Biohydrogen Production from Starch Residues
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 33122
Biohydrogen Production from Starch Residues

Authors: Francielo Vendruscolo

Abstract:

This review summarizes the potential of starch agroindustrial residues as substrate for biohydrogen production. Types of potential starch agroindustrial residues, recent developments and bio-processing conditions for biohydrogen production will be discussed. Biohydrogen is a clean energy source with great potential to be an alternative fuel, because it releases energy explosively in heat engines or generates electricity in fuel cells producing water as only by-product. Anaerobic hydrogen fermentation or dark fermentation seems to be more favorable, since hydrogen is yielded at high rates and various organic waste enriched with carbohydrates as substrate result in low cost for hydrogen production. Abundant biomass from various industries could be source for biohydrogen production where combination of waste treatment and energy production would be an advantage. Carbohydrate-rich nitrogendeficient solid wastes such as starch residues can be used for hydrogen production by using suitable bioprocess technologies. Alternatively, converting biomass into gaseous fuels, such as biohydrogen is possibly the most efficient way to use these agroindustrial residues.

Keywords: Biofuel, dark fermentation, starch residues, food waste.

Digital Object Identifier (DOI): doi.org/10.5281/zenodo.1097435

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3712

References:


[1] M Ni, D. Y. C. Leung, M. K. H. Leung and K. Sumathy, “An overview of hydrogen production from biomass”, Fuel Process Technology,vol 87, pp 461-472. 2006.
[2] H. Argun, F. Kargi, I. K. Kapdan and O. Oztekin, “Biohydrogen production by dark fermentation of wheat powder solution: Effects of C/N and C/P ratio on hydrogen yield and formation rate”, Int. J. Hydrogen Energy, vol 33, pp. 1913-1919. 2008.
[3] M. F. Arooj, S. K. Han, S. H. Kim, D. H. Kim and H. S. Shin, “Continuous biohydrogen production in a CSTR using starch as a substrate” Int. J. Hydrogen Energy, vol 33, pp. 3289-3294, 2008.
[4] J. Mata-Alvarez, J. Dosta, S. Mace and S. Astals, “Codigestion of solid wastes: A review of its uses and perspectives including modeling” Crit Rev Biotechnol, vol. 31, pp. 99-111, 2011.
[5] S. Van Ginkel and S. Sung, “Biohydrogen production as a function of pH and substrate concentration”, Environ Sci Technol, vol 35, pp. 4726- 4730, 2011.
[6] S. O-Thong, A. Hniman, P. Prasertan and T. Imai “Biohydrogen production from cassava starch processing wastewater by thermophilic mixed cultures”, Int. J. Hydrogen Energy, vol 36, pp. 3409-3411, 2011.
[7] I. K. Kapdan and F. Kargi “Biohydrogen production from waste materials” Enzyme Microbial Technol., vol 38, pp. 569-582, 2006.
[8] K. Y. Show, Z. P. Zhang, J. H. Tay, D. T. Liang, D. J. Lee and N. Q. Ren, “Critical assessment of anaerobic processes for continuous biohydrogen production from organic wastewater”, Int J Hydrogen Energy, vol. 35, pp. 13350-13355, 2010.
[9] A. J. Wang, L. F. Gao, N. Q. Ren, J. F. Xu, C. Liu and D. J. Lee. “Enrichment strategy to select functional consortium from mixed cultures: consortium from rumen liquor for simultaneous cellulose degradation and hydrogen production”, Int J Hydrogen Energy, vol. 35, pp. 13413-13418, 2010.
[10] S. Roychowdhury, D. Cox and M. Levandowsky, “Production of hydrogen by microbial fermentation”, Int J Hydrogen Energy, vol. 13, pp. 407-410, 1988.
[11] S. M. Kotay and D Das “Biohydrogen as a renewable energy resourceprospects and potentials”, Int J Hydrogen Energy, vol. 33, pp. 258-263, 2008.
[12] M. H. Hwang, N. J. Jang, S. H. Hyun and I. S. Kim, “Anaerobic biohydrogen production from ethanol fermentation: the role of pH”, J Biotechnol, vol. 111, pp. 297-299, 2004.
[13] M. L. Chong, N. A. A. Rahman, P. L. Yee, S. A. Aziz, R. A. Rahim, Y. Shirai and M. A. Hassan, “Effects of pH, glucose and iron sulfate concentration on the yield of biohydrogen by Clostridium butyricum EB6”, Int J Hydrogen Energy, vol. 34, pp. 8859-8865, 2009.
[14] C. L. Li and H. H. P. Fang “Fermentative hydrogen production from wastewater and solid wastes by mixed cultures”, Environ Sci Technol, vol. 37, pp. 1-39, 2007.
[15] Web of Science, accessed September 16, 2014 on https://webofknowledge.com.
[16] M. L. Chong, V. Sabaratnam, Y. Shirai and M. A. Hassan, “Biohydrogen production from biomass and industrial wastes by dark fermentation”, Int J Hydrogen Energy, vol 34, pp. 3277-3287, 2009.
[17] A. Mudhoo, T. Forster-Carneiro and A. Sánchez “Biohydrogen production and bioprocess enhancement: A review”, Crit Rev Biotechnol, vol 31, pp. 250-263, 2011.
[18] F. Vendruscolo, F. Koch, L. O. Pitol and J. L. Ninow, “Production of single cell protein from apple pomace using state solid fermentation” Rev Brás Tec Agroind, vol. 1, pp. 53-57, 2007.
[19] F. Vendruscolo, P. M. Albuquerque, F. Streit, E. Espósito and J. L. Ninow, “Apple pomace: A versatile substrate for biotechnological applications”, Crit Rev Biotechnol, vol. 28, pp. 1-12, 2008.
[20] F. Vendruscolo, C. S. Ribeiro, E. Espósito and J. L. Ninow, “Protein enrichment of apple pomace and use in feed for Nile Tilapia”, Appl Biochem Biotechnol, vol. 152, pp. 74-87, 2009.
[21] Z. Kádár, T. De Vrije, G. E. Van Noorden, M. A. W. Budde, Z. Szengyel, K. Réczey and P. A. M, “Claassen. Yields from glucose, xylose, and paper sludge hydrolysate during hydrogen production by the extreme thermophile Caldicellulosiruptor saccharolyticus”, Applied Biochem Biotechnol, vol. 114, pp. 497-508, 2004.
[22] H. Yokoyama, H. Ohmori, M. Waki, A. Ogino and Y. Tanaka, “Continuous hydrogen production from glucose by using extreme thermophilic anaerobic microflora”, J Biosci Bioeng, vol. 107, pp. 64- 66, 2009.
[23] J. Masset, S. Hiligsmann, C. Hamilton, L. Beckers, F. Franck and P. Thonart, “Effect of pH on glucose and starch fermentation in batch and sequenced-batch mode with a recently isolated strain of hydrogenproducing Clostridium butyricum CWBI1009”, Int J Hydrogen Energy, vol. 35, pp. 3371-3378, 2010.
[24] N. Kumar and D. Das, “Enhancement of hydrogen production by Enterobacter cloacae IIT-BT 08”, Process Biochem, vol. 35, pp. 589- 593, 2000.
[25] Y. Mu, G. Wang and H. Q. Yu, “Response surface methodological analysis on biohydrogen production by enriched anaerobic cultures”, Enzyme Microb Technol, vol. 38, pp. 905-913, 2006.
[26] S. Singh, A. K. Sudhakaran, P. M. Sarma, S. Subudhi, A. K. Mandal, G. Gandham and B. Lal, “Dark fermentative biohydrogen production by mesophilic bacterial consortia isolated from riverbed sediments”, Int J Hydrogen Energy, vol. 35, pp. 10645-10652, 2010.
[27] T. Zhang, H. Liu and H. H. P. Fang, “Biohydrogen production from starch in wastewater under thermophilic condition”, J Environ Manage, vol. 69, pp. 149-156, 2003.
[28] Y. Akutsu, D. Y. Lee, Y. Z. Chi, Y. Y. Li, H. Harada and H. Q. Yu, “Thermophilic fermentative hydrogen production from starchwastewater with bio-granules”, Int J Hydrogen Energy, vol. 34, pp. 5061-5071, 2009.
[29] S. D. Chen, K. S. Lee, Y. C. Lo, W. C. Chen, J. F. Wu, C. Y. Lin and J. S. Chang, “Batch and continuous biohydrogen production from starch hydrolysate by Clostridium species”, Int J Hydrogen Energy, vol. 33, pp. 18031812, 2008.
[30] C. H. Cheng, C. H. Hung, K. S. Lee, P. Y. Liau, C. M. Liang and L. H. Yang LH, “Microbial community structure of a starch-feeding fermentative hydrogen production reactor operated under different incubation conditions”, Int J Hydrogen Energy, vol. 33, pp. 5242-5249, 2008.
[31] K. S. Lee, Y. F. Hsu, Y. C. Lo, P. J. Lin, C. Y. Lin and J. S. Chang, “Exploring optimal environmental factors for fermentative hydrogen production from starch using mixed anaerobic microflora”, Int J Hydrogen Energy, vol. 33, pp. 1565-1572, 2008.
[32] H. H. P. Fang, C. Li and T. Zhang, "Acidophilic biohydrogen production from rice slurry”, Int J Hydrogen Energy, vol 31, pp. 683-692, 2006.
[33] G. Liu and J. Shen, “Effects of culture and medium conditions on hydrogen production from starch using anaerobic bacteria”, J Biosci Bioeng, vol. 98, pp. 251-256, 2004.
[34] Y. Fan, Y. Guo, C. Pan and H. Hou, “Bioconversion of aging corn to biohydrogen by dairy manure compost”, Ind Eng Chem Res, vol. 48, pp. 2493-2498, 2009.
[35] H. Su, J. Cheng, J. Zhou, W. Song and K. Cen, “Improving hydrogen production from cassava starch by combination of dark and photo fermentation”, Int J Hydrogen Energy, vol. 34, pp. 1780-1786, 2009.
[36] B. M. Cappelletti, V. Reginatto, E. R. Amante and R. V. Antônio, “Fermentative production of hydrogen from cassava processing wastewater by Clostridium acetobutylicum”, Renew Energy, vol. 36, pp. 3367-3372, 2011.
[37] W. Wang, L. Xie, J. Chen, G. Luo and Q. Zhou, “Biohydrogen and methane production by co-digestion of cassava stillage and excess sludge under thermophilic condition”, Bioresour Technol, vol. 102, pp. 3833-3839, 2011.
[38] I. Hussy, F. R. Hawkes, R. Dinsdale and D. L. Hawkes, “Continuous fermentative hydrogen production from a wheat starch coproduct by mixed microflora”, Biotechnol Bioeng, vol. 84, pp. 619-626, 2003.
[39] H. Argun and F. Kargi, “Bio-hydrogen production from ground wheat starch by continuous combined fermentation using annular-hybrid bioreactor”, Int J Hydrogen Energy, vol. 53, pp. 6170-6178, 2010.
[40] N. Nasirian, M. Almassi, S. Minaei and R. Widmann, “Development of a method for biohydrogen production from wheat straw by dark fermentation”, Int J Hydrogen Energy, vol. 36, pp. 411-420, 2011.
[41] I. A. Panagiotopoulos, R. R. Bakker, T. de Vrije, E. G. Koukios and P. A. M. Claassen, “Pretreatment of sweet sorghum bagasse for hydrogen production by Caldicellulosiruptor saccharolyticus”, Int J Hydrogen Energy, vol. 35, pp. 7738-7747, 2010.
[42] P. Saraphirom and A. Reungsang, “Optimization of biohydrogen production from sweet sorghum syrup using statistical methods”, Int J Hydrogen Energy, vol. 35, pp. 13435-13444, 2010.
[43] X. X. Shi, H. C. Song, C. R. Wang, R. S. Tang, Z. X. Huang, T. R. Gao and J. Xie, “Enhanced bio-hydrogen production from sweet sorghum stalk with alkalization pretreatment by mixed anaerobic cultures”, Int J Energy Res, vol. 34, pp. 662-672, 2010.
[44] H. Yokoi, A. Saitsu, H. Uchida, J. Hirose, S. Hayashi and Y. Takasaki, “Microbial hydrogen production from sweet potato starch residue”, J Biosci Bioeng, vol. 91, pp. 58-63, 2001.
[45] B. F. Belokopytov, K. S. Laurinavichus, T. V. Laurinavichene, M. L. Ghirardi, M. Seibert and A. A. Tsygankov, “Towards the integration of dark- and photo-fermentative waste treatment. 2. Optimization of starchdependent fermentative hydrogen production”, Int J Hydrogen Energy, vol. 34, pp. 3324-3332, 2009.
[46] R. Hasyim, T. Imai, S. O-Thong and L. Sulistyowati, “Biohydrogen production from sago starch in wastewater using an enriched thermophilic mixed culture from hot spring”, Int J Hydrogen Energy, vol. 14161-14171, 2011.
[47] S. P. Singh, S. C. Srivastava and K. D. Pandey, “Hydrogen production by Rhodopseudomonas at the expense of vegetable starch, sugarcane juice and whey”, Int J Hydrogen Energy, vol. 19, pp. 437-440, 1994.
[48] S. Pattra, S. Sangyoka, M. Boonmee and A. Reungsang, “Bio-hydrogen production from the fermentation of sugarcane bagasse hydrolysate by Clostridium butyricum”, Int J Hydrogen Energy, vol. 33, pp. 5256-5265, 2008.
[49] G. Davila-Vazquez, C. B. Cota-Navarro, L. M. Rosales-Colunga, A. León-Rodríguez, E. Razo-Flores, “Continuous biohydrogen production using cheese whey: Improving the hydrogen production rate”, Int J Hydrogen Energy, vol. 34, pp. 4296-4304, 2009.
[50] N. Q. Ren, J. Z. Li, B. K. Li, Y. Wang and S. R. Liu, “Biohydrogen production from molasses by anaerobic fermentation with a pilot-scale bioreactor system”, Int J Hydrogen Energy, vol. 31, pp. 2147-2157, 2006.
[51] J. Z. Li, B. K. Li, G. F. Zhu, N. Q. Ren, L. X. Bo and J. G. He, “Hydrogen production from diluted molasses by anaerobic hydrogen producing bacteria in an anaerobic baffled reactor (ABR)”, Int J Hydrogen Energy, vol. 32, pp. 3274-3283, 2007.
[52] C. H. Lay, J. H. Wu, C. L. Hsiao, J. J. Chang, C. C. Chen and C. Y. Lin, “Biohydrogen production from soluble condensed molasses fermentation using anaerobic fermentation”, Int J Hydrogen Energy, vol. 35, pp. 13445-13452, 2010.
[53] H. Q. Yu, Z. H. Zhu, W. R. Hu and H. S Zhang, “Hydrogen production from rice winery wastewater in an upflow anaerobic reactor by using mixed anaerobic cultures”, Int J Hydrogen Energy, vol. 27, pp. 1359- 1365, 2002.
[54] N. Q. Ren, D. F. Xing, B. E. Rittmann, L. H. Zhao, T. H. Xie and X. Zhao, “Microbial community structure of ethanol type fermentation in bio-hydrogen production”, Environ Microbiol, vol. 9, pp. 1112-1125, 2007.
[55] I. Ismail, M. A. Hassan, N. A. A. Rahman and C. S. Soon, “Thermophilic biohydrogen production from palm oil mill effluent (POME) using suspended mixed culture”, Biomass Bioenerg, vol. 34, pp. 42-47, 2010.
[56] R. Lakshmidevi and K. Muthukumar, “Enzymatic saccharification and fermentation of paper and pulp industry effluent for biohydrogen production”, Int J Hydrogen Energy, vol. 35, pp. 3389-3400, 2010.
[57] T. A. Ngo, M. S. Kim and J. S. Sim, “High-yield biohydrogen production from biodiesel manufacturing waste by Thermotoga neapolitana”, Int J Hydrogen Energy, vol. 36, pp. 5836-5842, 2011.
[58] P. Sinha and A. Pandey, “An evaluative report and challenges for fermentative biohydrogen production”, Int J Hydrogen Energy, vol. 36, pp. 7460-7478, 2011.
[59] F. Vendruscolo, C. S. Ribeiro, E. Espósito and J. L. Ninow, “Tratamento biológico do bagaço de maçã e adição em dietas para alevinos”, Rev Bras Eng Agríc Ambient, vol. 13, 487-493, 2009.
[60] G. D. Saratale, S. D. Chen, Y. C. Lo, R. G. Saratale and J. S. Chang, “Outlook of biohydrogen production from lignocellulosic feedstock using dark fermentation – a review”, J Sci Ind Res, vol. 67, pp. 962-979, 2008.
[61] T. Wakayama and J. Miyake, “Hydrogen from biomass”, in Biohydrogen II - An approach to environmentally acceptable technology”, J. Miyake, T. Matsunaga and A. S. Pietro, Ed. New York: Pergamon, 2001, pp.41-51.
[62] D. J. Lee, K. Y. Show and A. Su, “Dark fermentation on biohydrogen production: Pure culture”, Bioresour Technol, vol. 102, pp. 8393-8402, 2011.
[63] D. B. Levin, L. Pitt and M. Love, “Biohydrogen production: prospects and limitations to practical application”, Int J Hydrogen Energy, vol. 29, pp. 173-185, 2004.
[64] A. Demirbas, “Biohydrogen for future engine fuels demands”, Ed. New York, USA: Springer; 2009.
[65] U. Sen, M. Shakdwipee and R. Banerjee, “Status of biological hydrogen production”, J Sci Ind Res, vol. 67, pp. 980-993, 2008.
[66] K. W. Jung, D. H. Kim, S. H. Kim and H. S. Shin, “Bioreactor design form continuous dark fermentative hydrogen production”, Bioresour Technol, vol. 102, pp. 8612-8620, 2011.
[67] E. Özgür, A. E. Mars, B. Peksel, A. Louwerse, M. Yücel, U. Gündüz, P. A. M. Claassen and I. Eroglu, “Biohydrogen production from beet molasses by sequential dark and photofermentation”, Int J Hydrogen Energy, vol. 35, pp. 511-517, 2010.
[68] Raimbault M, “General and microbiological aspects of solid substrate fermentation”, Electron. J. Biotechn, vol. 1, 1998.
[69] M. Hashem and S. M. I. Darwish, “Production of bioethanol and associated by-products from potato starch residue stream by Saccharomyces cerevisiae”, Biomass Bioeng, vol. 34, pp. 953-959, 2010.
[70] C. H. Wang, W. B. Lu and J. S. Chang, “Feasibility study on fermentative conversion of raw and hydrolyzed starch to hydrogen using anaerobic mixed microflora”, Int J Hydrogen Energy, vol. 32, pp. 3849, 3859, 2007.
[71] A. E. Mars, T. Veuskens, M. A. Budde, P. F. N. M. van Doeveren, S. J. Lips, R. R. Bakker, T. de Vrije and P. A. M. Claassen, “Biohydrogen production from untreated and hydrolyzed potato steam peels by the extreme thermophiles Caldicellulosiruptor saccharolyticus and Thermotoga neapolitana”, Int J Hydrogen Energy, vol. 35, pp. 7730- 7737, 2010.
[72] T. Doi, H. Matsumoto, J. Abe and S. Morita, “Feasibility study on the application of rhizosphere microflora of rice for the biohydrogen production from wasted bread”, Int J Hydrogen Energy, vol. 34, pp. 1735-1743, 2009.
[73] T. Noike, “Biological hydrogen production of organic wastesdevelopment of the two-phase hydrogen production process,” in International Symposium on Hydrogen and Methane Fermentation of Organic Waste, 2002; Tokyo, 31-9.
[74] H. Yang and J. Shen, “Effect of ferrous iron concentration on anaerobic bio-hydrogen production from soluble starch”, Int J Hydrogen Energy, vol. 31, pp. 21372146, 2006.
[75] Y. Akutsu, Y. Y. Li, M. Tandukar, K. Kubota and H. Harada, “Effects of seed sludge on fermentative characteristics and microbial community structures in thermophilic hydrogen fermentation of starch”, Int J Hydrogen Energy, vol. 33, pp. 6541-6548, 2008.
[76] Y. Akutsu, Y. Y. Li, H. Harada and H. Q. Yu, “Effects of temperature and substrate concentration on biological hydrogen production from starch”, Int J Hydrogen Energy, vol. 34, pp. 2558-2566, 2009.
[77] H. Yokoi, S. Mori, J. Hirose, S. Hayashi and Y. Takasaki, “H2 production from starch by a mixed culture of Clostridium butyricum and Rhodobacter sp M-19”, Biotechnol Lett, vol. 20, pp. 895-899, 1998.
[78] H. S. Jayasinghearachchi, S. Singh, P. M. Sarma, A. Aginihotri and B. Lal, “Fermentative hydrogen production by new marine Clostridium amygdallinum strain C9 isolated from offshore crude oil pipeline”, Int J Hydrogen Energy, vol. 35, pp. 6665-6673, 2010.
[79] H. Yokoi, T. Tokushige, J. Hirose, S. Hayashi and Y. Takasaki, “H2 production from starch by a mixed culture of Clostridium butyricum and Enterobacter aerogenes”, Biotechnol Lett, vol. 20, pp., 143-147, 1998.
[80] P. Perego, B. Fabiano, G. P. Ponzano and E. Palazzi, “Experimental study of hydrogen kinetics from agroindustrial by-product: optimal conditions for production and fuel cell feeding”, Bioprocess Eng, vol. 19, pp., 205-2011, 1998.
[81] W. Q. Guo, N. Q. Ren, Z. B. Chen, B. F. Liu, X. J. Wang, W. S. Xiang and J. Ding, “Simultaneous biohydrogen production and starch wastewater treatment in an acidogenic expanded granular sludge bed reactor by mixed culture for long-term operation”, Int J Hydrogen Energy, vol. 33, pp. 7397-7404, 2008.
[82] H. Yokoi, R. Maki, J. Hirose and S. Hayashi, “Microbial production of hydrogen from starch-manufacturing wastes”, Biomass Bioenergy, vol. 22, pp. 389-395, 2002.
[83] Y. H. Wang, S. L. Li, I. C. Chen, I. C. Tseng and S. S. Cheng, “A study of the process control and hydrolytic characteristics in a thermophilic hydrogen fermentor fed with starch-rich kitchen waste by using molecular-biological methods and amylase assay”, Int J Hydrogen Energy, vol. 35, pp. 13004, 13012, 2010.
[84] J. Wei, Z. T. Liu and X. Zhang, “Biohydrogen production from starch wastewater and application in fuel cell”, Int J Hydrogen Energy, vol. 35, pp. 2949-2952, 2010.
[85] G. Antonopoulou, I. Ntaikou, H. N. Gavala, I. V. Skiadas, K. Angelopoulos and G. Lyberatos, “Biohydrogen production from sweet sorghum biomass using mixed acidogenic cultures and pure cultures of Ruminococcus albus”, Global NEST J, vol. 9, pp., 144-151, 2007.
[86] H. Argun, F. Kargi, I. K. Kapdan and R. Oztekin, “Batch dark fermentation of powdered wheat starch to hydrogen gas: Effects of the initial substrate and biomass concentrations”, Int J Hydrogen Energy, vol. 33, pp. 6109-6115, 2008.
[87] F. Kargi and S. Ozmihci, “Effects of dark/light bacteria ratio on biohydrogen production by combined fed-batch fermentation of ground wheat starch”, Biomass Bioenerg, vol. 34, pp. 869-874, 2010.
[88] A. Cakir, S. Ozmihci and F. Kargi, “Comparison of bio-hydrogen production from hydrolyzed wheat starch by mesophilic and thermophilic dark fermentation”, Int J Hydrogen Energy, vol. 34, pp. 13214-13218, 2010.
[89] F. Kargi and Y. Pamukoglu, “Dark fermentation of ground wheat starch for bio-hydrogen production by fed-batch operation”, Int J Hydrogen Energy, vol. 34, pp. 2940-2946, 2009.
[90] R. Sagnak and F. Kargi, “Photo-fermentative hydrogen gas production from dark fermentation effluent of acid hydrolyzed wheat starch with periodic feeding”, Int J Hydrogen Energy, vol. 36, pp. 4348-4353, 2011.
[91] H. Zhu, A. Stadnyk, M. Béland and P. Seto, “Co-production of hydrogen and methane from potato waste using a two-stage anaerobic digestion process”, Bioresour Technol, vol. 99, pp. 5078-5084, 2007.
[92] L. R. Howard, “Lignocellulose Biotechnology: Bioconversion of lignocellulosic wastes into edible mushrooms,” in: R. C. Ray and O. P. Ward, Microbial Biotechnology in Horticulture, vol. III. New Hampshire: Science Publishers; 2007.
[93] N. P. Ghildyal and B. K. Lonsane, “Utilization of cassava fibrous residue for the manufacture of value added products: an economic alternative to waste treatment”, Process Biochem, vol. 25, pp. 35-39, 1990.
[94] Y. T. Fan, G. S. Zhang, X. Y. Guo, Y. Xing and M. H. Fan, “Biohydrogen-production from beer lees biomass by cow dung compost”, Biomass Bioenerg, vol. 30, pp. 493-496, 2006.
[95] M. Cui, Z. Yuan, X. Zhi and J. Shen, “Optimization of biohydrogen production from beer lees using anaerobic mixed bacteria”, Int J Hydrogen Energy, vol. 34, pp. 7971-7978, 2009.
[96] V. Krishan, A. Desa and S. Marylynn, “Biohydrogen generation from beer brewery wastewater using an anaerobic contact filter”, J Am Soc Brew Chem, vol. 65, pp.