Search results for: hydrogen peroxide vapor
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 411

Search results for: hydrogen peroxide vapor

321 Antioxidant Capacity and Total Phenolic Content of Aqueous Acetone and Ethanol Extract of Edible Parts of Moringa oleifera and Sesbania grandiflora

Authors: Perumal Siddhuraju, Arumugam Abirami, Gunasekaran Nagarani, Marimuthu Sangeethapriya

Abstract:

Aqueous ethanol and aqueous acetone extracts of Moringa oleifera (outer pericarp of immature fruit and flower) and Sesbania grandiflora white variety (flower and leaf) were examined for radical scavenging capacities and antioxidant activities. Ethanol extract of S. grandiflora (flower and leaf) and acetone extract of M. oleifera (outer pericarp of immature fruit and flower) contained relatively higher levels of total dietary phenolics than the other extracts. The antioxidant potential of the extracts were assessed by employing different in vitro assays such as reducing power assay, DPPH˙, ABTS˙+ and ˙OH radical scavenging capacities, antihemolytic assay by hydrogen peroxide induced method and metal chelating ability. Though all the extracts exhibited dose dependent reducing power activity, acetone extract of all the samples were found to have more hydrogen donating ability in DPPH˙ (2.3% - 65.03%) and hydroxyl radical scavenging systems (21.6% - 77.4%) than the ethanol extracts. The potential of multiple antioxidant activity was evident as it possessed antihemolytic activity (43.2 % to 68.0 %) and metal ion chelating potency (45.16 - 104.26 mg EDTA/g sample). The result indicate that acetone extract of M. oleifera (OPIF and flower) and S. grandiflora (flower and leaf) endowed with polyphenols, could be utilized as natural antioxidants/nutraceuticals.

Keywords: Antioxidant activity, Moringa oleifera, Polyphenolics, Sesbania grandiflora, Underutilized vegetables.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2372
320 Adsorption of H2 and CO on Iron-based Catalysts for Fischer-Tropsch Synthesis

Authors: Weixin Qian, Haitao Zhang, Hongfang Ma, Yongdi Liu, Weiyong Ying, Dingye Fang

Abstract:

The adsorption properties of CO and H2 on iron-based catalyst with addition of Zr and Ni were investigated using temperature programmed desorption process. It was found that on the carburized iron-based catalysts, molecular state and dissociative state CO existed together. The addition of Zr was preferential for the molecular state adsorption of CO on iron-based catalyst and the presence of Ni was beneficial to the dissociative adsorption of CO. On H2 reduced catalysts, hydrogen mainly adsorbs on the surface iron sites and surface oxide sites. On CO reduced catalysts, hydrogen probably existed as the most stable CH and OH species. The addition of Zr was not benefit to the dissociative adsorption of hydrogen on iron-based catalyst and the presence of Ni was preferential for the dissociative adsorption of hydrogen.

Keywords: adsorption, Fischer-Tropsch synthesis, iron-based catalysts

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2540
319 Delivery of Positively Charged Proteins Using Hyaluronic Acid Microgels

Authors: Elaheh Jooybar, Mohammad J. Abdekhodaie, Marcel Karperien, Pieter J. Dijkstra

Abstract:

In this study, hyaluronic acid (HA) microgels were developed for the goal of protein delivery. First, a hyaluronic acid-tyramine conjugate (HA-TA) was synthesized with a degree of substitution of 13 TA moieties per 100 disaccharide units. Then, HA-TA microdroplets were produced using a water in oil emulsion method and crosslinked in the presence of horseradish peroxidase (HRP) and hydrogen peroxide (H2O2). Loading capacity and the release kinetics of lysozyme and BSA, as model proteins, were investigated. It was shown that lysozyme, a cationic protein, can be incorporated efficiently in the HA microgels, while the loading efficiency for BSA, as a negatively charged protein, is low. The release profile of lysozyme showed a sustained release over a period of one month. The results demonstrated that the HA-TA microgels are a good carrier for spatial delivery of cationic proteins for biomedical applications.

Keywords: Microgel, inverse emulsion, protein delivery, hyaluronic acid, crosslinking.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 770
318 Catalytical Effect of Fluka 05120 on Methane Decomposition

Authors: Vidyasagar Shilapuram, Nesrin Ozalp, Anam Waheed

Abstract:

Carboneous catalytical methane decomposition is an attractive process because it produces two valuable products: hydrogen and carbon. Furthermore, this reaction does not emit any green house or hazardous gases. In the present study, experiments were conducted in a thermo gravimetric analyzer using Fluka 05120 as carboneous catalyst to analyze its effectiveness in methane decomposition. Various temperatures and methane partial pressures were chosen and carbon mass gain was observed as a function of time. Results are presented in terms of carbon formation rate, hydrogen production and catalytical activity. It is observed that there is linearity in carbon deposition amount by time at lower reaction temperature (780 °C). On the other hand, it is observed that carbon and hydrogen formation rates are increased with increasing temperature. Finally, we observed that the carbon formation rate is highest at 950 °C within the range of temperatures studied.

Keywords: Catalysis, Fluka 05120, Hydrogen production, Methane decomposition

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1840
317 A Simulation Model and Parametric Study of Triple-Effect Desalination Plant

Authors: Maha BenHamad, Ali Snoussi, Ammar Ben Brahim

Abstract:

A steady-state analysis of triple-effect thermal vapor compressor desalination unit was performed. A mathematical model based on mass, salinity and energy balances is developed. The purpose of this paper is to develop a connection between process simulator and process optimizer in order to study the influence of several operating variables on the performance and the produced water cost of the unit. A MATLAB program is used to solve the model equations, and Aspen HYSYS is used to model the plant. The model validity is examined against a commercial plant and showed a good agreement between industrial data and simulations results. Results show that the pressures of the last effect and the compressed vapor have an important influence on the produced cost, and the increase of the difference temperature in the condenser decreases the specific heat area about 22%.

Keywords: Steady-state, triple effect, thermal vapor compressor, MATLAB, Aspen HYSYS.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1016
316 Hydrogen and Biofuel Production from 2-Propanol Over Ru/Al2O3 Catalyst in Supercritical Water

Authors: Ekin Kıpçak, Yağmur Karakuş, Mesut Akgün

Abstract:

Hydrogen is an important chemical in many industries and it is expected to become one of the major fuels for energy generation in the future. Unfortunately, hydrogen does not exist in its elemental form in nature and therefore has to be produced from hydrocarbons, hydrogen-containing compounds or water.

Above its critical point (374.8oC and 22.1MPa), water has lower density and viscosity, and a higher heat capacity than those of ambient water. Mass transfer in supercritical water (SCW) is enhanced due to its increased diffusivity and transport ability. The reduced dielectric constant makes supercritical water a better solvent for organic compounds and gases. Hence, due to the aforementioned desirable properties, there is a growing interest toward studies regarding the gasification of organic matter containing biomass or model biomass solutions in supercritical water.

In this study, hydrogen and biofuel production by the catalytic gasification of 2-Propanol in supercritical conditions of water was investigated. Ru/Al2O3 was the catalyst used in the gasification reactions. All of the experiments were performed under a constant pressure of 25 MPa. The effects of five reaction temperatures (400, 450, 500, 550 and 600oC) and five reaction times (10, 15, 20, 25 and 30 s) on the gasification yield and flammable component content were investigated.

Keywords: 2-Propanol, Gasification, Ru/Al2O3, Supercritical water.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2099
315 Antidiabetic and Antioxidative Activities of Butyrolactone I from Aspergillus terreus MC751

Authors: Rizna Triana Dewi, Sanro Tachibana, Ahmad Darmawan

Abstract:

The bioassay-guided isolation and purification of an ethyl acetate extract of Aspergillus terreus MC751 led to the characterization of butyrolactone I as an antidiabetic and antioxidant. The antidiabetic activity of butyrolactone I was evaluated by α- glucosidase and α-amylase inhibition assays. Butyrolactone I demonstrated significant concentration-dependent, mixed-type inhibitory activity against yeast α-glucosidase with an IC50 of 54μM. However, the compound exhibited less activity against rat intestinal α-glucosidase and α-amylase. This is the first report on α-glucosidase inhibitory activity of butyrolactone I. The antioxidative activity of butyrolactone I was evaluated based on scavenging effects on 1,1- diphenyl-2-picrylhydrazyl (DPPH) (IC50 =51 μM) and hydrogen peroxide (IC50= 141 μM) radicals as well as a reducing power assay. The results suggest that butyrolactone I is a promising antidiabetic as well as antioxidant and should be considered for clinical trials.

Keywords: Aspergillus terreus MC751, antidiabetic, antioxidant, Butyrolactone I.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2779
314 Modeling and Simulation for Physical Vapor Deposition: Multiscale Model

Authors: Jürgen Geiser, Robert Röhle

Abstract:

In this paper we present modeling and simulation for physical vapor deposition for metallic bipolar plates. In the models we discuss the application of different models to simulate the transport of chemical reactions of the gas species in the gas chamber. The so called sputter process is an extremely sensitive process to deposit thin layers to metallic plates. We have taken into account lower order models to obtain first results with respect to the gas fluxes and the kinetics in the chamber. The model equations can be treated analytically in some circumstances and complicated multi-dimensional models are solved numerically with a software-package (UG unstructed grids, see [1]). Because of multi-scaling and multi-physical behavior of the models, we discuss adapted schemes to solve more accurate in the different domains and scales. The results are discussed with physical experiments to give a valid model for the assumed growth of thin layers.

Keywords: Convection-diffusion equations, multi-scale problem, physical vapor deposition, reaction equations, splitting methods.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1706
313 Graft Copolymerization of Cellulose Acetate with Nitro-N-Amino Phenyl Maleimides

Authors: Azza. A. Al-Ghamdi, Abir. A. Abdel-Naby

Abstract:

The construction of Nitro -N-amino phenyl maleimide branches onto Cellulose acetate (CA) substrate by free radical graft copolymerization using benzoyl peroxide as initiator led to formation of highly thermal stable copolymers as shown from the results of gravimetric analysis (TGA). CA-g-2,4-dinitro amino phenyl maleimide exhibited higher thermal stability than the CA-g-4-nitro amino phenyl maleimide as shown from the initial decomposition temperature (To). This is due to the ability of nitro group to form hydrogen bonding with hydroxyl group of the glucopyranose ring which increases the crystallinity of polymeric matrix. The crystalline shapes representing the graft part are clearly distinct in the Emission scanning electron microscope (ESEM) morphology of the copolymer. A suggested reaction mechanism for the grafting process was also discussed.

Keywords: Cellulose acetate, crystallinity, graft copolymerization, thermal properties.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 692
312 Biohydrogen Production from Starch Residues

Authors: Francielo Vendruscolo

Abstract:

This review summarizes the potential of starch agroindustrial residues as substrate for biohydrogen production. Types of potential starch agroindustrial residues, recent developments and bio-processing conditions for biohydrogen production will be discussed. Biohydrogen is a clean energy source with great potential to be an alternative fuel, because it releases energy explosively in heat engines or generates electricity in fuel cells producing water as only by-product. Anaerobic hydrogen fermentation or dark fermentation seems to be more favorable, since hydrogen is yielded at high rates and various organic waste enriched with carbohydrates as substrate result in low cost for hydrogen production. Abundant biomass from various industries could be source for biohydrogen production where combination of waste treatment and energy production would be an advantage. Carbohydrate-rich nitrogendeficient solid wastes such as starch residues can be used for hydrogen production by using suitable bioprocess technologies. Alternatively, converting biomass into gaseous fuels, such as biohydrogen is possibly the most efficient way to use these agroindustrial residues.

Keywords: Biofuel, dark fermentation, starch residues, food waste.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3667
311 Porous Ni Electrodes Modified with Au Nanoparticles for Hydrogen Production

Authors: V. Pérez-Herranz, C. González-Buch, E. M. Ortega, S. Mestre

Abstract:

In this work new macroporous Ni electrodes modified with Au nanoparticles for hydrogen production have been developed. The supporting macroporous Ni electrodes have been obtained by means of the electrodeposition at high current densities. Then, the Au nanoparticles were synthesized and added to the electrode surface. The electrocatalytic behaviour of the developed electrocatalysts was studied by means of pseudo-steady-state polarization curves, electrochemical impedance spectroscopy (EIS) and hydrogen discharge curves. The size of the Au synthetized nanoparticles shows a monomodal distribution, with a very sharp band between 10 and 50 nm. The characteristic parameters d10, d50 and d90 were 14, 20 and 31 nm respectively. From Tafel polarization data has been concluded that the Au nanoparticles improve the catalytic activity of the developed electrodes towards the HER respect to the macroporous Ni electrodes. EIS permits to obtain the electrochemically active area by means of the roughness factor value. All the developed electrodes show roughness factor values in the same order of magnitude. From the activation energy results it can be concluded that the Au nanoparticles improve the intrinsic catalytic activity of the macroporous Ni electrodes.

Keywords: Au nanoparticles, hydrogen evolution reaction, porous Ni electrodes.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2032
310 Interspecific Variation in Heat Stress Tolerance and Oxidative Damage among 15 C3 Species

Authors: Wagdi S. Soliman, Shu-ichi Sugiyama

Abstract:

The C3 plants are frequently suffering from exposure to high temperature stress which limits the growth and yield of these plants. This study seeks to clarify the physiological mechanisms of heat tolerance in relation to oxidative stress in C3 species. Fifteen C3 species were exposed to prolonged moderately high temperature stress 36/30°C for 40 days in a growth chamber. Chlorophyll fluorescence (Fv/Fm) showed great difference among species at 40 days of the stress. The species showed decreases in Fv/Fm and increases in malondialdehyde (MDA) content under stress condition as well as negative correlation between Fv/Fm and MDA (r = -0.61*) at 40 days of the stress. Hydrogen peroxide (H2O2) content before and after stress in addition to its response under stress showed great differences among species. The results suggest that the difference in heat tolerance among C3 species is closely associated with the ability to suppress oxidative damage but not with the content of reactive oxygen species (ROS) which is regulated by complex network.

Keywords: C3 species, Fv/Fm, heat stress, oxidative stress.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1723
309 A Computational Study of N–H…O Hydrogen Bonding to Investigate Cooperative Effects

Authors: Setareh Shekarsaraei, Marjan Moridi, Nasser L. Hadipour

Abstract:

In this study, nuclear magnetic resonance spectroscopy and nuclear quadrupole resonance spectroscopy parameters of 14N (Nitrogen in imidazole ring) in N–H…O hydrogen bonding for Histidine hydrochloride monohydrate were calculated via density functional theory. We considered a five-molecule model system of Histidine hydrochloride monohydrate. Also we examined the trends of environmental effect on hydrogen bonds as well as cooperativity. The functional used in this research is M06-2X which is a good functional and the obtained results has shown good agreement with experimental data. This functional was applied to calculate the NMR and NQR parameters. Some correlations among NBO parameters, NMR and NQR parameters have been studied which have shown the existence of strong correlations among them. Furthermore, the geometry optimization has been performed using M062X/6-31++G(d,p) method. In addition, in order to study cooperativity and changes in structural parameters, along with increase in cluster size, natural bond orbitals have been employed.

Keywords: Hydrogen bonding, Density Functional Theory (DFT), Natural bond Orbitals (NBO), cooperativity effects.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1956
308 Treatment of Cutting Oily-Wastewater by Sono Fenton Process: Experimental Approach and Combined Process

Authors: P. Painmanakul, T. Chintateerachai, S. Lertlapwasin, N. Rojvilavan, T. Chalermsinsuwan, N. Chawaloesphonsiya, O. Larpparisudthi

Abstract:

Conventional coagulation, advance oxidation process (AOPs), and the combined process were evaluated and compared for its suitability to treat the stabilized cutting-oil wastewater. The 90% efficiency was obtained from the coagulation at Al2(SO4)3 dosage of 150 mg/L and pH 7. On the other hands, efficiencies of AOPs for 30 minutes oxidation time were 10% for acoustic oxidation, 12% for acoustic oxidation with hydrogen peroxide, 76% for Fenton, and 92% sono-Fenton processes. The highest efficiency for effective oil removal of AOPs required large amount of chemical. Therefore, AOPs were studied as a post-treatment after conventional separation process. The efficiency was considerable as the effluent COD can pass the standard required for industrial wastewater discharge with less chemical and energy consumption.

 

Keywords: Cutting oily-wastewater, Advance oxidation process, Sono-Fenton, Combined process.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3232
307 Preparation of Low-Molecular-Weight 6-Amino-6-Deoxychitosan (LM6A6DC) for Immobilization of Growth Factor

Authors: Koo-Yeon Kim, Eun-Hye Kim, Tae-Il Son

Abstract:

Epidermal Growth Factor (EGF, Mw=6,045) has been reported to have high efficiency of wound repair and anti-wrinkle effect. However, the half-life of EGF in the body is too short to exert the biological activity effectively when applied in free form. Growth Factors can be stabilized by immobilization with carbohydrates from thermal and proteolytic degradation. Low molecular weight chitosan (LMCS) and its derivate prepared by hydrogen peroxide has high solubility. LM6A6DC was successfully prepared as a reactive carbohydrate for the stabilization of EGF by the reactions of LMCS with alkalization, tosylation, azidation and reduction. The structure of LM6A6DC was confirmed by FT-IR, 1H NMR and elementary analysis. For enhancing the stability of free EGF, EGF was attached with LM6A6DC by using water-soluble carbodiimide. EGF-LM6A6DC conjugates did not show any cytotoxicity on the Normal Human Dermal Fibroblast (NHDF) 3T3 proliferation at least under 100 μg/ml. In the result, it was considered that LM6A6DC is suitable to immobilize of growth factor.

Keywords: Epidermal growth factor (EGF), low-molecular-weight chitosan, immobilization.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2105
306 Chelate Enhanced Modified Fenton Treatment for Polycyclic Aromatic Hydrocarbons Contaminated Soils

Authors: Venny, S. Gan, H. K. Ng

Abstract:

This work focuses on the remediation of polycyclic aromatic hydrocarbons (PAHs)-contaminated soil via Fenton treatment coupled with novel chelating agent (CA). The feasibility of chelated modified Fenton (MF) treatment to promote PAH oxidation in artificially contaminated soils was investigated in laboratory scale batch experiments at natural pH. The effects of adding inorganic and organic CA are discussed. Experiments using different iron catalyst to CA ratios were conducted, resulting in hydrogen peroxide: soil: iron: CA weight ratios that varied from 0.049: 1: 0.072: 0.008 to 0.049: 1: 0.072: 0.067. The results revealed that (1) inorganic CA could provide much higher PAH removal efficiency and (2) most of the proposed CAs were more efficient than commonly utilised CAs even at mild ratio. This work highlights the potential of novel chelating agents in maintaining a suitable environment throughout the Fenton treatment, particularly in soils with high buffer capacity.

Keywords: Chelating agent, Fenton, hydroxyl radicals, polycyclic aromatic hydrocarbon.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1846
305 Modeling of CO2 Removal from Gas Mixtureby 2-amino-2-methyl-1-propanol (AMP) Using the Modified Kent Eisenberg Model

Authors: H. Pahlavanzadeh, A.R.Jahangiri, I. Noshadi

Abstract:

In this paper, the solubility of CO2 in AMP solution have been measured at temperature range of ( 293, 303 ,313,323) K.The amine concentration ranges studied are (2.0, 2.8, and 3.4) M. A solubility apparatus was used to measure the solubility of CO2 in AMP solution on samples of flue gases from Thermal and Central Power Plants of Esfahan Steel Company. The modified Kent Eisenberg model was used to correlate and predict the vapor-liquid equilibria of the (CO2 + AMP + H2O) system. The model predicted results are in good agreement with the experimental vapor-liquid equilibrium measurements.

Keywords: AMP, Carbon dioxide; loading, Flue gases, Modified Kent Eisenberg model

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2445
304 Hydrogen and Diesel Combustion on a Single Cylinder Four Stroke Diesel Engine in Dual Fuel mode with Varying Injection Strategies

Authors: Probir Kumar Bose, Rahul Banerjee, Madhujit Deb

Abstract:

The present energy situation and the concerns about global warming has stimulated active research interest in non-petroleum, carbon free compounds and non-polluting fuels, particularly for transportation, power generation, and agricultural sectors. Environmental concerns and limited amount of petroleum fuels have caused interests in the development of alternative fuels for internal combustion (IC) engines. The petroleum crude reserves however, are declining and consumption of transport fuels particularly in the developing countries is increasing at high rates. Severe shortage of liquid fuels derived from petroleum may be faced in the second half of this century. Recently more and more stringent environmental regulations being enacted in the USA and Europe have led to the research and development activities on clean alternative fuels. Among the gaseous fuels hydrogen is considered to be one of the clean alternative fuel. Hydrogen is an interesting candidate for future internal combustion engine based power trains. In this experimental investigation, the performance and combustion analysis were carried out on a direct injection (DI) diesel engine using hydrogen with diesel following the TMI(Time Manifold Injection) technique at different injection timings of 10 degree,45 degree and 80 degree ATDC using an electronic control unit (ECU) and injection durations were controlled. Further, the tests have been carried out at a constant speed of 1500rpm at different load conditions and it can be observed that brake thermal efficiency increases with increase in load conditions with a maximum gain of 15% at full load conditions during all injection strategies of hydrogen. It was also observed that with the increase in hydrogen energy share BSEC started reducing and it reduced to a maximum of 9% as compared to baseline diesel at 10deg ATDC injection during maximum injection proving the exceptional combustion properties of hydrogen.

Keywords: Hydrogen, performance, combustion, alternative fuels.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3372
303 Thermodynamic Analysis of a Vapor Absorption System Using Modified Gouy-Stodola Equation

Authors: Gulshan Sachdeva, Ram Bilash

Abstract:

In this paper, the exergy analysis of vapor absorption refrigeration system using LiBr-H2O as working fluid is carried out with the modified Gouy-Stodola approach rather than the classical Gouy-Stodola equation and effect of varying input parameters is also studied on the performance of the system. As the modified approach uses the concept of effective temperature, the mathematical expressions for effective temperature have been formulated and calculated for each component of the system. Various constraints and equations are used to develop program in EES to solve these equations. The main aim of this analysis is to determine the performance of the system and the components having major irreversible loss. Results show that exergy destruction rate is considerable in absorber and generator followed by evaporator and condenser. There is an increase in exergy destruction in generator, absorber and condenser and decrease in the evaporator by the modified approach as compared to the conventional approach. The value of exergy determined by the modified Gouy-Stodola equation deviates maximum i.e. 26% in the generator as compared to the exergy calculated by the classical Gouy-Stodola method.

Keywords: Exergy analysis, Gouy-Stodola, refrigeration, vapor absorption.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3629
302 Optimisation of Polycyclic AromaticHydrocarbon Removal from Contaminated Soilusing Modified Fenton Treatment

Authors: Venny, S. Gan, H. K. Ng

Abstract:

The performance of modified Fenton (MF) treatment to promote PAH oxidation in artificially contaminated soil was investigated in packed soil column with a hydrogen peroxide (H2O2) delivery system simulating in situ injection. Soil samples were spiked with phenanthrene (low molecular weight PAH) and fluoranthene (high molecular weight PAH) to an initial concentration of 500 mg/kg dried soil each. The effectiveness of process parameters H2O2/soil, iron/soil, chelating agent/soil weight ratios and reaction time were studied using a 24 three level factorial design experiments. Statistically significant quadratic models were developed using Response Surface Methodology (RSM) for degrading PAHs from the soil samples. Optimum operating condition was achieved at mild range of H2O2/soil, iron/soil and chelating agent/soil weight ratios, indicating cost efficient method for treating highly contaminated lands.

Keywords: Fenton, polycyclic aromatic hydrocarbon, chelate, response surface methodology

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1673
301 Efficient Oxyhydrogen Mixture Determination in Gas Detonation Forming

Authors: Morteza Khaleghi, Babak Seyed Aghazadeh, Hosein Bisadi

Abstract:

Oxyhydrogen is a mixture of Hydrogen (H2) and Oxygen (O2) gases. Detonative mixtures of oxyhydrogens with various combinations of these two gases were used in Gas Detonation Forming (GDF) to form sheets of mild steel. In die forming experiments, three types of conical dies with apex angles of 60, 90 and 120 degrees were used. Pressure of mixtures inside the chamber before detonation was varied from 3 Bar to 5 Bar to investigate the effect of pre-detonation pressure in the forming process. On each conical die, several experiments with different percentages of Hydrogen were carried out to determine the optimum gaseous mixture. According to our results the best forming process occurred when approximately 50-70%. Hydrogen was employed in the mixture. Furthermore, the experimental results were compared to the ones from FEM analysis. The FEM simulation results of thickness strain, hoop strain, thickness variation and deformed geometry are promising.

Keywords: Sheet metal forming, Gas detonation, FEM, Oxyhydrogen

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2210
300 Development of a Brain Glutamate Microbiosensor

Authors: Kartika S. Hamdan, Zainiharyati M. Zain, Mohamed I. A. Halim, Jafri M. Abdullah, Robert D. O'Neill

Abstract:

This work attempts to improve the permselectivity of poly-ortho-phenylenediamine (PPD) coating for glutamate biosensor applications on Pt microelectrode, using constant potential amperometry and cyclic voltammetry. Percentage permeability of the modified PPD microelectrode was carried out towards hydrogen peroxide (H2O2) and ascorbic acid (AA) whereas permselectivity represents the percentage interference by AA in H2O2 detection. The 50-μm diameter Pt disk microelectrode showed a good permeability value toward H2O2 (95%) and selectivity against AA (0.01%) compared to other sizes of electrode studied here. The electrode was further modified with glutamate oxidase (GluOx) that was immobilized and cross linked with glutaraldehyde (GA, 0.125%), resulting in Pt/PPD/GluOx-GA electrode design. The maximum current density Jmax and apparent Michaelis constant, KM, obtained on Pt/PPD/GluOx-GA electrodes were 48 μA cm-2 and 50 μM, respectively. The linear region slope (LRS) was 0.96 μA cm-2 mM-1. The detection limit (LOD) for glutamate was 3.0 ± 0.6 μM. This study shows a promising glutamate microbiosensor for brain glutamate detection. 

Keywords: Brain, Glutamate, Microbiosensor.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1813
299 Reactive Absorption of Hydrogen Sulfide in Aqueous Ferric Sulfate Solution

Authors: Z. Gholami, M. Torabi Angaji, F. Gholami, S. A. Razavi Alavi

Abstract:

Many commercial processes are available for the removal of H2S from gaseous streams. The desulfurization of gas streams using aqueous ferric sulfate solution as washing liquor is studied. Apart from sulfur, only H2O is generated in the process, and consequently, no waste treatment facilities are required. A distinct advantage of the process is that the reaction of H2S with is so rapid and complete that there remains no danger of discharging toxic waste gas. In this study, the reactive absorption of hydrogen sulfide into aqueous ferric sulfate solution has been studied and design calculations for equipments have been done and effective operation parameters on this process considered. Results show that high temperature and low pressure are suitable for absorption reaction. Variation of hydrogen sulfide concentration and Fe3+ concentration with time in absorption reaction shown that the reaction of ferric sulfate and hydrogen sulfide is first order with respect to the both reactant. At low Fe2(SO4)3 concentration the absorption rate of H2S increase with increasing the Fe2(SO4)3 concentration. At higher concentration a decrease in the absorption rate was found. At higher concentration of Fe2(SO4)3, the ionic strength and viscosity of solution increase remarkably resulting in a decrease of solubility, diffusivity and hence absorption rate.

Keywords: Absorption, Fe2(SO4)3, H2S, Reactive Absorption.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3903
298 Effect of Chemical Additive on Fixed Abrasive Polishing of LBO Crystal with Non-water Based Slurry

Authors: Jun Li, Wenze Wang, Zhanggui Hu, Yongwei Zhu, Dunwen Zuo

Abstract:

Non-water based fixed abrasive polishing was adopted to manufacture LBO crystal for nano precision surface quality because of its deliquescent. Ethyl alcohol was selected as the non-water based slurry solvent and ethanediamine, lactic acid, hydrogen peroxide was added in the slurry as a chemical additive, respectively. Effect of different additives with non-water based slurry on material removal rate, surface topography, microscopic appearances, and surface roughness were investigated in fixed abrasive polishing of LBO crystal. The results show the best surface quality of LBO crystal with surface roughness Sa 8.2 nm and small damages was obtained by non-water based slurry with lactic acid. Non-water based fixed abrasive polishing can achieve nano precision surface quality of LBO crystal with high material removal.

Keywords: Non-water based slurry, LBO crystal, Fixed abrasive polishing, Surface roughness.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2547
297 Experimental Investigation of Hydrogen Addition in the Intake Air of Compressed Engines Running on Biodiesel Blend

Authors: Hendrick Maxil Zárate Rocha, Ricardo da Silva Pereira, Manoel Fernandes Martins Nogueira, Carlos R. Pereira Belchior, Maria Emilia de Lima Tostes

Abstract:

This study investigates experimentally the effects of hydrogen addition in the intake manifold of a diesel generator operating with a 7% biodiesel-diesel oil blend (B7). An experimental apparatus setup was used to conduct performance and emissions tests in a single cylinder, air cooled diesel engine. This setup consisted of a generator set connected to a wirewound resistor load bank that was used to vary engine load. In addition, a flowmeter was used to determine hydrogen volumetric flowrate and a digital anemometer coupled with an air box to measure air flowrate. Furthermore, a digital precision electronic scale was used to measure engine fuel consumption and a gas analyzer was used to determine exhaust gas composition and exhaust gas temperature. A thermopar was installed near the exhaust collection to measure cylinder temperature. In-cylinder pressure was measured using an AVL Indumicro data acquisition system with a piezoelectric pressure sensor. An AVL optical encoder was installed in the crankshaft and synchronized with in-cylinder pressure in real time. The experimental procedure consisted of injecting hydrogen into the engine intake manifold at different mass concentrations of 2,6,8 and 10% of total fuel mass (B7 + hydrogen), which represented energy fractions of 5,15, 20 and 24% of total fuel energy respectively. Due to hydrogen addition, the total amount of fuel energy introduced increased and the generators fuel injection governor prevented any increases of engine speed. Several conclusions can be stated from the test results. A reduction in specific fuel consumption as a function of hydrogen concentration increase was noted. Likewise, carbon dioxide emissions (CO2), carbon monoxide (CO) and unburned hydrocarbons (HC) decreased as hydrogen concentration increased. On the other hand, nitrogen oxides emissions (NOx) increased due to average temperatures inside the cylinder being higher. There was also an increase in peak cylinder pressure and heat release rate inside the cylinder, since the fuel ignition delay was smaller due to hydrogen content increase. All this indicates that hydrogen promotes faster combustion and higher heat release rates and can be an important additive to all kind of fuels used in diesel generators.

Keywords: Diesel engine, hydrogen, dual fuel, combustion analysis, performance, emissions.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1279
296 The Pixel Value Data Approach for Rainfall Forecasting Based on GOES-9 Satellite Image Sequence Analysis

Authors: C. Yaiprasert, K. Jaroensutasinee, M. Jaroensutasinee

Abstract:

To develop a process of extracting pixel values over the using of satellite remote sensing image data in Thailand. It is a very important and effective method of forecasting rainfall. This paper presents an approach for forecasting a possible rainfall area based on pixel values from remote sensing satellite images. First, a method uses an automatic extraction process of the pixel value data from the satellite image sequence. Then, a data process is designed to enable the inference of correlations between pixel value and possible rainfall occurrences. The result, when we have a high averaged pixel value of daily water vapor data, we will also have a high amount of daily rainfall. This suggests that the amount of averaged pixel values can be used as an indicator of raining events. There are some positive associations between pixel values of daily water vapor images and the amount of daily rainfall at each rain-gauge station throughout Thailand. The proposed approach was proven to be a helpful manual for rainfall forecasting from meteorologists by which using automated analyzing and interpreting process of meteorological remote sensing data.

Keywords: Pixel values, satellite image, water vapor, rainfall, image processing.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1818
295 Biosecurity Control Systems in Two Phases for Poultry Farms

Authors: M. Peña Aguilar Juan, E. Nava Galván Claudia, Pastrana Palma Alberto

Abstract:

In this work was developed and implemented a thermal fogging disinfection system to counteract pathogens from poultry feces in agribusiness farms, to reduce mortality rates and increase biosafety in them. The control system consists of two phases for the conditioning of the farm during the sanitary break. In the first phase, viral and bacterial inactivation was performed by treating the stool dry cleaning, along with the development of a specialized product that foster the generation of temperatures above 55 °C in less than 24 hr, for virus inactivation. In the second phase, a process for disinfection by fogging was implemented, along with the development of a specialized disinfectant that guarantee no risk for the operators’ health or birds. As a result of this process, it was possible to minimize the level of mortality of chickens on farms from 12% to 5.49%, representing a reduction of 6.51% in the death rate, through the formula applied to the treatment of poultry litter based on oxidising agents used as antiseptics, hydrogen peroxide solutions, glacial acetic acid and EDTA in order to act on bacteria, viruses, micro bacteria and spores.

Keywords: Innovation, triple-helix, innovation, poultry farms.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1417
294 Hydrogen Sulphide Removal Using a Novel Biofilter Media

Authors: Z. M. Shareefdeen, A. Aidan, W.Ahmed, M. B. Khatri, M. Islam, R. Lecheheb, F. Shams

Abstract:

Air emissions from waste treatment plants often consist of a combination of Volatile Organic Compounds (VOCs) and odors. Hydrogen sulfide is one of the major odorous gases present in the waste emissions coming from municipal wastewater treatment facilities. Hydrogen sulfide (H2S) is odorous, highly toxic and flammable. Exposure to lower concentrations can result in eye irritation, a sore throat and cough, shortness of breath, and fluid in the lungs. Biofiltration has become a widely accepted technology for treating air streams containing H2S. When compared with other nonbiological technologies, biofilter is more cost-effective for treating large volumes of air containing low concentrations of biodegradable compounds. Optimization of biofilter media is essential for many reasons such as: providing a higher surface area for biofilm growth, low pressure drop, physical stability, and good moisture retention. In this work, a novel biofilter media is developed and tested at a pumping station of a municipality located in the United Arab Emirates (UAE). The media is found to be very effective (>99%) in removing H2S concentrations that are expected in pumping stations under steady state and shock loading conditions.

Keywords: biofilter media, hydrogen sulphide, pumping station, biofiltration

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1904
293 Dissolution Leaching Kinetics of Ulexite in Disodium Hydrogen Phosphate Solutions

Authors: Betül Özgenç Kaya, Soner Kuslu, Sabri Çolak, Turan Çalban

Abstract:

Ulexite (Na2O.2CaO.5B2O3.16H2O) is boron mineral that is found in large quantities in the Turkey and world. In this study, the dissolution of this mineral in the disodium hydrogen phosphate solutions has been studied. Temperature, concentration, stirring speed, solid liquid ratio and particle size were selected as parameters. The experimental results were successfully correlated by linear regression using Statistica program. Dissolution curves were evaluated shrinking core models for solid-fluid systems. It was observed that increase in the reaction temperature and decrease in the solid/liquid ratio causes an increase the dissolution rate of ulexite. The activation energy was found to be 63.4 kJ/mol. The leaching of ulexite was controlled by chemical reaction.

Keywords: Disodium hydrogen phosphate, Leaching kinetics, Ulexite.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2104
292 Prooxidant Effect of the Crude Ethanolic Leaf Extract of Ficus odorata Blanco Merr. in vitro: It’s Medical Significance

Authors: Librado A. Santiago, Anna Beatriz R. Mayor

Abstract:

Alongside with antioxidant, pro-oxidant activity is also observed in phytochemical compounds. In the study, Ficus odorata, an endemic medicinal plant in the Philippines, was screened for the potential medical application of its pro-oxidant activity.

Phytochemical screening revealed the presence of terpenes, glycosides and phenolic acids. The crude extract was found to contain low gallic acid and quercetin equivalence. The TLC chromatogram of the crude extract showed that none of the 11 spots obtained has antioxidant activity nor correspond to gallic acid and quercetin standards. Experiments showed that the crude extract has stimulatory activity towards DPPH radicals, hydrogen peroxide, hydroxyl radicals, superoxide anions and nitric oxide. Moreover, the extract exhibited a low ferric reducing power.

The prooxidant activity was evident in the crude ethanolic leaf extract of F. odorata, which may provide a better understanding of the plant’s pharmacological importance in the prevention of diseases.

Keywords: Ficus odorata Blanco, Free Radicals, Oxidative Stress, Prooxidant, Antioxidant.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3953