Shafizah
Abstract:
This study was developed to compare the behavior and the ability of polymer foam composites towards sound absorption test of Shorea leprosula wood (SL) of acid hydrolysis treatment with particle size <355μm. Three different weight ratio of polyol to wood particle has been selected which are 10wt%, 15wt% and 20wt%. The acid hydrolysis treatment is to optimize the surface interaction of wood particle with polymer foam matrix. In addition, the acoustic characteristic of sound absorption coefficient (α) was determined. Further treatment is to expose the polymer composite in UV irradiation by using UV-Weatherometer. Polymer foam composite of untreated Shorea leprosula particle (SL-B) with respective percentage loading shows uniform pore structure as compared with treated wood particle (SL-A). As the filler percentage loading in polymer foam increases, the α value approaching 1 for both samples. Furthermore, SL-A shows better α value at 3500-4500 frequency absorption level (Hz), meanwhile α value for SL-B is maximum at 4000-5000 Hz. The frequencies absorption level for both SL-B and SL-A after UV exposure was increased with the increasing of exposure time from 0-1000 hours. It is therefore, concluded that the α for each sound absorbing material, with or without acid hydrolysis treatment of wood particles and it’s percentages loading in polymer matrix effect the sound absorption behavior.
Keywords: Polymer foam composite, sound absorption coefficient, UV-irradiation, wood.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 23772692 Unsteady Flow of an Incompressible Viscous Electrically Conducting Fluid in Tube of Elliptical Cross Section under the Influence of Magnetic Field
Authors: Sanjay Baburao Kulkarni
Abstract:
Exact solution of an unsteady flow of elastico-viscous electrically conducting fluid through a porous media in a tube of elliptical cross section under the influence of constant pressure gradient and magnetic field has been obtained in this paper. Initially, the flow is generated by a constant pressure gradient. After attaining the steady state, the pressure gradient is suddenly withdrawn and the resulting fluid motion in a tube of elliptical cross section by taking into account of the transverse magnetic field and porosity factor of the bounding surface is investigated. The problem is solved in twostages the first stage is a steady motion in tube under the influence of a constant pressure gradient, the second stage concern with an unsteady motion. The problem is solved employing separation of variables technique. The results are expressed in terms of a nondimensional porosity parameter (K), magnetic parameter (m) and elastico-viscosity parameter (β), which depends on the Non- Newtonian coefficient. The flow parameters are found to be identical with that of Newtonian case as elastic-viscosity parameter and magnetic parameter tends to zero and porosity tends to infinity. It is seen that the effect of elastico-viscosity parameter, magnetic parameter and the porosity parameter of the bounding surface has significant effect on the velocity parameter.
Keywords: Elastico-viscous fluid, Elliptic cross-section, Porous media, Second order fluids.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 19322691 Natural Frequency Analysis of a Porous Functionally Graded Shaft System
Authors: Natural Frequency Analysis of a Porous Functionally Graded Shaft System
Abstract:
The vibration characteristics of a functionally graded (FG) rotor model having porosities and micro-voids is investigated using three-dimensional finite element analysis. The FG shaft is mounted with a steel disc located at the midspan. The shaft ends are supported on isotropic bearings. The FG material is composed of a metallic (stainless-steel) and ceramic phase (zirconium oxide) as its constituent phases. The layer wise material property variation is governed by power law. Material property equations are developed for the porosity modelling. Python code is developed to assign the material properties to each layer including the effect of porosities. ANSYS commercial software is used to extract the natural frequencies and whirl frequencies for the FG shaft system. The obtained results show the influence of porosity volume fraction and power-law index, on the vibration characteristics of the ceramic-based FG shaft system.
Keywords: Finite element method, functionally graded material, porosity volume fraction, power law.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 7902690 The Concentration Effects for the Adsorption Behavior of Heptyl Viologen Cation Radicals on Indium-Tin-Oxide Electrode Surfaces
Authors: Yusuke Ayato, Takashi Itahashi, Akiko Takatsu, Kenji Kato, Naoki Matsuda
Abstract:
In situ observation of absorption spectral change of heptil viologen cation radical (HV+.) was performed by slab optical waveguide (SOWG) spectroscopy utilizing indium-tin-oxide (ITO) electrodes. Synchronizing with electrochemical techniques, we observed the adsorption process of HV+.on the ITO electrode. In this study, we carried out the ITO-SOWG observations using KBr aqueous solution containing different concentration of HV to investigate the concentration dependent spectral change. A few specific absorption bands, which indicated HV+.existed as both monomer and dimer on ITO electrode surface with a monolayer or a few layers deposition, were observed in UV-visible region. The change in the peak position of the absorption spectra from adsorption species of HV+. were correlated with the concentration of HV as well as the electrode potential.Keywords: absorption phenomena, heptil viologen, indium-tin-oxide (ITO) electrode, in situ, slab optical waveguide(SOWG) spectroscopy,
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15412689 Heavy Metals (Pb, Cu, Fe, and Zn) Level in Shellfish (Etheria elliptica), Water and Sediments of River Ogbese, Ondo State, Nigeria
Authors: O. O. Olawusi-Peters, O. E. Aguda, F. O. Okoye
Abstract:
Investigations on the accumulation of heavy metals in water and sediments of river Ogbese were carried out between December 2010 and February 2011 using Atomic Absorption Spectrophotometer. Etheria elliptica a sessile organism was also used to determine the concentration of heavy metal in the aquatic environmental. In water, Cu had the highest concentration (0.55 – 0.13 mg/l ±0.1) while in sediments, the highest value obtained was in Fe (1.46-3.89mg/l±0.27). The minimum concentrations recorded were in Pb; which was below detectable level. The result also revealed that the shell accumulate more heavy metals than the flesh of the mussel with Cu in the shell exhibiting a negative correlation with all the metals in the flesh. However, the condition factor (K) value is 6.44, an indication of good health. The length-weight relationship is expressed as W = -0.48 x L 1.94 (r2 = 0.29) showing the growth pattern to be negatively allometric.Keywords: Condition factor, Etheria elliptica, heavy metals, River Ogbese.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 21272688 Comparative Study of Tensile Properties of Cast and Hot Forged Alumina Nanoparticle Reinforced Composites
Authors: S. Ghanaraja, Subrata Ray, S. K. Nath
Abstract:
Particle reinforced Metal Matrix Composite (MMC) succeeds in synergizing the metallic matrix with ceramic particle reinforcements to result in improved strength, particularly at elevated temperatures, but adversely it affects the ductility of the matrix because of agglomeration and porosity. The present study investigates the outcome of tensile properties in a cast and hot forged composite reinforced simultaneously with coarse and fine particles. Nano-sized alumina particles have been generated by milling mixture of aluminum and manganese dioxide powders. Milled particles after drying are added to molten metal and the resulting slurry is cast. The microstructure of the composites shows good distribution of both the size categories of particles without significant clustering. The presence of nanoparticles along with coarser particles in a composite improves both strength and ductility considerably. Delay in debonding of coarser particles to higher stress is due to reduced mismatch in extension caused by increased strain hardening in presence of the nanoparticles. However, higher addition of powder mix beyond a limit results in deterioration of mechanical properties, possibly due to clustering of nanoparticles. The porosity in cast composite generally increases with the increasing addition of powder mix as observed during process and on forging it has got reduced. The base alloy and nanocomposites show improvement in flow stress which could be attributed to lowering of porosity and grain refinement as a consequence of forging.
Keywords: Aluminum, alumina, nanoparticle reinforced composites, porosity.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 14752687 Producing New Composite Materials by Using Tragacanth and Waste Ash
Authors: Yasar Bicer, Serif Yilmaz
Abstract:
In present study, two kinds of thermal power plant ashes; one the fly ash and the other waste ash are mixed with adhesive tragacanth and cement to produce new composite materials. 48 new samples are produced by varying the percentages of the fly ash, waste ash, cement and tragacanth. The new samples are subjected to some tests to find out their properties such as thermal conductivity, compressive strength, tensile strength and sucking capability of water. It is found that; the thermal conductivity decreases with increasing amount of tragacanth in the mixture. The compressive, tensile strength increases when the rate of tragacanth is up to 1%, whilst as the amount of tragacanth increases up to 1.5%, the compressive, tensile strength decreases slightly. The rate of water absorption of samples was more than 30%. From this result, it is concluded that these materials can not be used as external plaster or internal plaster material that faces to water. They can be used in internal plaster unless touching water and they can be used as cover plaster under roof and riprap material in sandwich panels. It is also found that, these materials can be cut with saw, drilled with screw and painted with any kind of paint.Keywords: Fly ash, tragacanth, cement, composite material.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 17722686 Plasmonic Absorption Enhancement in Au/CdS Nanocomposite
Authors: K. Easawi, M. Nabil, T. Abdallah, S. Negm, H. Talaat
Abstract:
Composite nanostructures of metal core/semiconductor shell (Au/CdS) configuration were prepared using organometalic method. UV-Vis spectra for the Au/CdS colloids show initially two well separated bands, corresponding to surface plasmon of the Au core, and the exciton of CdS shell. The absorption of CdS shell is enhanced, while the Au plasmon band is suppressed as the shell thickness increases. The shell sizes were estimated from the optical spectra using the effective mass approximation model (EMA), and compared to the sizes of the Au core and CdS shell measured by high resolution transmission electron microscope (HRTEM). The changes in the absorption features are discussed in terms of gradual increase in the coupling strength of the Au core surface plasmon and the exciton in the CdS. leading to charge transfer and modification of electron oscillation in Au core.Keywords: Nanocomposites, Plasmonics.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 24592685 A Study of Recycle Materials to Develop for Auto Part
Authors: Sittichai Kaewkuekool, Vanchai Laemlaksakul
Abstract:
At the present, auto part industries have become higher challenge in strategy market. As this consequence, manufacturers need to have better response to customers in terms of quality, cost, and delivery time. Moreover, they need to have a good management in factory to comply with international standard maximum capacity and lower cost. This would lead companies to have to order standard part from aboard and become the major cost of inventory. The development of auto part research by recycling materials experiment is to compare the auto parts from recycle materials to international auto parts (CKD). Factors studied in this research were the recycle material ratios of PU-foam, felt, and fabric. Results of recycling materials were considered in terms of qualities and properties on the parameters such as weight, sound absorption, water absorption, tensile strength, elongation, and heat resistance with the CKD. The results were showed that recycling materials would be used to replace for the CKD.
Keywords: International auto parts, recycling materials.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 20742684 Performance Enhancement of Membrane Distillation Process in Fruit Juice Concentration by Membrane Surface Modification
Authors: Samir K. Deshmukh, Mayur M. Tajane
Abstract:
In this work Membrane Distillation is applied to concentrate orange Juice. Clarified orange juice (11o Brix) obtained from fresh fruits and a sugar solution was subjected to membrane distillation. The experiments were performed on a flat sheet module using orange juice and sucrose solution as feeds. The concentration of a sucrose solution, used as a model fruit juice and also orange juice, was carried out in a direct contact membrane distillation using hydrophobic PTFE membrane of pore size 0.2 μm and porosity 70%. Surface modification of PTFE membrane has been carried out by treating membrane with alcohol and water solution to make it hydrophilic and then hydrophobicity was regained by drying. The influences of the feed temperature, feed concentration, flow rate, operating time on the permeate flux were studied for treated and non treated membrane. In this work treated and non treated membrane were compared in terms of water flux, Within the tested range, MD with surface modified membrane the water flux has been significantly improved by treating the membrane surface.Keywords: Membrane Distillation, Surface Modification, Orange Juice. Polytetrafluoroethylene.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 22202683 Water Crisis Management in a Tourism Dependent Community
Authors: Aishath Shakeela
Abstract:
At a global level, water stewardship, water stress and water security are crucial factors in tourism planning and development considerations. Challenges associated with water is of particular concern to the Maldives as there is limited availability of freshwater, high dependency on desalinated water, and high unit cost associated with desalinating water. While the Maldives is promoted as an example of sustainable tourism, a key sustainability challenge facing tourism dependent communities is the efficient use and management of available water resources. A water crisis event in the capital island of Maldives highlighted how precarious water related issues are in this tourism dependent destination. Applying netnography, the focus of this working paper is to present community perceptions of how government policies addressed Malé Water and Sewerage Company (MWSC) water crisis event.Keywords: Crisis management, government policies, Maldives, tourism, water.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 21172682 The Effect of Vibration on the Absorption of CO2 with Chemical Reaction in Aqueous Solution of Calcium Hydroxide
Authors: B. Sohbi, M. Emtir, M. Elgarni
Abstract:
An interesting method to produce calcium carbonate is based in a gas-liquid reaction between carbon dioxide and aqueous solutions of calcium hydroxide. The design parameters for gas-liquid phase are flow regime, individual mass transfer, gas-liquid specific interfacial area. Most studies on gas-liquid phase were devoted to the experimental determination of some of these parameters, and more specifically, of the mass transfer coefficient, kLa which depends fundamentally on the superficial gas velocity and on the physical properties of absorption phase. The principle investigation was directed to study the effect of the vibration on the mass transfer coefficient kLa in gas-liquid phase during absorption of CO2 in the in aqueous solution of calcium hydroxide. The vibration with a higher frequency increase the mass transfer coefficient kLa, but vibration with lower frequency didn-t improve it, the mass transfer coefficient kLa increase with increase the superficial gas velocity.
Keywords: Environment technology, mass transfer coefficient, absorption, CO2, calcium hydroxide.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 18162681 Assessing the Suitability of South African Waste Foundry Sand as an Additive in Clay Masonry Products
Authors: Nthabiseng Portia Mahumapelo, Andre van Niekerk, Ndabenhle Sosibo, Nirdesh Singh
Abstract:
The foundry industry generates large quantities of solid waste in the form of waste foundry sand. The ever-increasing quantities of this type of industrial waste put pressure on land-filling space and its proper management has become a global concern. The South African foundry industry is not different when it comes to this solid waste generation. Utilizing the foundry waste sand in other applications has become an attractive avenue to deal with this waste stream. In the present paper, an evaluation was done on the suitability of foundry waste sand as an additive in clay masonry products. Purchased clay was added to the foundry waste sand sample in a 50/50 ratio. The mixture was named FC sample. The FC sample was mixed with water in a pan mixer until the mixture was consistent and suitable for extrusion. The FC sample was extruded and cut into briquettes. Water absorption, shrinkage and modulus of rupture tests were conducted on the resultant briquettes. Foundry waste sand and FC samples were respectively characterized mineralogically using X-Ray Diffraction, and the major and trace elements were determined using Inductively Coupled Plasma Optical Emission Spectroscopy. Adding purchased clay to the foundry waste sand positively influenced the workability of the test sample. Another positive characteristic was the low linear shrinkage, which indicated that products manufactured from the FC sample would not be susceptible to cracking. The water absorption values were acceptable and the unfired and fired strength values of the briquette’s samples were acceptable. In conclusion, tests showed that foundry waste sand can be used as an additive in masonry clay bricks, provided it is blended with good quality clay.
Keywords: Foundry waste sand, masonry clay bricks, modulus of rupture, shrinkage.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 660