Search results for: horizontal force
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 1119

Search results for: horizontal force

1029 Evaluation of Wind Potential for the Lagoon of Venice (Italy) and Estimation of the Annual Energy Output for two Candidate Horizontal- Axis Low-Wind Turbines

Authors: M. Raciti Castelli, L. M. Moglia, E. Benini

Abstract:

This paper presents an evaluation of the wind potential in the area of the Lagoon of Venice (Italy). A full anemometric campaign of 2 year measurements, performed by the "Osservatorio Bioclimatologico dell'Ospedale al Mare di Venezia" has been analyzed to obtain the Weibull wind speed distribution and the main wind directions. The annual energy outputs of two candidate horizontal-axis wind turbines (“Aventa AV-7 LoWind" and “Gaia Wind 133-11kW") have been estimated on the basis of the computed Weibull wind distribution, registering a better performance of the former turbine, due to a higher ratio between rotor swept area and rated power of the electric generator, determining a lower cut-in wind speed.

Keywords: Wind potential, Annual Energy Output (AEO), Weibull distribution, Horizontal-Axis Wind Turbine (HAWT).

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2180
1028 Research on Simulation Model of Collision Force between Floating Ice and Pier

Authors: Tianlai Yu, Zhengguo Yuan, Sidi Shan

Abstract:

Adopting the measured constitutive relationship of stress-strain of river ice, the finite element analysis model of percussive force of river ice and pier is established, by the explicit dynamical analysis software package LS-DYNA. Effects of element types, contact method and arithmetic of ice and pier, coupled modes between different elements, mesh density of pier, and ice sheet in contact area on the collision force are studied. Some of measures for the collision force analysis of river ice and pier are proposed as follows: bridge girder can adopt beam161 element with 3-node; pier below the line of 1.30m above ice surface and ice sheet use solid164 element with 8-node; in order to accomplish the connection of different elements, the rigid body with 0.01-0.05m thickness is defined between solid164 and beam161; the contact type of ice and pier adopts AUTOMATIC_SURFACE_TO_SURFACE, using symmetrical penalty function algorithms; meshing size of pier below the line of 1.30m above ice surface should not less than 0.25×0.25×0.5m3. The simulation results have the advantage of high precision by making a comparison between measured and computed data. The research results can be referred for collision force study between river ice and pier.

Keywords: River ice, collision force, simulation analysis, ANSYS/LS-DYNA

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1985
1027 Haptics Enabled of ine AFM Image Analysis

Authors: Bhatti A., Nahavandi S., Hossny M.

Abstract:

Current advancements in nanotechnology are dependent on the capabilities that can enable nano-scientists to extend their eyes and hands into the nano-world. For this purpose, a haptics (devices capable of recreating tactile or force sensations) based system for AFM (Atomic Force Microscope) is proposed. The system enables the nano-scientists to touch and feel the sample surfaces, viewed through AFM, in order to provide them with better understanding of the physical properties of the surface, such as roughness, stiffness and shape of molecular architecture. At this stage, the proposed work uses of ine images produced using AFM and perform image analysis to create virtual surfaces suitable for haptics force analysis. The research work is in the process of extension from of ine to online process where interaction will be done directly on the material surface for realistic analysis.

Keywords: Haptics, AFM, force feedback, image analysis.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1536
1026 Features of Rail Strength Analysis in Conditions of Increased Force Loading

Authors: G. Guramishvili, M. Moistsrapishvili, L. Andghuladze

Abstract:

In the article are considered the problems arising at increasing of transferring from rolling stock axles on rail loading from 210 KN up to 270 KN and is offered for rail strength analysis definition of rail force loading complex integral characteristic with taking into account all affecting force factors that is characterizing specific operation condition of rail structure and defines the working capability of structure.

As result of analysis due mentioned method is obtained that in the conditions of 270 KN loading the rail meets the working assessment criteria of rail and rail structures: Strength, rail track stability, rail links stability and its transverse stability, traffic safety condition that is rather important for post-Soviet countries railways.

Keywords: Axial loading, rail force loading, rail structure, rail strength analysis, rail track stability.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1903
1025 The Dialectical Unity of Capital and Non-Capital: The Role of Overpopulation in Popular Rebellion Today

Authors: Wim Dierckxsens, Andrés Piqueras

Abstract:

Throughout its history, Capital has established a decisive form of discrimination that has effectively strengthened its power against Labor: discrimination between an endogenous labor force (integrated, with certain guarantees and rights in the capitalist nexus) and an exogenous labor force (yet to be incorporated or incorporated as ‘heterochthonous’, without such guarantees and rights). We refer to the historical incorporation of the exogenous population from the non-capitalist to the capitalist nexus (with the consequent replaceability of the endogenous labor force) as absolute mobility.

The more possibilities Capital has of accessing a population in the non-capitalist nexus and of being able to incorporate it through absolute mobility into the capitalist nexus, the greater its unilaterality or class domination. In contrast, when these possibilities run dry, Capital is more inclined towards reformism or negotiation.

However, this absolute mobility has historically been combined with relative mobility of the labor force, which includes various processes of which labor force migration is a fundamental component.

This paper holds that both types of mobility are at the core of class struggles.

Keywords: Absolute mobility, capital-labor antagonism, relative mobility, substitutability.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1188
1024 Haptics Enabled Offline AFM Image Analysis

Authors: Bhatti A., Nahavandi S., Hossny M.

Abstract:

Current advancements in nanotechnology are dependent on the capabilities that can enable nano-scientists to extend their eyes and hands into the nano-world. For this purpose, a haptics (devices capable of recreating tactile or force sensations) based system for AFM (Atomic Force Microscope) is proposed. The system enables the nano-scientists to touch and feel the sample surfaces, viewed through AFM, in order to provide them with better understanding of the physical properties of the surface, such as roughness, stiffness and shape of molecular architecture. At this stage, the proposed work uses of ine images produced using AFM and perform image analysis to create virtual surfaces suitable for haptics force analysis. The research work is in the process of extension from of ine to online process where interaction will be done directly on the material surface for realistic analysis.

Keywords: Haptics, AFM, force feedback, image analysis.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1465
1023 HPM Solution of Momentum Equation for Darcy-Brinkman Model in a Parallel Plates Channel Subjected to Lorentz Force

Authors: Asghar Shirazpour, Seyed Moein Rassoulinejad Mousavi, Hamid Reza Seyf

Abstract:

In this paper an analytical solution is presented for fully developed flow in a parallel plates channel under the action of Lorentz force, by use of Homotopy Perturbation Method (HPM). The analytical results are compared with exact solution and an excellent agreement has been observed between them for both Couette and Poiseuille flows. Moreover, the effects of key parameters have been studied on the dimensionless velocity profile.

Keywords: Lorentz Force, Porous Media, Homotopy Perturbation method

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2151
1022 The Optimal Design for Grip Force of Material Handling

Authors: V. Tawiwat, S. Sarawut

Abstract:

Applied a mouse-s roller with a gripper to increase the efficiency for a gripper can learn to a material handling without slipping. To apply a gripper, we use the optimize principle to develop material handling by use a signal for checking a roller mouse that rotate or not. In case of the roller rotates means that the material slips. A gripper will slide to material handling until the roller will not rotate. As this experiment has test material handling for comparing a grip force that uses to material handling of the 10-human with the applied gripper. We can summarize that human exert the material handling more than the applied gripper. Because of the gripper can exert more befit to material handling than human and may be a minimum force to lift a material without slipping.

Keywords: Optimize, Gripper, Mouse's Roller, Minimum Force.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1519
1021 Development of a System for Measuring the Three-Axis Pedal Force in Cycling and Its Applications

Authors: Joo-Hack Lee, Jin-Seung Choi, Dong-Won Kang, Jeong-Woo Seo, Ju-Young Kim, Dae-Hyeok Kim, Seung-Tae Yang, Gye-Rae Tack

Abstract:

For cycling, the analysis of the pedal force is one of the important factors in the study of exercise ability assessment and overuse injuries. In past studies, a two-axis measurement sensor was used at the sagittal plane to measure the force only in the anterior, posterior, and vertical directions and to analyze the loss of force and the injury on the frontal plane due to the forces in the right and left directions. In this study, which is a basic study on diverse analyses of the pedal force that consider the forces on the sagittal plane and the frontal plane, a three-axis pedal force measurement sensor was developed to measure the anterior-posterior (Fx), medio-lateral (Fz), and vertical (Fy) forces. The sensor was fabricated with a size and shape similar to those of the general flat pedal, and had a 550g weight that allowed smooth pedaling. Its measurement range was ±1000 N for Fx and Fz and ±2000 N for Fy, and its non-linearity, hysteresis, and repeatability were approximately 0.5%. The data were sampled at 1000 Hz using a signal collector. To use the developed sensor, the pedaling efficiency (index of efficiency, IE) and the range of left and right (medio-lateral, ML) forces were measured with two seat heights (low and high). The results of the measurement showed that the IE was higher and the force range in the ML direction was lower with the high position than with the low position. The developed measurement sensor and its application results will be useful in understanding and explaining the complicated pedaling technique, and will enable diverse kinematic analyses of the pedal force on the sagittal plane and the frontal plane.

Keywords: Cycling, Index of effectiveness, Pedal force.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2545
1020 The Applications of Quantum Mechanics Simulation for Solvent Selection in Chemicals Separation

Authors: Attapong T., Hong-Ming Ku, Nakarin M., Narin L., Alisa L, Jirut W.

Abstract:

The quantum mechanics simulation was applied for calculating the interaction force between 2 molecules based on atomic level. For the simple extractive distillation system, it is ternary components consisting of 2 closed boiling point components (A,lower boiling point and B, higher boiling point) and solvent (S). The quantum mechanics simulation was used to calculate the intermolecular force (interaction force) between the closed boiling point components and solvents consisting of intermolecular between A-S and B-S. The requirement of the promising solvent for extractive distillation is that solvent (S) has to form stronger intermolecular force with only one component than the other component (A or B). In this study, the systems of aromatic-aromatic, aromatic-cycloparaffin, and paraffindiolefin systems were selected as the demonstration for solvent selection. This study defined new term using for screening the solvents called relative interaction force which is calculated from the quantum mechanics simulation. The results showed that relative interaction force gave the good agreement with the literature data (relative volatilities from the experiment). The reasons are discussed. Finally, this study suggests that quantum mechanics results can improve the relative volatility estimation for screening the solvents leading to reduce time and money consuming

Keywords: Extractive distillation, Interaction force, Quamtum mechanic, Relative volatility, Solvent extraction.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1562
1019 Students’ Perception of Vector Representation in the Context of Electric Force and the Role of Simulation in Developing an Understanding

Authors: S. Shubha, B. N. Meera

Abstract:

Physics Education Research (PER) results have shown that students do not achieve the expected level of competency in understanding the concepts of different domains of Physics learning when taught by the traditional teaching methods, the concepts of Electricity and Magnetism (E&M) being one among them. Simulation being one of the valuable instructional tools renders an opportunity to visualize varied experiences with such concepts. Considering the electric force concept which requires extensive use of vector representations, we report here the outcome of the research results pertaining to the student understanding of this concept and the role of simulation in using vector representation. The simulation platform provides a positive impact on the use of vector representation. The first stage of this study involves eliciting and analyzing student responses to questions that probe their understanding of the concept of electrostatic force and this is followed by four stages of student interviews as they use the interactive simulations of electric force in one dimension. Student responses to the questions are recorded in real time using electronic pad. A validation test interview is conducted to evaluate students' understanding of the electric force concept after using interactive simulation. Results indicate lack of procedural knowledge of the vector representation. The study emphasizes the need for the choice of appropriate simulation and mode of induction for learning.

Keywords: Electric Force, Interactive, Representation, Simulation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2196
1018 Numerical Analysis of Effect of Crack Location on the Crack Breathing Behavior

Authors: H. M. Mobarak, Helen Wu, Keqin Xiao

Abstract:

In this work, a three-dimensional finite element model was developed to investigate the crack breathing behavior at different crack locations considering the effect of unbalance force. A two-disk rotor with a crack is simulated using ABAQUS. The duration of each crack status (open, closed and partially open/closed) during a full shaft rotation was examined to analyse the crack breathing behavior. Unbalanced shaft crack breathing behavior was found to be different at different crack locations. The breathing behavior of crack along the shaft length is divided into different regions depending on the unbalance force and crack location. The simulated results in this work can be further utilised to obtain the time-varying stiffness matrix of the cracked shaft element under the influence of unbalance force.

Keywords: Crack breathing, crack location, slant crack, unbalance force, rotating shaft.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 860
1017 3D Numerical Analysis of Stone Columns Reinforced with Horizontal and Vertical Geosynthetic Materials

Authors: R. Ziaie Moayed, A. Khalili

Abstract:

Improvement and reinforcement of soils with poor strength and engineering properties for constructing low height structures or structures such as liquid storage tanks, bridge columns, and heavy structures have necessitated applying particular techniques. Stone columns are among the well-known methods applied in such soils. This method provides an economically justified way for improving engineering properties of soft clay and loose sandy soils. Stone column implementation in these soils increases their bearing capacity and reduces the settlement of foundation build on them. In the present study, the finite difference based FLAC3D software was used to investigate the performance and effect of soil reinforcement through stone columns without lining and those with geosynthetic lining with different levels of stiffness in horizontal and vertical modes in clayey soils. The results showed that soil improvement using stone columns with lining in vertical and horizontal modes results in improvement of bearing capacity and foundation settlement.

Keywords: Bearing capacity, FLAC3D, geosynthetic, settlement, stone column.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1042
1016 Combining Laws of Mechanics and Hydrostatics in Non-Inertial Reference Frames

Authors: M. Blokh

Abstract:

Method of combined teaching laws of classical mechanics and hydrostatics in non-inertial reference frames for undergraduate students is proposed. Pressure distribution in a liquid (or gas) moving with acceleration is considered. Combined effect of hydrostatic force and force of inertia on a body immersed in a liquid can lead to paradoxical results, in a motion of pendulum in particular. The body motion under Stokes force influence and forces in rotating reference frames are investigated as well. Problems and difficulties in student perceptions are analyzed.

Keywords: Hydrodynamics, mechanics, non-inertial reference frames, teaching.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1512
1015 Calculation of the Forces Acting on the Knee Joint When Rising from Kneeling Positions (Effects of the Leg Alignment and the Arm Assistance on the Knee Joint Forces)

Authors: S. Hirokawa, M. Fukunaga, M. Mawatari

Abstract:

Knee joint forces are available by in vivo measurement using an instrumented knee prosthesis for small to moderate knee flexion but not for high flexion yet. We created a 2D mathematical model of the lower limb incorporating several new features such as a patello-femoral mechanism, a thigh-calf contact at high knee flexion and co-contracting muscles' force ratio, then used it to determine knee joint forces arising from high knee flexions in four kneeling conditions: rising with legs in parallel, with one foot forward, with or without arm use. With arms used, the maximum values of knee joint force decreased to about 60% of those with arms not used. When rising with one foot forward, if arms are not used, the forward leg sustains a force as large as that sustained when rising with legs parallel.

Keywords: Knee joint force, kneeling, mathematical model, biomechanics.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 4140
1014 The Political Economy of Police Corruption in Nigeria

Authors: Tosin Osasona

Abstract:

The Nigeria Police Force bears the constitutional mandate as the primary policing agency for the protection of life and property within Nigeria; however, the police have an historical ill-reputation for corruption, ineptitude and impunity. Using the institutional theory of police as the framework of analysis, the paper argues that the performance of the police in Nigeria mirrors the dominant political, social and economic institutions and the structural environment of the Nigerian state. The article puts in perspective the deliberate political decision to underfund the police, leaving officers of the force the extra task of foraging for funds to undertake the duty that the Nigeria state primarily exists for; the article further explores the nexus between corruption in the police in Nigeria and the issue of funding. The article finds that the Nigerian state, by deliberately under-funding the police, while expecting the agency to perform its duties, has indirectly sanctioned the corruption of the force and approved the cooption of the institution of police and policing for private use in Nigeria.

Keywords: Funding, policing, Nigeria Police Force, corruption.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1018
1013 Sub-Impact Phenomenon of Elasto-Plastic Free-Free Beam during a Strike

Authors: H. Rong, X. C. Yin, J. Yang, Y. N. Shen

Abstract:

Based on Rayleigh beam theory, the sub-impacts of a free-free beam struck horizontally by a round-nosed rigid mass is simulated by the finite difference method and the impact-separation conditions. In order to obtain the sub-impact force, a uniaxial compression elastic-plastic contact model is employed to analyze the local deformation field on contact zone. It is found that the horizontal impact is a complicated process including the elastic plastic sub-impacts in sequence. There are two sub-zones of sub-impact. In addition, it found that the elastic energy of the free-free beam is more suitable for the Poisson collision hypothesis to explain compression and recovery processes.

Keywords: beam, sub-impact, elastic-plastic deformation, finite difference method.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1806
1012 Advance in Monitoring and Process Control of Surface Roughness

Authors: Somkiat Tangjitsitcharoen, Siripong Damrongthaveesak

Abstract:

This paper presents an advance in monitoring and process control of surface roughness in CNC machine for the turning and milling processes. An integration of the in-process monitoring and process control of the surface roughness is proposed and developed during the machining process by using the cutting force ratio. The previously developed surface roughness models for turning and milling processes of the author are adopted to predict the inprocess surface roughness, which consist of the cutting speed, the feed rate, the tool nose radius, the depth of cut, the rake angle, and the cutting force ratio. The cutting force ratios obtained from the turning and the milling are utilized to estimate the in-process surface roughness. The dynamometers are installed on the tool turret of CNC turning machine and the table of 5-axis machining center to monitor the cutting forces. The in-process control of the surface roughness has been developed and proposed to control the predicted surface roughness. It has been proved by the cutting tests that the proposed integration system of the in-process monitoring and the process control can be used to check the surface roughness during the cutting by utilizing the cutting force ratio.

Keywords: Turning, milling, monitoring, surface roughness, cutting force ratio.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2089
1011 Natural-Direction-Consistent 3D-Design and Printing Methods

Authors: Yasusi Kanada

Abstract:

Objects are usually horizontally sliced when printed by 3D printers. Therefore, if an object to be printed, such as a collection of fibers, originally has natural direction in shape, the printed direction contradicts with the natural direction. By using proper tools, such as field-oriented 3D paint software, field-oriented solid modelers, field-based tool-path generation software, and non-horizontal FDM 3D printers, the natural direction can be modeled and objects can be printed in a direction that is consistent with the natural direction. This consistence results in embodiment of momentum or force in expressions of the printed object. To achieve this goal, several design and manufacturing problems, but not all, have been solved. An application of this method is (Japanese) 3D calligraphy.

Keywords: 3D printing, Three-dimensional printing, Solid free-form fabrication, SFF, Fused deposition modeling, FDM, Additive manufacturing.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2247
1010 Analytical Cutting Forces Model of Helical Milling Operations

Authors: Changyi Liu, Gui Wang, Matthew Dargusch

Abstract:

Helical milling operations are used to generate or enlarge boreholes by means of a milling tool. The bore diameter can be adjusted through the diameter of the helical path. The kinematics of helical milling on a three axis machine tool is analysed firstly. The relationships between processing parameters, cutting tool geometry characters with machined hole feature are formulated. The feed motion of the cutting tool has been decomposed to plane circular feed and axial linear motion. In this paper, the time varying cutting forces acted on the side cutting edges and end cutting edges of the flat end cylinder miller is analysed using a discrete method separately. These two components then are combined to produce the cutting force model considering the complicated interaction between the cutters and workpiece. The time varying cutting force model describes the instantaneous cutting force during processing. This model could be used to predict cutting force, calculate statics deflection of cutter and workpiece, and also could be the foundation of dynamics model and predicting chatter limitation of the helical milling operations.

Keywords: Helical milling, Hole machining, Cutting force, Analytical model, Time domain

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3104
1009 Performance of Bridge Girder with Perforations under Tsunami Wave Loading

Authors: Sadia Rahman, Shatirah Akib, M. T. R. Khan, R. Triatmadja

Abstract:

Tsunami disaster poses a great threat to coastal infrastructures. Bridges without adequate provisions for earthquake and tsunami loading is generally vulnerable to tsunami attack. During the last two disastrous tsunami event (i.e. Indian Ocean and Japan Tsunami) a number of bridges were observed subsequent damages by tsunami waves. In this study, laboratory experiments were conducted to study the effects of perforations in bridge girder in force reduction. Results showed that significant amount of forces were reduced using perforations in girder. Approximately 10% to 18% force reductions were achieved by using about 16% perforations in bridge girder. Subsequent amount of force reductions revealed that perforations in girder are effective in reducing tsunami forces as perforations in girder let water to be passed through. Thus, less bridge damages are expected with the presence of perforations in girder during tsunami period.

Keywords: Bridge, force, girder, perforation, tsunami, wave.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2278
1008 Behavior and Strength of Slab-Edge Beam-Column Connections under Shear Force and Moment

Authors: Omar M. Ben-Sasi

Abstract:

A total of fourteen slab-edge beam-column connection specimens were tested gradually to failure under the effect of simultaneous action of shear force and moment. The objective was to investigate the influence of some parameters thought to be important on the behavior and strength of slab-column connections with edge beams encountered in flat slab flooring and roofing systems. The parameters included the existence and strength of edge beam, depth and width of edge beam, steel reinforcement ratio of slab, ratio of moment to shear force, and the existence of openings in the region next to the column.

Results obtained demonstrated the importance of the studied parameters on the strength and behavior of slab-column connections with edge beams.

Keywords: Strength, flat slab, slab-column connections, shear force, moment, behavior.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 4444
1007 Theoretical, Numerical and Experimental Assessment of Elastomeric Bearing Stability

Authors: Manuel A. Guzman, Davide Forcellini, Ricardo Moreno, Diego H. Giraldo

Abstract:

Elastomeric bearings (EB) are used in many applications, such as base isolation of bridges, seismic protection and vibration control of other structures and machinery. Their versatility is due to their particular behavior since they have different stiffness in the vertical and horizontal directions, allowing to sustain vertical loads and at the same time horizontal displacements. Therefore, vertical, horizontal and bending stiffnesses are important parameters to take into account in the design of EB. In order to acquire a proper design methodology of EB all three, theoretical, finite element analysis and experimental, approaches should be taken into account to assess stability due to different loading states, predict their behavior and consequently their effects on the dynamic response of structures, and understand complex behavior and properties of rubber-like materials respectively. In particular, the recent large-displacement theory on the stability of EB formulated by Forcellini and Kelly is validated with both numerical simulations using the finite element method, and experimental results set at the University of Antioquia in Medellin, Colombia. In this regard, this study reproduces the behavior of EB under compression loads and investigates the stability behavior with the three mentioned points of view.

Keywords: Elastomeric bearings, experimental tests, numerical simulations, stability, large-displacement theory.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 772
1006 Shaking Force Balancing of Mechanisms: An Overview

Authors: Vigen Arakelian

Abstract:

The balancing of mechanisms is a well-known problem in the field of mechanical engineering because the variable dynamic loads cause vibrations, as well as noise, wear and fatigue of the machines. A mechanical system with unbalance shaking force and shaking moment transmits substantial vibration to the frame. Therefore, the objective of the balancing is to cancel or reduce the variable dynamic reactions transmitted to the frame. The resolution of this problem consists in the balancing of the shaking force and shaking moment. It can be fully or partially, by internal mass redistribution via adding counterweights or by modification of the mechanism's architecture via adding auxiliary structures. The balancing problems are of continue interest to researchers. Several laboratories around the world are very active in this area and new results are published regularly. However, despite its ancient history, mechanism balancing theory continues to be developed and new approaches and solutions are constantly being reported. Various surveys have been published that disclose particularities of balancing methods. The author believes that this is an appropriate moment to present a state of the art of the shaking force balancing studies completed by new research results. This paper presents an overview of methods devoted to the shaking force balancing of mechanisms, as well as the historical aspects of the origins and the evolution of the balancing theory of mechanisms.

Keywords: Inertia forces, shaking forces, balancing, dynamics.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 492
1005 Dynamic Model and Control of a New Quadrotor Unmanned Aerial Vehicle with Tilt-Wing Mechanism

Authors: Kaan T. Oner, Ertugrul Cetinsoy, Mustafa Unel, Mahmut F. Aksit, Ilyas Kandemir, Kayhan Gulez

Abstract:

In this work a dynamic model of a new quadrotor aerial vehicle that is equipped with a tilt-wing mechanism is presented. The vehicle has the capabilities of vertical take-off/landing (VTOL) like a helicopter and flying horizontal like an airplane. Dynamic model of the vehicle is derived both for vertical and horizontal flight modes using Newton-Euler formulation. An LQR controller for the vertical flight mode has also been developed and its performance has been tested with several simulations.

Keywords: Control, Dynamic model, LQR, Quadrotor, Tilt-wing, VTOL.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 4277
1004 Performance Enhancement Employing Vertical Beamforming for FFR Technique

Authors: P. Chaipanya, P. Uthansakul, M. Uthansakul

Abstract:

This paper proposes a vertical beamforming concept to a cellular network employing Fractional Frequency Reuse technique including with cell sectorization. Two different beams are utilized in cell-center and cell-edge, separately. The proposed concept is validated through computer simulation in term of SINR and channel capacity. Also, comparison when utilizing horizontal and vertical beam formation is in focus. The obtained results indicate that the proposed concept can improve the performance of the cellular networks comparing with the one using horizontal beamforming.

Keywords: Beamforming, Fractional Frequency Reuse, Inter- Cell Interference, cell sectorization.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2133
1003 Deformation and Crystallization in a 7075-T651 Friction Stir Weld

Authors: C. S. Paglia

Abstract:

The deformation and the crystallization in a 7075-T651 friction stir weld, in particular for regions directly in contact with the mechanical action of the rotating probe, have been investigated by means of optical microscopy. The investigation enabled to identify regions of the weld differently affected by the deformation caused by the welding process. The highly deformed grains in the horizontal direction close to the plate margin were indicative of shear movements along the horizontal plane, while highly deformed grains along the plate margin in the vertical direction were indicative of vertical shear movements of opposite directions, which superimposed the shear movement along the horizontal plane. The vertical shear movements were not homogeneous through the plate thickness. The microstructure indicated that after the probe passes, the grain growth may take place under static conditions. The small grains microstructure of the nugget region, formed after the main dynamic recrystallization process, develops to an equiaxed microstructure. A material transport influenced by the rotating shoulder was also observed from the trailing to the advancing side of the weld.

Keywords: AA7075-T651, friction stir welding, deformation, crystallization.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 645
1002 Estimation of the External Force for a Co-Manipulation Task Using the Drive Chain Robot

Authors: Sylvain Devie, Pierre-Philippe Robet, Yannick Aoustin, Maxime Gautier

Abstract:

The aim of this paper is to show that the observation of the external effort and the sensor-less control of a system is limited by the mechanical system. First, the model of a one-joint robot with a prismatic joint is presented. Based on this model, two different procedures were performed in order to identify the mechanical parameters of the system and observe the external effort applied on it. Experiments have proven that the accuracy of the force observer, based on the DC motor current, is limited by the mechanics of the robot. The sensor-less control will be limited by the accuracy in estimation of the mechanical parameters and by the maximum static friction force, that is the minimum force which can be observed in this case. The consequence of this limitation is that industrial robots without specific design are not well adapted to perform sensor-less precision tasks. Finally, an efficient control law is presented for high effort applications.

Keywords: Control, Identification, Robot, Co-manipulation, Sensor-less.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 604
1001 Laminar Free Convection of Nanofluid Flow in Horizontal Porous Annulus

Authors: Manal H. Saleh

Abstract:

A numerical study has been carried out to investigate the heat transfer by natural convection of nanofluid taking Cu as nanoparticles and the water as based fluid in a three dimensional annulus enclosure filled with porous media (silica sand) between two horizontal concentric cylinders with 12 annular fins of 2.4mm thickness attached to the inner cylinder under steady state conditions. The governing equations which used are continuity, momentum and energy equations under an assumptions used Darcy law and Boussinesq-s approximation which are transformed to dimensionless equations. The finite difference approach is used to obtain all the computational results using the MATLAB-7. The parameters affected on the system are modified Rayleigh number (10 ≤Ra*≤ 1000), fin length Hf (3, 7 and 11mm), radius ratio Rr (0.293, 0.365 and 0.435) and the volume fraction(0 ≤ ¤ò ≤ 0 .35). It was found that the average Nusselt number depends on (Ra*, Hf, Rr and φ). The results show that, increasing of fin length decreases the heat transfer rate and for low values of Ra*, decreasing Rr cause to decrease Nu while for Ra* greater than 100, decreasing Rr cause to increase Nu and adding Cu nanoparticles with 0.35 volume fraction cause 27.9% enhancement in heat transfer. A correlation for Nu in terms of Ra*, Hf and φ, has been developed for inner hot cylinder.

Keywords: Annular fins, laminar free convection, nanofluid, porous media, three dimensions horizontal annulus.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2443
1000 Experimental Study on Smart Anchor Head

Authors: Young-Jun You, Ki-Tae Park, Kyu-Wan Lee

Abstract:

Since prestressed concrete members rely on the tensile strength of the prestressing strands to resist loads, loss of even few them could result catastrophic. Therefore, it is important to measure present residual prestress force. Although there are some techniques for obtaining present prestress force, some problems still remain. One method is to install load cell in front of anchor head but this may increase cost. Load cell is a transducer using the elastic material property. Anchor head is also an elastic material and this might result in monitoring monitor present prestress force. Features of fiber optic sensor such as small size, great sensitivity, high durability can assign sensing function to anchor head. This paper presents the concept of smart anchor head which acts as load cell and experiment for the applicability of it. Test results showed the smart anchor head worked good and strong linear relationship between load and response.

Keywords: SHM, prestress force, anchor head, fiber optic sensor

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1571