Search results for: numerical analysis method.
15134 Study on the Variation Effects of Diverging Angleon Characteristics of Flow in Converging and Diverging Ducts by Numerical Method
Authors: Moghiman Mohammad, Amiri Maryam, Amiri Amirhosein
Abstract:
The present paper develops and validates a numerical procedure for the calculation of turbulent combustive flow in converging and diverging ducts and throuh simulation of the heat transfer processes, the amount of production and spread of Nox pollutant has been measured. A marching integration solution procedure employing the TDMA is used to solve the discretized equations. The turbulence model is the Prandtl Mixing Length method. Modeling the combustion process is done by the use of Arrhenius and Eddy Dissipation method. Thermal mechanism has been utilized for modeling the process of forming the nitrogen oxides. Finite difference method and Genmix numerical code are used for numerical solution of equations. Our results indicate the important influence of the limiting diverging angle of diffuser on the coefficient of recovering of pressure. Moreover, due to the intense dependence of Nox pollutant to the maximum temperature in the domain with this feature, the Nox pollutant amount is also in maximum level.
Keywords: Converging and Diverging Duct, Combustion, Diffuser, Diverging Angle, Nox
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 153715133 A Case Study on the Numerical-Probability Approach for Deep Excavation Analysis
Authors: Komeil Valipourian
Abstract:
Urban advances and the growing need for developing infrastructures has increased the importance of deep excavations. In this study, after the introducing probability analysis as an important issue, an attempt has been made to apply it for the deep excavation project of Bangkok’s Metro as a case study. For this, the numerical probability model has been developed based on the Finite Difference Method and Monte Carlo sampling approach. The results indicate that disregarding the issue of probability in this project will result in an inappropriate design of the retaining structure. Therefore, probabilistic redesign of the support is proposed and carried out as one of the applications of probability analysis. A 50% reduction in the flexural strength of the structure increases the failure probability just by 8% in the allowable range and helps improve economic conditions, while maintaining mechanical efficiency. With regard to the lack of efficient design in most deep excavations, by considering geometrical and geotechnical variability, an attempt was made to develop an optimum practical design standard for deep excavations based on failure probability. On this basis, a practical relationship is presented for estimating the maximum allowable horizontal displacement, which can help improve design conditions without developing the probability analysis.
Keywords: Numerical probability modeling, deep excavation, allowable maximum displacement, finite difference method, FDM.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 69215132 Block Homotopy Perturbation Method for Solving Fuzzy Linear Systems
Authors: Shu-Xin Miao
Abstract:
In this paper, we present an efficient numerical algorithm, namely block homotopy perturbation method, for solving fuzzy linear systems based on homotopy perturbation method. Some numerical examples are given to show the efficiency of the algorithm.
Keywords: Homotopy perturbation method, fuzzy linear systems, block linear system, fuzzy solution, embedding parameter.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 137415131 A Prediction of Attractive Evaluation Objects Based On Complex Sequential Data
Authors: Shigeaki Sakurai, Makino Kyoko, Shigeru Matsumoto
Abstract:
This paper proposes a method that predicts attractive evaluation objects. In the learning phase, the method inductively acquires trend rules from complex sequential data. The data is composed of two types of data. One is numerical sequential data. Each evaluation object has respective numerical sequential data. The other is text sequential data. Each evaluation object is described in texts. The trend rules represent changes of numerical values related to evaluation objects. In the prediction phase, the method applies new text sequential data to the trend rules and evaluates which evaluation objects are attractive. This paper verifies the effect of the proposed method by using stock price sequences and news headline sequences. In these sequences, each stock brand corresponds to an evaluation object. This paper discusses validity of predicted attractive evaluation objects, the process time of each phase, and the possibility of application tasks.
Keywords: Trend rule, frequent pattern, numerical sequential data, text sequential data, evaluation object.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 123515130 Numerical Modeling of Temperature Fields in Aviation Gas Turbine Elements
Authors: A. M. Pashaev, R. A. Sadihov, A. S. Samedov, C. Ardil
Abstract:
A mathematical model and a numerical method for computing the temperature field of the profile part of convectionally cooled blades are developed. The theoretical substantiation of the method is proved by corresponding theorems. To this end, convergent quadrature processes were developed and error estimates were obtained in terms of the Zygmund continuity moduli. The boundary conditions for heat exchange are determined from the solution of the corresponding integral equations and empirical relations. The reliability of the developed methods is confirmed by calculation and experimental studies of the thermohydraulic characteristics of the nozzle apparatus of the first stage of the gas turbine.
Keywords: Aviation gas turbine, temperature field, cooled blades, numerical modeling.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 75015129 Study of the Electromagnetic Resonances of a Cavity with an Aperture Using Numerical Method and Equivalent Circuit Method
Authors: Ming-Chu Yin, Ping-An Du
Abstract:
The shielding ability of a shielding cavity with an aperture will be greatly degraded at resonance frequencies, and the resonance modes and frequencies are affected by aperture resonances and aperture-cavity coupling, which are closely related with aperture sizes. The equivalent circuit method and numerical method of Transmission Line Matrix (TLM) are used to analyze the effects of aperture resonances and aperture-cavity coupling on the electromagnetic resonances of a cavity with an aperture in this paper. Both analytical and numerical results show that the resonance modes of a shielding cavity with an aperture consist of cavity resonance modes and aperture resonance modes, and the resonance frequencies will shift with the change of the aperture sizes because of the aperture resonances and aperture-cavity coupling. Variation rules of electromagnetic resonances with aperture sizes for a cavity with an aperture are given, which will be useful for design of shielding cavities.Keywords: Aperture-cavity coupling, equivalent circuit method, resonances, shielding equipment.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 159815128 Quasilinearization–Barycentric Approach for Numerical Investigation of the Boundary Value Fin Problem
Authors: Alireza Rezaei, Fatemeh Baharifard, Kourosh Parand
Abstract:
In this paper we improve the quasilinearization method by barycentric Lagrange interpolation because of its numerical stability and computation speed to achieve a stable semi analytical solution. Then we applied the improved method for solving the Fin problem which is a nonlinear equation that occurs in the heat transferring. In the quasilinearization approach the nonlinear differential equation is treated by approximating the nonlinear terms by a sequence of linear expressions. The modified QLM is iterative but not perturbative and gives stable semi analytical solutions to nonlinear problems without depending on the existence of a smallness parameter. Comparison with some numerical solutions shows that the present solution is applicable.
Keywords: Quasilinearization method, Barycentric lagrange interpolation, nonlinear ODE, fin problem, heat transfer.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 187415127 Study of Real Gas Behavior in a Single-Stage Gas Gun
Authors: A. Moradi, S. Khodadadiyan
Abstract:
In this paper, one-dimensional analysis of flow in a single-stage gas gun is conducted. The compressible inviscid flow equations are numerically solved by the second-order Roe TVD method, by using moving boundaries. For investigation of real gas effect the Noble-Able equation is applied. The numerical results are compared with the experimental data to validate the numerical scheme. The results show that with using the Noble-Able equation, the muzzle velocity decreases.Keywords: Gas gun, Roe, projectile, muzzle velocity
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 231015126 Numerical Investigation of the Optimal Spatial Domain Discretization for the 2-D Analysis of a Darrieus Vertical-Axis Water Turbine
Authors: M. Raciti Castelli, S. De Betta, E. Benini
Abstract:
The optimal grid spacing and turbulence model for the 2D numerical analysis of a vertical-axis water turbine (VAWaterT) operating in a 2 m/s freestream current has been investigated. The results of five different spatial domain discretizations and two turbulence models (k-ω SST and k-ε RNG) have been compared, in order to gain the optimal y+ parameter distribution along the blade walls during a full rotor revolution. The resulting optimal mesh has appeared to be quite similar to that obtained for the numerical analysis of a vertical-axis wind turbine.Keywords: CFD, vertical axis water turbine, NACA 0025, blade y+.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 204815125 The Impact of Cooperative Learning on Numerical Methods Course
Authors: Sara Bilal, Abdi Omar Shuriye, Raihan Othman
Abstract:
Numerical Methods is a course that can be conducted using workshops and group discussion. This study has been implemented on undergraduate students of level two at the Faculty of Engineering, International Islamic University Malaysia. The Numerical Method course has been delivered to two Sections 1 and 2 with 44 and 22 students in each section, respectively. Systematic steps have been followed to apply the student centered learning approach in teaching Numerical Method course. Initially, the instructor has chosen the topic which was Euler’s Method to solve Ordinary Differential Equations (ODE) to be learned. The students were then divided into groups with five members in each group. Initial instructions have been given to the group members to prepare their subtopics before meeting members from other groups to discuss the subtopics in an expert group inside the classroom. For the time assigned for the classroom discussion, the setting of the classroom was rearranged to accommodate the student centered learning approach. Teacher strength was by monitoring the process of learning inside and outside the class. The students have been assessed during the migrating to the expert groups, recording of a video explanation outside the classroom and during the final examination. Euler’s Method to solve the ODE was set as part of Question 3(b) in the final exam. It is observed that none of the students from both sections obtained a zero grade in Q3(b), compared to Q3(a) and Q3(c). Also, for Section 1(44 students), 29 students obtained the full mark of 7/7, while only 10 obtained 7/7 for Q3(a) and no students obtained 6/6 for Q3(c). Finally, we can recommend that the Numerical Method course be moved toward more student-centered Learning classrooms where the students will be engaged in group discussion rather than having a teacher one man show.
Keywords: Teacher centered learning, student centered learning, mathematic, numerical methods.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 147115124 Seven step Adams Type Block Method With Continuous Coefficient For Periodic Ordinary Differential Equation
Authors: Olusheye Akinfenwa
Abstract:
We consider the development of an eight order Adam-s type method, with A-stability property discussed by expressing them as a one-step method in higher dimension. This makes it suitable for solving variety of initial-value problems. The main method and additional methods are obtained from the same continuous scheme derived via interpolation and collocation procedures. The methods are then applied in block form as simultaneous numerical integrators over non-overlapping intervals. Numerical results obtained using the proposed block form reveals that it is highly competitive with existing methods in the literature.Keywords: Block Adam's type Method; Periodic Ordinary Differential Equation; Stability.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 158415123 Nonlinear Dynamic Analysis of Base-Isolated Structures Using a Mixed Integration Method: Stability Aspects and Computational Efficiency
Authors: Nicolò Vaiana, Filip C. Filippou, Giorgio Serino
Abstract:
In order to reduce numerical computations in the nonlinear dynamic analysis of seismically base-isolated structures, a Mixed Explicit-Implicit time integration Method (MEIM) has been proposed. Adopting the explicit conditionally stable central difference method to compute the nonlinear response of the base isolation system, and the implicit unconditionally stable Newmark’s constant average acceleration method to determine the superstructure linear response, the proposed MEIM, which is conditionally stable due to the use of the central difference method, allows to avoid the iterative procedure generally required by conventional monolithic solution approaches within each time step of the analysis. The main aim of this paper is to investigate the stability and computational efficiency of the MEIM when employed to perform the nonlinear time history analysis of base-isolated structures with sliding bearings. Indeed, in this case, the critical time step could become smaller than the one used to define accurately the earthquake excitation due to the very high initial stiffness values of such devices. The numerical results obtained from nonlinear dynamic analyses of a base-isolated structure with a friction pendulum bearing system, performed by using the proposed MEIM, are compared to those obtained adopting a conventional monolithic solution approach, i.e. the implicit unconditionally stable Newmark’s constant acceleration method employed in conjunction with the iterative pseudo-force procedure. According to the numerical results, in the presented numerical application, the MEIM does not have stability problems being the critical time step larger than the ground acceleration one despite of the high initial stiffness of the friction pendulum bearings. In addition, compared to the conventional monolithic solution approach, the proposed algorithm preserves its computational efficiency even when it is adopted to perform the nonlinear dynamic analysis using a smaller time step.Keywords: Base isolation, computational efficiency, mixed explicit-implicit method, partitioned solution approach, stability.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 105915122 An Identification Method of Geological Boundary Using Elastic Waves
Authors: Masamitsu Chikaraishi, Mutsuto Kawahara
Abstract:
This paper focuses on a technique for identifying the geological boundary of the ground strata in front of a tunnel excavation site using the first order adjoint method based on the optimal control theory. The geological boundary is defined as the boundary which is different layers of elastic modulus. At tunnel excavations, it is important to presume the ground situation ahead of the cutting face beforehand. Excavating into weak strata or fault fracture zones may cause extension of the construction work and human suffering. A theory for determining the geological boundary of the ground in a numerical manner is investigated, employing excavating blasts and its vibration waves as the observation references. According to the optimal control theory, the performance function described by the square sum of the residuals between computed and observed velocities is minimized. The boundary layer is determined by minimizing the performance function. The elastic analysis governed by the Navier equation is carried out, assuming the ground as an elastic body with linear viscous damping. To identify the boundary, the gradient of the performance function with respect to the geological boundary can be calculated using the adjoint equation. The weighed gradient method is effectively applied to the minimization algorithm. To solve the governing and adjoint equations, the Galerkin finite element method and the average acceleration method are employed for the spatial and temporal discretizations, respectively. Based on the method presented in this paper, the different boundary of three strata can be identified. For the numerical studies, the Suemune tunnel excavation site is employed. At first, the blasting force is identified in order to perform the accuracy improvement of analysis. We identify the geological boundary after the estimation of blasting force. With this identification procedure, the numerical analysis results which almost correspond with the observation data were provided.
Keywords: Parameter identification, finite element method, average acceleration method, first order adjoint equation method, weighted gradient method, geological boundary, navier equation, optimal control theory.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 158415121 Reduced Order Modeling of Natural Gas Transient Flow in Pipelines
Authors: M. Behbahani-Nejad, Y. Shekari
Abstract:
A reduced order modeling approach for natural gas transient flow in pipelines is presented. The Euler equations are considered as the governing equations and solved numerically using the implicit Steger-Warming flux vector splitting method. Next, the linearized form of the equations is derived and the corresponding eigensystem is obtained. Then, a few dominant flow eigenmodes are used to construct an efficient reduced-order model. A well-known test case is presented to demonstrate the accuracy and the computational efficiency of the proposed method. The results obtained are in good agreement with those of the direct numerical method and field data. Moreover, it is shown that the present reduced-order model is more efficient than the conventional numerical techniques for transient flow analysis of natural gas in pipelines.Keywords: Eigenmode, Natural Gas, Reduced Order Modeling, Transient Flow.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 193715120 Design and Analysis of Extra High Voltage Non-Ceramic Insulator by Finite Element Method
Authors: M. Nageswara Rao, V. S. N. K. Chaitanya, P. Pratyusha
Abstract:
High voltage insulator has to withstand sever electrical stresses. Higher electrical stresses lead to erosion of the insulator surface. Degradation of insulating properties leads to flashover and in some extreme cases it may cause to puncture. For analyzing these electrical stresses and implement necessary actions to diminish the electrical stresses, numerical methods are best. By minimizing the electrical stresses, reliability of the power system will improve. In this paper electric field intensity at critical regions of 400 kV silicone composite insulator is analyzed using finite element method. Insulator is designed using FEMM-2D software package. Electric Field Analysis (EFA) results are analyzed for five cases i.e., only insulator, insulator with two sides arcing horn, High Voltage (HV) end grading ring, grading ring-arcing horn arrangement and two sides grading ring. These EFA results recommended that two sides grading ring is better for minimization of electrical stresses and improving life span of insulator.
Keywords: Polymer insulator, electric field analysis, numerical methods, finite element method, FEMM-2D.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 114815119 A Note on the Numerical Solution of Singular Integral Equations of Cauchy Type
Authors: M. Abdulkawi, Z. K. Eshkuvatov, N. M. A. Nik Long
Abstract:
This manuscript presents a method for the numerical solution of the Cauchy type singular integral equations of the first kind, over a finite segment which is bounded at the end points of the finite segment. The Chebyshev polynomials of the second kind with the corresponding weight function have been used to approximate the density function. The force function is approximated by using the Chebyshev polynomials of the first kind. It is shown that the numerical solution of characteristic singular integral equation is identical with the exact solution, when the force function is a cubic function. Moreover, it also shown that this numerical method gives exact solution for other singular integral equations with degenerate kernels.
Keywords: Singular integral equations, Cauchy kernel, Chebyshev polynomials, interpolation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 165515118 Parametric Analysis of Solid Oxide Fuel Cell Using Lattice Boltzmann Method
Authors: Abir Yahya, Hacen Dhahri, Khalifa Slimi
Abstract:
The present paper deals with a numerical simulation of temperature field inside a solid oxide fuel cell (SOFC) components. The temperature distribution is investigated using a co-flow planar SOFC comprising the air and fuel channel and two-ceramic electrodes, anode and cathode, separated by a dense ceramic electrolyte. The Lattice Boltzmann method (LBM) is used for the numerical simulation of the physical problem. The effects of inlet temperature, anode thermal conductivity and current density on temperature distribution are discussed. It was found that temperature distribution is very sensitive to the inlet temperature and the current density.
Keywords: Solid oxide fuel cell, Heat sources, temperature, Lattice Boltzmann method.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 88815117 Numerical Solution of Second-Order Ordinary Differential Equations by Improved Runge-Kutta Nystrom Method
Authors: Faranak Rabiei, Fudziah Ismail, S. Norazak, Saeid Emadi
Abstract:
In this paper we developed the Improved Runge-Kutta Nystrom (IRKN) method for solving second order ordinary differential equations. The methods are two step in nature and require lower number of function evaluations per step compared with the existing Runge-Kutta Nystrom (RKN) methods. Therefore, the methods are computationally more efficient at achieving the higher order of local accuracy. Algebraic order conditions of the method are obtained and the third and fourth order method are derived with two and three stages respectively. The numerical results are given to illustrate the efficiency of the proposed method compared to the existing RKN methods.
Keywords: Improved Runge-Kutta Nystrom method, Two step method, Second-order ordinary differential equations, Order conditions
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 685015116 Determination of Safety Distance Around Gas Pipelines Using Numerical Methods
Authors: Omid Adibi, Nategheh Najafpour, Bijan Farhanieh, Hossein Afshin
Abstract:
Energy transmission pipelines are one of the most vital parts of each country which several strict laws have been conducted to enhance the safety of these lines and their vicinity. One of these laws is the safety distance around high pressure gas pipelines. Safety distance refers to the minimum distance from the pipeline where people and equipment do not confront with serious damages. In the present study, safety distance around high pressure gas transmission pipelines were determined by using numerical methods. For this purpose, gas leakages from cracked pipeline and created jet fires were simulated as continuous ignition, three dimensional, unsteady and turbulent cases. Numerical simulations were based on finite volume method and turbulence of flow was considered using k-ω SST model. Also, the combustion of natural gas and air mixture was applied using the eddy dissipation method. The results show that, due to the high pressure difference between pipeline and environment, flow chocks in the cracked area and velocity of the exhausted gas reaches to sound speed. Also, analysis of the incident radiation results shows that safety distances around 42 inches high pressure natural gas pipeline based on 5 and 15 kW/m2 criteria are 205 and 272 meters, respectively.
Keywords: Gas pipelines, incident radiation, numerical simulation, safety distance.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 113315115 An Unstructured Finite-volume Technique for Shallow-water Flows with Wetting and Drying Fronts
Authors: Rajendra K. Ray, Kim Dan Nguyen
Abstract:
An unstructured finite volume numerical model is presented here for simulating shallow-water flows with wetting and drying fronts. The model is based on the Green-s theorem in combination with Chorin-s projection method. A 2nd-order upwind scheme coupled with a Least Square technique is used to handle convection terms. An Wetting and drying treatment is used in the present model to ensures the total mass conservation. To test it-s capacity and reliability, the present model is used to solve the Parabolic Bowl problem. We compare our numerical solutions with the corresponding analytical and existing standard numerical results. Excellent agreements are found in all the cases.Keywords: Finite volume method, Projection method, Shallow water, Unstructured grid, wetting/drying fronts.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 159715114 Development of Variable Stepsize Variable Order Block Method in Divided Difference Form for the Numerical Solution of Delay Differential Equations
Authors: Fuziyah Ishak, Mohamed B. Suleiman, Zanariah A. Majid, Khairil I. Othman
Abstract:
This paper considers the development of a two-point predictor-corrector block method for solving delay differential equations. The formulae are represented in divided difference form and the algorithm is implemented in variable stepsize variable order technique. The block method produces two new values at a single integration step. Numerical results are compared with existing methods and it is evident that the block method performs very well. Stability regions of the block method are also investigated.Keywords: block method, delay differential equations, predictor-corrector, stability region, variable stepsize variable order.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 147515113 Grid Independence Study of Flow Past a Square Cylinder Using the Multi-Relaxation-Time Lattice Boltzmann Method
Authors: Shams-Ul-Islam, Hamid Rahman, Waqas Sarwar Abbasi
Abstract:
Numerical calculations of flow around a square cylinder are presented using the multi-relaxation-time lattice Boltzmann method at Reynolds number 150. The effects of upstream locations, downstream locations and blockage are investigated systematically. A detail analysis are given in terms of time-trace analysis of drag and lift coefficients, power spectra analysis of lift coefficient, vorticity contours visualizations and phase diagrams. A number of physical quantities mean drag coefficient, drag coefficient, Strouhal number and root-mean-square values of drag and lift coefficients are calculated and compared with the well resolved experimental data and numerical results available in open literature. The results had shown that the upstream, downstream and height of the computational domain are at least 7.5, 37.5 and 12 diameters of the cylinder, respectively.
Keywords: Grid independence, Multi-relaxation-time lattice Boltzmann method, Physical quantities, Square cylinder, Vorticity contours visualizations.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 333915112 Effect of Concrete Nonlinear Parameters on the Seismic Response of Concrete Gravity Dams
Authors: Z. Heirany, M. Ghaemian
Abstract:
Behavior of dams against the seismic loads has been studied by many researchers. Most of them proposed new numerical methods to investigate the dam safety. In this paper, to study the effect of nonlinear parameters of concrete in gravity dams, a twodimensional approach was used including the finite element method, staggered method and smeared crack approach. Effective parameters in the models are physical properties of concrete such as modulus of elasticity, tensile strength and specific fracture energy. Two different models were used in foundation (mass-less and massed) in order to determine the seismic response of concrete gravity dams. Results show that when the nonlinear analysis includes the dam- foundation interaction, the foundation-s mass, flexibility and radiation damping are important in gravity dam-s response.Keywords: Numerical methods; concrete gravity dams; finiteelement method; boundary condition
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 233315111 Efficient Solution for a Class of Markov Chain Models of Tandem Queueing Networks
Authors: Chun Wen, Tingzhu Huang
Abstract:
We present a new numerical method for the computation of the steady-state solution of Markov chains. Theoretical analyses show that the proposed method, with a contraction factor α, converges to the one-dimensional null space of singular linear systems of the form Ax = 0. Numerical experiments are used to illustrate the effectiveness of the proposed method, with applications to a class of interesting models in the domain of tandem queueing networks.
Keywords: Markov chains, tandem queueing networks, convergence, effectiveness.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 132915110 Distortion of Flow Measurement and Cavitation Occurs Due to Orifice Inlet Velocity Profiles
Authors: Byung-Soo Shin, Nam-Seok Kim, Sang-Kyu Lee, O-Hyun Keum
Abstract:
This analysis investigates the distortion of flow measurement and the increase of cavitation along orifice flowmeter. The analysis using the numerical method (CFD) validated the distortion of flow measurement through the inlet velocity profile considering the convergence and grid dependency. Realizable k-e model was selected and y+ was about 50 in this numerical analysis. This analysis also estimated the vulnerability of cavitation effect due to inlet velocity profile. The investigation concludes that inclined inlet velocity profile could vary the pressure which was measured at pressure tab near pipe wall and it led to distort the pressure values ranged from -3.8% to 5.3% near the orifice plate and to make the increase of cavitation. The investigation recommends that the fully developed inlet velocity flow is beneficial to accurate flow measurement in orifice flowmeter.Keywords: Orifice, k-e model, CFD
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 221215109 An Approximation Method for Exact Boundary Controllability of Euler-Bernoulli System
Authors: Abdelaziz Khernane, Naceur Khelil, Leila Djerou
Abstract:
The aim of this work is to study the numerical implementation of the Hilbert Uniqueness Method for the exact boundary controllability of Euler-Bernoulli beam equation. This study may be difficult. This will depend on the problem under consideration (geometry, control and dimension) and the numerical method used. Knowledge of the asymptotic behaviour of the control governing the system at time T may be useful for its calculation. This idea will be developed in this study. We have characterized as a first step, the solution by a minimization principle and proposed secondly a method for its resolution to approximate the control steering the considered system to rest at time T.Keywords: Boundary control, exact controllability, finite difference methods, functional optimization.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 148715108 A Numerical Algorithm for Positive Solutions of Concave and Convex Elliptic Equation on R2
Authors: Hailong Zhu, Zhaoxiang Li
Abstract:
In this paper we investigate numerically positive solutions of the equation -Δu = λuq+up with Dirichlet boundary condition in a boundary domain ╬® for λ > 0 and 0 < q < 1 < p < 2*, we will compute and visualize the range of λ, this problem achieves a numerical solution.
Keywords: positive solutions, concave-convex, sub-super solution method, pseudo arclength method.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 132015107 A Numerical Investigation on the Dynamic Stall of a Wind Turbine Section Using Different Turbulent Models
Authors: S. A. Ahmadi, S. Sharif, R. Jamshidi
Abstract:
In this article, the flow behavior around a NACA 0012 airfoil which is oscillating with different Reynolds numbers and in various amplitudes has been investigated numerically. Numerical simulations have been performed with ANSYS software. First, the 2- D geometry has been studied in different Reynolds numbers and angles of attack with various numerical methods in its static condition. This analysis was to choose the best turbulent model and comparing the grids to have the optimum one for dynamic simulations. Because the analysis was to study the blades of wind turbines, the Reynolds numbers were not arbitrary. They were in the range of 9.71e5 to 22.65e5. The angle of attack was in the range of -41.81° to 41.81°. By choosing the forward wind speed as the independent parameter, the others like Reynolds and the amplitude of the oscillation would be known automatically. The results show that the SST turbulent model is the best choice that leads the least numerical error with respect the experimental ones. Also, a dynamic stall phenomenon is more probable at lower wind speeds in which the lift force is less.
Keywords: Dynamic stall, Numerical simulation, Wind turbine, Turbulent Model
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 200615106 Numerical Optimization of Trapezoidal Microchannel Heat Sinks
Authors: Yue-Tzu Yang, Shu-Ching Liao
Abstract:
This study presents the numerical simulation of three-dimensional incompressible steady and laminar fluid flow and conjugate heat transfer of a trapezoidal microchannel heat sink using water as a cooling fluid in a silicon substrate. Navier-Stokes equations with conjugate energy equation are discretized by finite-volume method. We perform numerical computations for a range of 50 ≦ Re ≦ 600, 0.05W ≦ P ≦ 0.8W, 20W/cm2 ≦q"≦ 40W/cm2. The present study demonstrates the numerical optimization of a trapezoidal microchannel heat sink design using the response surface methodology (RSM) and the genetic algorithm method (GA). The results show that the average Nusselt number increases with an increase in the Reynolds number or pumping power, and the thermal resistance decreases as the pumping power increases. The thermal resistance of a trapezoidal microchannel is minimized for a constant heat flux and constant pumping power.
Keywords: Microchannel heat sinks, Conjugate heat transfer, Optimization, Genetic algorithm method.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 215915105 Numerical Analysis of Turbulent Natural Convection in a Square Cavity using Large- Eddy Simulation in Lattice Boltzmann Method
Authors: H. Sajjadi, M. Gorji, GH.R. Kefayati, D. D. Ganji, M. Shayan Nia
Abstract:
In this paper Lattice Boltzmann simulation of turbulent natural convection with large-eddy simulations (LES) in a square cavity which is filled by water has been investigated. The present results are validated by finds of other investigations which have been done with different numerical methods. Calculations were performed for high Rayleigh numbers of Ra=108 and 109. The results confirm that this method is in acceptable agreement with other verifications of such a flow. In this investigation is tried to present Large-eddy turbulence flow model by Lattice Boltzmann Method (LBM) with a clear and simple statement. Effects of increase in Rayleigh number are displayed on streamlines, isotherm counters and average Nusselt number. Result shows that the average Nusselt number enhances with growth of the Rayleigh numbers.Keywords: Turbulent natural convection, Large Eddy Simulation, Lattice Boltzmann Method
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2021