Search results for: evolutionary computing
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 891

Search results for: evolutionary computing

801 Reversible Signed Division for Computing Systems

Authors: D. Krishnaveni, M. Geetha Priya

Abstract:

Applications of reversible logic gates in the design of complex integrated circuits provide power optimization.  This technique finds a great use in low power CMOS design, optical computing, quantum computing and nanotechnology. This paper proposes a reversible signed division circuit that can divide an n-bit signed dividend with an n-bit signed divisor using non-restoration division logic. The proposed design adequately addresses the ‘delay’ there by improving the efficiency of the circuit. An attempt is made to design a reversible signed division circuit. This paper provides a threshold to build more complex arithmetic systems using reversible logic, thus increasing the performance of computing systems.

Keywords: Low power CMOS, quantum computing, reversible logic gates, shift register, signed division.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1262
800 Adopting Cloud-Based Techniques to Reduce Energy Consumption: Toward a Greener Cloud

Authors: Sandesh Achar

Abstract:

The cloud computing industry has set new goals for better service delivery and deployment, so anyone can access services such as computation, application, and storage anytime. Cloud computing promises new possibilities for approaching sustainable solutions to deploy and advance their services in this distributed environment. This work explores energy-efficient approaches and how cloud-based architecture can reduce energy consumption levels amongst enterprises leveraging cloud computing services. Adopting cloud-based networking, database, and server machines provide a comprehensive means of achieving the potential gains in energy efficiency that cloud computing offers. In energy-efficient cloud computing, virtualization is one aspect that can integrate several technologies to achieve consolidation and better resource utilization. Moreover, the Green Cloud Architecture for cloud data centers is discussed in terms of cost, performance, and energy consumption, and appropriate solutions for various application areas are provided.

Keywords: Greener Cloud, cloud computing, energy efficiency, energy consumption, metadata tags, Green Cloud Advisor.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 972
799 Particle Swarm Optimization with Interval-valued Genotypes and Its Application to Neuroevolution

Authors: Hidehiko Okada

Abstract:

The author proposes an extension of particle swarm optimization (PSO) for solving interval-valued optimization problems and applies the extended PSO to evolutionary training of neural networks (NNs) with interval weights. In the proposed PSO, values in the genotypes are not real numbers but intervals. Experimental results show that interval-valued NNs trained by the proposed method could well approximate hidden target functions despite the fact that no training data was explicitly provided.

Keywords: Evolutionary algorithms, swarm intelligence, particle swarm optimization, neural network, interval arithmetic.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1966
798 Developing a Web-Based Workflow Management System in Cloud Computing Platforms

Authors: Wang Shuen-Tai, Lin Yu-Ching, Chang Hsi-Ya

Abstract:

Cloud computing is the innovative and leading information technology model for enabling convenient, on-demand network access to a shared pool of configurable computing resources that can be rapidly provisioned and released with minimal management effort. In this paper, we aim at the development of workflow management system for cloud computing platforms based on our previous research on the dynamic allocation of the cloud computing resources and its workflow process. We took advantage of the HTML5 technology and developed web-based workflow interface. In order to enable the combination of many tasks running on the cloud platform in sequence, we designed a mechanism and developed an execution engine for workflow management on clouds. We also established a prediction model which was integrated with job queuing system to estimate the waiting time and cost of the individual tasks on different computing nodes, therefore helping users achieve maximum performance at lowest payment. This proposed effort has the potential to positively provide an efficient, resilience and elastic environment for cloud computing platform. This development also helps boost user productivity by promoting a flexible workflow interface that lets users design and control their tasks' flow from anywhere.

Keywords: Web-based, workflow, HTML5, Cloud Computing, Queuing System.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2911
797 Pattern Recognition of Biological Signals

Authors: Paulo S. Caparelli, Eduardo Costa, Alexsandro S. Soares, Hipolito Barbosa

Abstract:

This paper presents an evolutionary method for designing electronic circuits and numerical methods associated with monitoring systems. The instruments described here have been used in studies of weather and climate changes due to global warming, and also in medical patient supervision. Genetic Programming systems have been used both for designing circuits and sensors, and also for determining sensor parameters. The authors advance the thesis that the software side of such a system should be written in computer languages with a strong mathematical and logic background in order to prevent software obsolescence, and achieve program correctness.

Keywords: Pattern recognition, evolutionary computation, biological signal, functional programming.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1743
796 Evolutionary Approach for Automated Discovery of Censored Production Rules

Authors: Kamal K. Bharadwaj, Basheer M. Al-Maqaleh

Abstract:

In the recent past, there has been an increasing interest in applying evolutionary methods to Knowledge Discovery in Databases (KDD) and a number of successful applications of Genetic Algorithms (GA) and Genetic Programming (GP) to KDD have been demonstrated. The most predominant representation of the discovered knowledge is the standard Production Rules (PRs) in the form If P Then D. The PRs, however, are unable to handle exceptions and do not exhibit variable precision. The Censored Production Rules (CPRs), an extension of PRs, were proposed by Michalski & Winston that exhibit variable precision and supports an efficient mechanism for handling exceptions. A CPR is an augmented production rule of the form: If P Then D Unless C, where C (Censor) is an exception to the rule. Such rules are employed in situations, in which the conditional statement 'If P Then D' holds frequently and the assertion C holds rarely. By using a rule of this type we are free to ignore the exception conditions, when the resources needed to establish its presence are tight or there is simply no information available as to whether it holds or not. Thus, the 'If P Then D' part of the CPR expresses important information, while the Unless C part acts only as a switch and changes the polarity of D to ~D. This paper presents a classification algorithm based on evolutionary approach that discovers comprehensible rules with exceptions in the form of CPRs. The proposed approach has flexible chromosome encoding, where each chromosome corresponds to a CPR. Appropriate genetic operators are suggested and a fitness function is proposed that incorporates the basic constraints on CPRs. Experimental results are presented to demonstrate the performance of the proposed algorithm.

Keywords: Censored Production Rule, Data Mining, MachineLearning, Evolutionary Algorithms.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1881
795 Meta Model Based EA for Complex Optimization

Authors: Maumita Bhattacharya

Abstract:

Evolutionary Algorithms are population-based, stochastic search techniques, widely used as efficient global optimizers. However, many real life optimization problems often require finding optimal solution to complex high dimensional, multimodal problems involving computationally very expensive fitness function evaluations. Use of evolutionary algorithms in such problem domains is thus practically prohibitive. An attractive alternative is to build meta models or use an approximation of the actual fitness functions to be evaluated. These meta models are order of magnitude cheaper to evaluate compared to the actual function evaluation. Many regression and interpolation tools are available to build such meta models. This paper briefly discusses the architectures and use of such meta-modeling tools in an evolutionary optimization context. We further present two evolutionary algorithm frameworks which involve use of meta models for fitness function evaluation. The first framework, namely the Dynamic Approximate Fitness based Hybrid EA (DAFHEA) model [14] reduces computation time by controlled use of meta-models (in this case approximate model generated by Support Vector Machine regression) to partially replace the actual function evaluation by approximate function evaluation. However, the underlying assumption in DAFHEA is that the training samples for the metamodel are generated from a single uniform model. This does not take into account uncertain scenarios involving noisy fitness functions. The second model, DAFHEA-II, an enhanced version of the original DAFHEA framework, incorporates a multiple-model based learning approach for the support vector machine approximator to handle noisy functions [15]. Empirical results obtained by evaluating the frameworks using several benchmark functions demonstrate their efficiency

Keywords: Meta model, Evolutionary algorithm, Stochastictechnique, Fitness function, Optimization, Support vector machine.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2067
794 Comparison of Evolutionary Algorithms and their Hybrids Applied to MarioAI

Authors: Hidehiko Okada, Yuki Fujii

Abstract:

Researchers have been applying artificial/ computational intelligence (AI/CI) methods to computer games. In this research field, further researchesare required to compare AI/CI methods with respect to each game application. In thispaper, we report our experimental result on the comparison of evolution strategy, genetic algorithm and their hybrids, applied to evolving controller agents for MarioAI. GA revealed its advantage in our experiment, whereas the expected ability of ES in exploiting (fine-tuning) solutions was not clearly observed. The blend crossover operator and the mutation operator of GA might contribute well to explore the vast search space.

Keywords: Evolutionary algorithm, autonomous game controller agent, neuroevolutions, MarioAI

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1723
793 Distributed System Computing Resource Scheduling Algorithm Based on Deep Reinforcement Learning

Authors: Yitao Lei, Xingxiang Zhai, Burra Venkata Durga Kumar

Abstract:

As the quantity and complexity of computing in large-scale software systems increase, distributed system computing becomes increasingly important. The distributed system realizes high-performance computing by collaboration between different computing resources. If there are no efficient resource scheduling resources, the abuse of distributed computing may cause resource waste and high costs. However, resource scheduling is usually an NP-hard problem, so we cannot find a general solution. However, some optimization algorithms exist like genetic algorithm, ant colony optimization, etc. The large scale of distributed systems makes this traditional optimization algorithm challenging to work with. Heuristic and machine learning algorithms are usually applied in this situation to ease the computing load. As a result, we do a review of traditional resource scheduling optimization algorithms and try to introduce a deep reinforcement learning method that utilizes the perceptual ability of neural networks and the decision-making ability of reinforcement learning. Using the machine learning method, we try to find important factors that influence the performance of distributed system computing and help the distributed system do an efficient computing resource scheduling. This paper surveys the application of deep reinforcement learning on distributed system computing resource scheduling. The research proposes a deep reinforcement learning method that uses a recurrent neural network to optimize the resource scheduling. The paper concludes the challenges and improvement directions for Deep Reinforcement Learning-based resource scheduling algorithms.

Keywords: Resource scheduling, deep reinforcement learning, distributed system, artificial intelligence.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 495
792 Partial Connection Architecture for Mobile Computing

Authors: Phyoung Jung Kim, Seogyun Kim

Abstract:

In mobile computing environments, there are many new non existing problems in the distributed system, which is consisted of stationary hosts because of host mobility, sudden disconnection by handoff in wireless networks, voluntary disconnection for efficient power consumption of a mobile host, etc. To solve the problems, we proposed the architecture of Partial Connection Manager (PCM) in this paper. PCM creates the limited number of mobile agents according to priority, sends them in parallel to servers, and combines the results to process the user request rapidly. In applying the proposed PCM to the mobile market agent service, we understand that the mobile agent technique could be suited for the mobile computing environment and the partial connection problem management.

Keywords: Mobile agent, mobile computing, partial connection

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1611
791 Awareness Level of Green Computing among Computer Users in Kebbi State, Nigeria

Authors: A. Mubarak, A. I. Augie

Abstract:

This study investigated the awareness level of green computing possessed by computer users in Kebbi state. Survey method was employed to carry out the study. The study involved computer users from ICT business/training centers around Argungu and Birnin Kebbi areas of Kebbi state. Purposive sampling method was used to draw 156 respondents that volunteer to answer the questionnaire administered for gathering the data of the study. Out of the 156 questionnaires distributed, 121 were used for data analysis. In all, 79 respondents were from Argungu, while 42 were from Birnin Kebbi. The two research questions of the study were answered with descriptive statistic (percentage), and inferential statistics (ANOVA). The findings showed that the most of the computer users do not possess adequate awareness on conscious use of computing system. Also, the study showed that there is no significant difference regarding the consciousness of green computing possesses among computer users in Argungu and Birnin Kebbi. Based on these findings, the study suggested among others an aggressive campaign on green computing practice among computer users in Kebbi state.

Keywords: Green computing, awareness, information technology, Energy Star.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 657
790 Fortification for P2P Grid Computing Used for Resource Discovery

Authors: Bhawneet Singh Marwah, Rishabh Rastogi, Shinon Kochar

Abstract:

Grid computing provides an effective infrastructure for massive computation among flexible and dynamic collection of individual system for resource discovery. The major challenge for grid computing is to prevent breaches and secure the data from trespassers. To overcome such conflicts a semantic approach can be designed which will filter the access requests of peers by checking the resource description specifying the data and the metadata as factual statements. Between every node in the grid a semantic firewall as a middleware will be present The intruder will be required to present an application specifying there needs to the firewall and hence accordingly the system will grant or deny the application request.

Keywords: Grid Computing, Metadata, Semantic, Peers, Resource Discovery, Firewall.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1566
789 Application of Granular Computing Paradigm in Knowledge Induction

Authors: Iftikhar U. Sikder

Abstract:

This paper illustrates an application of granular computing approach, namely rough set theory in data mining. The paper outlines the formalism of granular computing and elucidates the mathematical underpinning of rough set theory, which has been widely used by the data mining and the machine learning community. A real-world application is illustrated, and the classification performance is compared with other contending machine learning algorithms. The predictive performance of the rough set rule induction model shows comparative success with respect to other contending algorithms.

Keywords: Concept approximation, granular computing, reducts, rough set theory, rule induction.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 834
788 Challenges and Opportunities of Cloud-Based E-Learning Systems

Authors: Kashif Laeeq, Zubair A. Shaikh

Abstract:

The paradigm of education is drastically changing from conventional to e-learning model. Due to ease of learning with various other benefits, several educational institutions are adopting the e-learning models. Some institutions are still willing to transform their educational system on to e-learning, but due to limited resources, they are still compromising on the old traditional system. The cloud computing could be one of the best solutions to overcome this problem by providing hardware, software, and infrastructure resources with cost efficient manner. The adoption of cloud computing in education will bring revolution in this paradigm. This paper introduces various positive features of e-learning and presents a way how cloud computing technology can be provisioned e-learning model. This paper also investigates the numerous challenges and opportunities that would be observed in cloud computing adoption in e-learning domain. The concept and knowledge present in this paper may create a new direction of research in the domain of cloud-based e-learning.

Keywords: Cloud-based e-learning, e-learning, cloud computing application, smart learning.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1232
787 Genetic Algorithm with Fuzzy Genotype Values and Its Application to Neuroevolution

Authors: Hidehiko Okada

Abstract:

The author proposes an extension of genetic algorithm (GA) for solving fuzzy-valued optimization problems. In the proposed GA, values in the genotypes are not real numbers but fuzzy numbers. Evolutionary processes in GA are extended so that GA can handle genotype instances with fuzzy numbers. The proposed method is applied to evolving neural networks with fuzzy weights and biases. Experimental results showed that fuzzy neural networks evolved by the fuzzy GA could model hidden target fuzzy functions well despite the fact that no training data was explicitly provided.

Keywords: Evolutionary algorithm, genetic algorithm, fuzzy number, neural network, neuroevolution.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2302
786 Model Reduction of Linear Systems by Conventional and Evolutionary Techniques

Authors: S. Panda, S. K. Tomar, R. Prasad, C. Ardil

Abstract:

Reduction of Single Input Single Output (SISO) continuous systems into Reduced Order Model (ROM), using a conventional and an evolutionary technique is presented in this paper. In the conventional technique, the mixed advantages of Mihailov stability criterion and continued fraction expansions (CFE) technique is employed where the reduced denominator polynomial is derived using Mihailov stability criterion and the numerator is obtained by matching the quotients of the Cauer second form of Continued fraction expansions. In the evolutionary technique method Particle Swarm Optimization (PSO) is employed to reduce the higher order model. PSO method is based on the minimization of the Integral Squared Error (ISE) between the transient responses of original higher order model and the reduced order model pertaining to a unit step input. Both the methods are illustrated through numerical example.

Keywords: Reduced Order Modeling, Stability, Continued Fraction Expansions, Mihailov Stability Criterion, Particle Swarm Optimization, Integral Squared Error.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1927
785 Modeling and Simulation of Robotic Arm Movement using Soft Computing

Authors: V. K. Banga, Jasjit Kaur, R. Kumar, Y. Singh

Abstract:

In this research paper we have presented control architecture for robotic arm movement and trajectory planning using Fuzzy Logic (FL) and Genetic Algorithms (GAs). This architecture is used to compensate the uncertainties like; movement, friction and settling time in robotic arm movement. The genetic algorithms and fuzzy logic is used to meet the objective of optimal control movement of robotic arm. This proposed technique represents a general model for redundant structures and may extend to other structures. Results show optimal angular movement of joints as result of evolutionary process. This technique has edge over the other techniques as minimum mathematics complexity used.

Keywords: Kinematics, Genetic algorithms (GAs), Fuzzy logic(FL), Optimal control.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3009
784 Neural Network Learning Based on Chaos

Authors: Truong Quang Dang Khoa, Masahiro Nakagawa

Abstract:

Chaos and fractals are novel fields of physics and mathematics showing up a new way of universe viewpoint and creating many ideas to solve several present problems. In this paper, a novel algorithm based on the chaotic sequence generator with the highest ability to adapt and reach the global optima is proposed. The adaptive ability of proposal algorithm is flexible in 2 steps. The first one is a breadth-first search and the second one is a depth-first search. The proposal algorithm is examined by 2 functions, the Camel function and the Schaffer function. Furthermore, the proposal algorithm is applied to optimize training Multilayer Neural Networks.

Keywords: learning and evolutionary computing, Chaos Optimization Algorithm, Artificial Neural Networks, nonlinear optimization, intelligent computational technologies.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1780
783 Cloud Computing Initiative using Modified Ant Colony Framework

Authors: Soumya Banerjee, Indrajit Mukherjee, P.K. Mahanti

Abstract:

Scheduling of diversified service requests in distributed computing is a critical design issue. Cloud is a type of parallel and distributed system consisting of a collection of interconnected and virtual computers. It is not only the clusters and grid but also it comprises of next generation data centers. The paper proposes an initial heuristic algorithm to apply modified ant colony optimization approach for the diversified service allocation and scheduling mechanism in cloud paradigm. The proposed optimization method is aimed to minimize the scheduling throughput to service all the diversified requests according to the different resource allocator available under cloud computing environment.

Keywords: Ant Colony, Cloud Computing, Grid, Resource allocator, Service Request.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2767
782 Cloud Computing-s Software-as-a-Service (SaaS) Delivery Model Benefits Technical Courses in Higher Education

Authors: Janet L. Kourik, Jiangping Wang

Abstract:

Software-as-a-Service (SaaS) is a form of cloud computing that relieves the user of the burden of hardware and software installation and management. SaaS can be used at the course level to enhance curricula and student experience. When cloud computing and SaaS are included in educational literature, the focus is typically on implementing administrative functions. Yet, SaaS can make more immediate and substantial contributions to the technical course content in educational offerings. This paper explores cloud computing and SaaS, provides examples, reports on experiences using SaaS to offer specialized software in courses, and analyzes the advantages and disadvantages of using SaaS at the course level. The paper contributes to the literature in higher education by analyzing the major technical concepts, potential, and constraints for using SaaS to deliver specialized software at the course level. Further it may enable more educators and students to benefit from this emerging technology.

Keywords: Cloud computing, software-as-a-service, e-service, higher education.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2424
781 A Review on Cloud Computing and Internet of Things

Authors: Sahar S. Tabrizi, Dogan Ibrahim

Abstract:

Cloud Computing is a convenient model for on-demand networks that uses shared pools of virtual configurable computing resources, such as servers, networks, storage devices, applications, etc. The cloud serves as an environment for companies and organizations to use infrastructure resources without making any purchases and they can access such resources wherever and whenever they need. Cloud computing is useful to overcome a number of problems in various Information Technology (IT) domains such as Geographical Information Systems (GIS), Scientific Research, e-Governance Systems, Decision Support Systems, ERP, Web Application Development, Mobile Technology, etc. Companies can use Cloud Computing services to store large amounts of data that can be accessed from anywhere on Earth and also at any time. Such services are rented by the client companies where the actual rent depends upon the amount of data stored on the cloud and also the amount of processing power used in a given time period. The resources offered by the cloud service companies are flexible in the sense that the user companies can increase or decrease their storage requirements or the processing power requirements at any time, thus minimizing the overall rental cost of the service they receive. In addition, the Cloud Computing service providers offer fast processors and applications software that can be shared by their clients. This is especially important for small companies with limited budgets which cannot afford to purchase their own expensive hardware and software. This paper is an overview of the Cloud Computing, giving its types, principles, advantages, and disadvantages. In addition, the paper gives some example engineering applications of Cloud Computing and makes suggestions for possible future applications in the field of engineering.

Keywords: Cloud computing, cloud services, IaaS, PaaS, SaaS, IoT.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1390
780 Toward a Risk Assessment Model Based On Multi-Agent System for Cloud Consumer

Authors: Saadia Drissi, Siham Benhadou, Hicham Medromi

Abstract:

The cloud computing is an innovative paradigm that introduces several changes in technology that have resulted a new ways for cloud providers to deliver their services to cloud consumers mainly in term of security risk assessment, thus, adapting a current risk assessment tools to cloud computing is a very difficult task due to its several characteristics that challenge the effectiveness of risk assessment approaches. As consequence, there is a need of risk assessment model adapted to cloud computing. This paper requires a new risk assessment model based on multi-agent system and AHP model as fundamental steps towards the development of flexible risk assessment approach regarding cloud consumers.

Keywords: Cloud computing, risk assessment model, multi-agent system, AHP model, cloud consumer.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2256
779 E-learning and m-learning: Africa-s Search for a Suitable Concept in the Era of Cloud Computing?

Authors: J. Seke Mboungou Mouyabi

Abstract:

This paper is an exploration of the conceptual confusion between E-learning and M-learning particularly in Africa. Section I provides a background to the development of E-learning and M-learning. Section II focuses on the conceptual analysis as it applies to Africa. It is with an investigative and expansive mind that this paper is elaborated to respond to a profound question of the suitability of the concepts in a particular era in Africa. The aim of this paper is therefore to shed light on which concept best suits the unique situation of Africa in the era of cloud computing.

Keywords: African Concept, Cloud computing, E-learning, Mlearning

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2042
778 A Simple User Administration View of Computing Clusters

Authors: Valeria M. Bastos, Myrian A. Costa, Matheus Ambrozio, Nelson F. F. Ebecken

Abstract:

In this paper a very simple and effective user administration view of computing clusters systems is implemented in order of friendly provide the configuration and monitoring of distributed application executions. The user view, the administrator view, and an internal control module create an illusionary management environment for better system usability. The architecture, properties, performance, and the comparison with others software for cluster management are briefly commented.

Keywords: Big data, computing clusters, administration view, user view.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1562
777 Spatial Services in Cloud Environment

Authors: Sašo Pečnik, Borut Žalik

Abstract:

Cloud Computing is an approach that provides computation and storage services on-demand to clients over the network, independent of device and location. In the last few years, cloud computing became a trend in information technology with many companies that transfer their business processes and applications in the cloud. Cloud computing with service oriented architecture has contributed to rapid development of Geographic Information Systems. Open Geospatial Consortium with its standards provides the interfaces for hosted spatial data and GIS functionality to integrated GIS applications. Furthermore, with the enormous processing power, clouds provide efficient environment for data intensive applications that can be performed efficiently, with higher precision, and greater reliability. This paper presents our work on the geospatial data services within the cloud computing environment and its technology. A cloud computing environment with the strengths and weaknesses of the geographic information system will be introduced. The OGC standards that solve our application interoperability are highlighted. Finally, we outline our system architecture with utilities for requesting and invoking our developed data intensive applications as a web service.

Keywords: Cloud Computing, Geographic Information System, Open Geospatial Consortium, Interoperability, Spatial data, Web- Services.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1711
776 An Energy-Efficient Model of Integrating Telehealth IoT Devices with Fog and Cloud Computing-Based Platform

Authors: Yunyong Guo, Sudhakar Ganti, Bryan Guo

Abstract:

The rapid growth of telehealth Internet of Things (IoT) devices has raised concerns about energy consumption and efficient data processing. This paper presents an energy-efficient model that integrates telehealth IoT devices with a fog and cloud computing-based platform, offering a sustainable and robust solution to overcome these challenges. Our model employs fog computing as a localized data processing layer while leveraging cloud computing for resource-intensive tasks, significantly reducing energy consumption. We incorporate adaptive energy-saving strategies. Simulation analysis validates our approach's effectiveness in enhancing energy efficiency for telehealth IoT systems integrated with localized fog nodes and both private and public cloud infrastructures. Future research will focus on further optimization of the energy-saving model, exploring additional functional enhancements, and assessing its broader applicability in other healthcare and industry sectors.

Keywords: Energy-efficient, fog computing, IoT, telehealth.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 151
775 Impact of Extended Enterprise Resource Planning in the Context of Cloud Computing on Industries and Organizations

Authors: Gholamreza Momenzadeh, Forough Nematolahi

Abstract:

The Extended Enterprise Resource Planning (ERPII) system usually requires massive amounts of storage space, powerful servers, and large upfront and ongoing investments to purchase and manage the software and the related hardware which are not affordable for organizations. In recent decades, organizations prefer to adapt their business structures with new technologies for remaining competitive in the world economy. Therefore, cloud computing (which is one of the tools of information technology (IT)) is a modern system that reveals the next-generation application architecture. Also, cloud computing has had some advantages that reduce costs in many ways such as: lower upfront costs for all computing infrastructure and lower cost of maintaining and supporting. On the other hand, traditional ERPII is not responding for huge amounts of data and relations between the organizations. In this study, based on a literature study, ERPII is investigated in the context of cloud computing where the organizations operate more efficiently. Also, ERPII conditions have a response to needs of organizations in large amounts of data and relations between the organizations.

Keywords: Extended enterprise resource planning, cloud computing, business process, enterprise information integration.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 979
774 Comparative Study of Evolutionary Model and Clustering Methods in Circuit Partitioning Pertaining to VLSI Design

Authors: K. A. Sumitra Devi, N. P. Banashree, Annamma Abraham

Abstract:

Partitioning is a critical area of VLSI CAD. In order to build complex digital logic circuits its often essential to sub-divide multi -million transistor design into manageable Pieces. This paper looks at the various partitioning techniques aspects of VLSI CAD, targeted at various applications. We proposed an evolutionary time-series model and a statistical glitch prediction system using a neural network with selection of global feature by making use of clustering method model, for partitioning a circuit. For evolutionary time-series model, we made use of genetic, memetic & neuro-memetic techniques. Our work focused in use of clustering methods - K-means & EM methodology. A comparative study is provided for all techniques to solve the problem of circuit partitioning pertaining to VLSI design. The performance of all approaches is compared using benchmark data provided by MCNC standard cell placement benchmark net lists. Analysis of the investigational results proved that the Neuro-memetic model achieves greater performance then other model in recognizing sub-circuits with minimum amount of interconnections between them.

Keywords: VLSI, circuit partitioning, memetic algorithm, genetic algorithm.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1637
773 An Expert System Designed to Be Used with MOEAs for Efficient Portfolio Selection

Authors: K. Metaxiotis, K. Liagkouras

Abstract:

This study presents an Expert System specially designed to be used with Multiobjective Evolutionary Algorithms (MOEAs) for the solution of the portfolio selection problem. The validation of the proposed hybrid System is done by using data sets from Hang Seng 31 in Hong Kong, DAX 100 in Germany and FTSE 100 in UK. The performance of the proposed system is assessed in comparison with the Non-dominated Sorting Genetic Algorithm II (NSGAII). The evaluation of the performance is based on different performance metrics that evaluate both the proximity of the solutions to the Pareto front and their dispersion on it. The results show that the proposed hybrid system is efficient for the solution of this kind of problems.

Keywords: Expert Systems, Multiobjective optimization, Evolutionary Algorithms, Portfolio Selection.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1769
772 AMBICOM: An Ambient Computing Middleware Architecture for Heterogeneous Environments

Authors: Ekrem Aksoy, Nihat Adar, Selçuk Canbek

Abstract:

Ambient Computing or Ambient Intelligence (AmI) is emerging area in computer science aiming to create intelligently connected environments and Internet of Things. In this paper, we propose communication middleware architecture for AmI. This middleware architecture addresses problems of communication, networking, and abstraction of applications, although there are other aspects (e.g. HCI and Security) within general AmI framework. Within this middleware architecture, any application developer might address HCI and Security issues with extensibility features of this platform.

Keywords: AmI, ambient computing, middleware, distributedsystems, software-defined networking.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1695