Search results for: Power network
5200 Retaining Users in a Commercially-Supported Social Network
Authors: Sasiphan Nitayaprapha
Abstract:
A commercially-supported social network has become an emerging channel for an organization to communicate with and provide services to customers. The success of the commercially-supported social network depends on the ability of the organization to keep the customers in participating in the network. Drawing from the theories of information adoption, information systems continuance, and web usability, the author develops a model to explore how a commercially-supported social network can encourage customers to continue participating and using the information in the network. The theoretical model will be proved through an online survey of customers using the commercially-supported social networking sites of several high technology companies operating in the same sector. The result will be compared with previous studies to learn about the explanatory power of the research model, and to identify the main factors determining users’ intention to continue using a commercially-supported social network. Theoretical and practical implications and limitations are discussed.
Keywords: Social network, Information adoption, Information systems continuance, Web usability, User satisfaction.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 18955199 Photonic Crystal Waveguide 1x3 Flexible Power Splitter for Optical Network
Authors: Jyothi Digge, B. U. Rindhe, S. K. Narayankhedkar
Abstract:
A compact 1x3 power splitter based on Photonic Crystal Waveguides (PCW) with flexible power splitting ratio is presented in this paper. Multimode interference coupler (MMI) is integrated with PCW. The device size reduction compared with the conventional MMI power splitter is attributed to the large dispersion of the PCW. Band Solve tool is used to calculate the band structure of PCW. Finite Difference Time Domain (FDTD) method is adopted to simulate the relevant structure at 1550nm wavelength. The device is polarization insensitive and allows the control of output (o/p) powers within certain percentage points for both polarizations.Keywords: Dispersion, MMI Coupler, Photonic Bandgap, Power Splitter.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 18075198 Distance Transmission Line Protection Based on Radial Basis Function Neural Network
Authors: Anant Oonsivilai, Sanom Saichoomdee
Abstract:
To determine the presence and location of faults in a transmission by the adaptation of protective distance relay based on the measurement of fixed settings as line impedance is achieved by several different techniques. Moreover, a fast, accurate and robust technique for real-time purposes is required for the modern power systems. The appliance of radial basis function neural network in transmission line protection is demonstrated in this paper. The method applies the power system via voltage and current signals to learn the hidden relationship presented in the input patterns. It is experiential that the proposed technique is competent to identify the particular fault direction more speedily. System simulations studied show that the proposed approach is able to distinguish the direction of a fault on a transmission line swiftly and correctly, therefore suitable for the real-time purposes.
Keywords: radial basis function neural network, transmission lines protection, relaying, power system.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 23635197 An Analysis of Blackouts for Electric Power Transmission Systems
Authors: Karamitsos Ioannis, Orfanidis Konstantinos
Abstract:
In this paper an analysis of blackouts in electric power transmission systems is implemented using a model and studied in simple networks with a regular topology. The proposed model describes load demand and network improvements evolving on a slow timescale as well as the fast dynamics of cascading overloads and outages.Keywords: Blackout, Generator, Load, Power Load.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 14695196 An Improved Cuckoo Search Algorithm for Voltage Stability Enhancement in Power Transmission Networks
Authors: Reza Sirjani, Nobosse Tafem Bolan
Abstract:
Many optimization techniques available in the literature have been developed in order to solve the problem of voltage stability enhancement in power systems. However, there are a number of drawbacks in the use of previous techniques aimed at determining the optimal location and size of reactive compensators in a network. In this paper, an Improved Cuckoo Search algorithm is applied as an appropriate optimization algorithm to determine the optimum location and size of a Static Var Compensator (SVC) in a transmission network. The main objectives are voltage stability improvement and total cost minimization. The results of the presented technique are then compared with other available optimization techniques.
Keywords: Cuckoo search algorithm, optimization, power system, var compensators, voltage stability.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 13475195 Neural Network Optimal Power Flow(NN-OPF) based on IPSO with Developed Load Cluster Method
Authors: Mat Syai'in, Adi Soeprijanto
Abstract:
An Optimal Power Flow based on Improved Particle Swarm Optimization (OPF-IPSO) with Generator Capability Curve Constraint is used by NN-OPF as a reference to get pattern of generator scheduling. There are three stages in Designing NN-OPF. The first stage is design of OPF-IPSO with generator capability curve constraint. The second stage is clustering load to specific range and calculating its index. The third stage is training NN-OPF using constructive back propagation method. In training process total load and load index used as input, and pattern of generator scheduling used as output. Data used in this paper is power system of Java-Bali. Software used in this simulation is MATLAB.Keywords: Optimal Power Flow, Generator Capability Curve, Improved Particle Swarm Optimization, Neural Network
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 19505194 Application of STATCOM-SMES Compensator for Power System Dynamic Performance Improvement
Authors: Reza Sedaghati, Mojtaba Hakimzadeh, Mohammad Hasan Raouf, Mostafa Mirzadeh
Abstract:
Nowadays the growth of distributed generation within the bulk power system is feasible by using the optimal control of the transmission lines power flow. Static Synchronous Compensators (STATCOM) is effective for improving voltage stability but it can only exchange reactive power with the power grid. The integration of Superconducting Magnetic Energy Storage (SMES) with a STATCOM can extend the traditional STATCOM capabilities to four-quadrant bulk power system power flow control and providing exchange both the active and reactive power related to the STATCOM with the ac network. This paper shows how the SMES system can be connected to the ac system via the DC bus of a STATCOM and also analyzes how the integration of STATCOM and SMES allows the bus voltage regulation and power oscillation damping (POD) to be achieved simultaneously. The dynamic performance of the integrated STATCOM-SMES is evaluated through simulation by using PSCAD/EMTDC software and the compensation effectiveness of this integrated compensator is shown.
Keywords: STATCOM-SMES compensator, Power Oscillation Damping (POD), stabilizing, signal, voltage.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 28495193 Generator Capability Curve Constraint for PSO Based Optimal Power Flow
Authors: Mat Syai'in, Adi Soeprijanto, Takashi Hiyama
Abstract:
An optimal power flow (OPF) based on particle swarm optimization (PSO) was developed with more realistic generator security constraint using the capability curve instead of only Pmin/Pmax and Qmin/Qmax. Neural network (NN) was used in designing digital capability curve and the security check algorithm. The algorithm is very simple and flexible especially for representing non linear generation operation limit near steady state stability limit and under excitation operation area. In effort to avoid local optimal power flow solution, the particle swarm optimization was implemented with enough widespread initial population. The objective function used in the optimization process is electric production cost which is dominated by fuel cost. The proposed method was implemented at Java Bali 500 kV power systems contain of 7 generators and 20 buses. The simulation result shows that the combination of generator power output resulted from the proposed method was more economic compared with the result using conventional constraint but operated at more marginal operating point.Keywords: Optimal Power Flow, Generator Capability Curve, Particle Swarm Optimization, Neural Network
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 25735192 Voltage Sag Characteristics during Symmetrical and Asymmetrical Faults
Authors: Ioannis Binas, Marios Moschakis
Abstract:
Electrical faults in transmission and distribution networks can have great impact on the electrical equipment used. Fault effects depend on the characteristics of the fault as well as the network itself. It is important to anticipate the network’s behavior during faults when planning a new equipment installation, as well as troubleshooting. Moreover, working backwards, we could be able to estimate the characteristics of the fault when checking the perceived effects. Different transformer winding connections dominantly used in the Greek power transfer and distribution networks and the effects of 1-phase to neutral, phase-to-phase, 2-phases to neutral and 3-phase faults on different locations of the network were simulated in order to present voltage sag characteristics. The study was performed on a generic network with three steps down transformers on two voltage level buses (one 150 kV/20 kV transformer and two 20 kV/0.4 kV). We found that during faults, there are significant changes both on voltage magnitudes and on phase angles. The simulations and short-circuit analysis were performed using the PSCAD simulation package. This paper presents voltage characteristics calculated for the simulated network, with different approaches on the transformer winding connections during symmetrical and asymmetrical faults on various locations.
Keywords: Phase angle shift, power quality, transformer winding connections, voltage sag propagation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 8145191 Re-Design of Load Shedding Schemes of the Kosovo Power System
Authors: A.Gjukaj, G.Kabashi, G.Pula, N.Avdiu, B.Prebreza
Abstract:
This paper discusses aspects of re-design of loadshedding schemes with respect to actual developments in the Kosovo power system. Load-shedding is a type of emergency control that is designed to ensure system stability by reducing power system load to match the power generation supply. This paper presents a new adaptive load-shedding scheme that provides emergency protection against excess frequency decline, in cases when the Kosovo power system might be disconnected from the regional transmission network. The proposed load-shedding scheme uses the local frequency rate information to adapt the load-shedding pattern to suit the size and location of the occurring disturbance. The proposed scheme is tested in a software simulation on a large scale PSS/E model which represents nine power system areas of Southeast Europe including the Kosovo power system.Keywords: About Load Shedding, Power System Transient, PSS/E Dynamic Simulation, Under-frequency Protection
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 27645190 WDM-Based Storage Area Network (SAN) for Disaster Recovery Operations
Authors: Sandeep P. Abhang, Girish V. Chowdhay
Abstract:
This paper proposes a Wavelength Division Multiplexing (WDM) technology based Storage Area Network (SAN) for all type of Disaster recovery operation. It considers recovery when all paths failure in the network as well as the main SAN site failure also the all backup sites failure by the effect of natural disasters such as earthquakes, fires and floods, power outage, and terrorist attacks, as initially SAN were designed to work within distance limited environments[2]. Paper also presents a NEW PATH algorithm when path failure occurs. The simulation result and analysis is presented for the proposed architecture with performance consideration.Keywords: SAN, WDM, FC, Ring, IP, network load, iSCSI, miles, disaster.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 19455189 Optimization of Transmission Lines Loading in TNEP Using Decimal Codification Based GA
Authors: H. Shayeghi, M. Mahdavi
Abstract:
Transmission network expansion planning (TNEP) is a basic part of power system planning that determines where, when and how many new transmission lines should be added to the network. Up till now, various methods have been presented to solve the static transmission network expansion planning (STNEP) problem. But in all of these methods, lines adequacy rate has not been considered at the end of planning horizon, i.e., expanded network misses adequacy after some times and needs to be expanded again. In this paper, expansion planning has been implemented by merging lines loading parameter in the STNEP and inserting investment cost into the fitness function constraints using genetic algorithm. Expanded network will possess a maximum adequacy to provide load demand and also the transmission lines overloaded later. Finally, adequacy index could be defined and used to compare some designs that have different investment costs and adequacy rates. In this paper, the proposed idea has been tested on the Garvers network. The results show that the network will possess maximum efficiency economically.
Keywords: Adequacy Optimization, Transmission Expansion Planning, DCGA.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 18105188 Comparative Study of Bending Angle in Laser Forming Process Using Artificial Neural Network and Fuzzy Logic System
Authors: M. Hassani, Y. Hassani, N. Ajudanioskooei, N. N. Benvid
Abstract:
Laser Forming process as a non-contact thermal forming process is widely used to forming and bending of metallic and non-metallic sheets. In this process, according to laser irradiation along a specific path, sheet is bent. One of the most important output parameters in laser forming is bending angle that depends on process parameters such as physical and mechanical properties of materials, laser power, laser travel speed and the number of scan passes. In this paper, Artificial Neural Network and Fuzzy Logic System were used to predict of bending angle in laser forming process. Inputs to these models were laser travel speed and laser power. The comparison between artificial neural network and fuzzy logic models with experimental results has been shown both of these models have high ability to prediction of bending angles with minimum errors.
Keywords: Artificial neural network, bending angle, fuzzy logic, laser forming.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 9605187 Mapping Semantic Networks to Undirected Networks
Authors: Marko A. Rodriguez
Abstract:
There exists an injective, information-preserving function that maps a semantic network (i.e a directed labeled network) to a directed network (i.e. a directed unlabeled network). The edge label in the semantic network is represented as a topological feature of the directed network. Also, there exists an injective function that maps a directed network to an undirected network (i.e. an undirected unlabeled network). The edge directionality in the directed network is represented as a topological feature of the undirected network. Through function composition, there exists an injective function that maps a semantic network to an undirected network. Thus, aside from space constraints, the semantic network construct does not have any modeling functionality that is not possible with either a directed or undirected network representation. Two proofs of this idea will be presented. The first is a proof of the aforementioned function composition concept. The second is a simpler proof involving an undirected binary encoding of a semantic network.Keywords: general-modeling, multi-relational networks, semantic networks
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 14405186 Implementing a Prototype System for Power Facility Management using RFID/WSN
Authors: Young-Il Kim, Bong-Jae Yi, Jae-Ju Song, Jin-Ho Shin, Jung-Il Lee
Abstract:
Firstly, research and development on RFID focuses on manufacturing and retail sectors, because it can improve supply chain efficiency. But, now a variety of field is considered the next research area for Radio Frequency Identification (RFID). Although RFID is infancy, RFID technology has great potential in power industry to significantly reduce cost, and improve quality of power supply. To complement the limitation of RFID, we adopt the WSN (Wireless Sensor Network) technology. However, relevant experience is limited, the challenge will be to derive requirement from business practice and to determine whether it is possible or not. To explore this issue, we conduct a case study on implementing power facility management system using RFID/WSN in Korea Electric Power Corporation (KEPCO). In this paper we describe requirement from power industry. And we introduce design and implementation of the test bed.Keywords: Power Facility Management, RFID/WSN, Transmission Tower, Underground Tunnel, ZigBee.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 18995185 An efficient Activity Network Reduction Algorithm based on the Label Correcting Tracing Algorithm
Authors: Weng Ming Chu
Abstract:
When faced with stochastic networks with an uncertain duration for their activities, the securing of network completion time becomes problematical, not only because of the non-identical pdf of duration for each node, but also because of the interdependence of network paths. As evidenced by Adlakha & Kulkarni [1], many methods and algorithms have been put forward in attempt to resolve this issue, but most have encountered this same large-size network problem. Therefore, in this research, we focus on network reduction through a Series/Parallel combined mechanism. Our suggested algorithm, named the Activity Network Reduction Algorithm (ANRA), can efficiently transfer a large-size network into an S/P Irreducible Network (SPIN). SPIN can enhance stochastic network analysis, as well as serve as the judgment of symmetry for the Graph Theory.Keywords: Series/Parallel network, Stochastic network, Network reduction, Interdictive Graph, Complexity Index.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 13785184 Integrated Energy-Aware Mechanism for MANETs using On-demand Routing
Authors: M. Tamilarasi, T.G. Palanivelu
Abstract:
Mobile Ad Hoc Networks (MANETs) are multi-hop wireless networks in which all nodes cooperatively maintain network connectivity. In such a multi-hop wireless network, every node may be required to perform routing in order to achieve end-to-end communication among nodes. These networks are energy constrained as most ad hoc mobile nodes today operate with limited battery power. Hence, it is important to minimize the energy consumption of the entire network in order to maximize the lifetime of ad hoc networks. In this paper, a mechanism involving the integration of load balancing approach and transmission power control approach is introduced to maximize the life-span of MANETs. The mechanism is applied on Ad hoc On-demand Vector (AODV) protocol to make it as energy aware AODV (EA_AODV). The simulation is carried out using GloMoSim2.03 simulator. The results show that the proposed mechanism reduces the average required transmission energy per packet compared to the standard AODV.Keywords: energy aware routing, load balance, Mobile Ad HocNetworks, MANETs , on demand routing, transmission power control.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 19605183 Maximum Power Point Tracking by ANN Controller for a Standalone Photovoltaic System
Authors: K. Ranjani, M. Raja, B. Anitha
Abstract:
In this paper, ANN controller for maximum power point tracking of photovoltaic (PV) systems is proposed and PV modeling is discussed. Maximum power point tracking (MPPT) methods are used to maximize the PV array output power by tracking continuously the maximum power point. ANN controller with hill-climbing algorithm offers fast and accurate converging to the maximum operating point during steady-state and varying weather conditions compared to conventional hill-climbing. The proposed algorithm gives a good maximum power operation of the PV system. Simulation results obtained are presented and compared with the conventional hill-climbing algorithm. Simulation results show the effectiveness of the proposed technique.
Keywords: Artificial neural network (ANN), hill-climbing, maximum power-point tracking (MPPT), photovoltaic.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 31555182 A Study of Behavioral Phenomena Using ANN
Authors: Yudhajit Datta
Abstract:
Behavioral aspects of experience such as will power are rarely subjected to quantitative study owing to the numerous complexities involved. Will is a phenomenon that has puzzled humanity for a long time. It is a belief that will power of an individual affects the success achieved by them in life. It is also thought that a person endowed with great will power can overcome even the most crippling setbacks in life while a person with a weak will cannot make the most of life even the greatest assets. This study is an attempt to subject the phenomena of will to the test of an artificial neural network through a computational model. The claim being tested is that will power of an individual largely determines success achieved in life. It is proposed that data pertaining to success of individuals be obtained from an experiment and the phenomenon of will be incorporated into the model, through data generated recursively using a relation between will and success characteristic to the model. An artificial neural network trained using part of the data, could subsequently be used to make predictions regarding data points in the rest of the model. The procedure would be tried for different models and the model where the networks predictions are found to be in greatest agreement with the data would be selected; and used for studying the relation between success and will.
Keywords: Will Power, Success, ANN, Time Series Prediction, Sliding Window, Computational Model, Behavioral Phenomena.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 19285181 Security of Mobile Agent in Ad hoc Network using Threshold Cryptography
Authors: S.M. Sarwarul Islam Rizvi, Zinat Sultana, Bo Sun, Md. Washiqul Islam
Abstract:
In a very simple form a Mobile Agent is an independent piece of code that has mobility and autonomy behavior. One of the main advantages of using Mobile Agent in a network is - it reduces network traffic load. In an, ad hoc network Mobile Agent can be used to protect the network by using agent based IDS or IPS. Besides, to deploy dynamic software in the network or to retrieve information from network nodes Mobile Agent can be useful. But in an ad hoc network the Mobile Agent itself needs some security. Security services should be guaranteed both for Mobile Agent and for Agent Server. In this paper to protect the Mobile Agent and Agent Server in an ad hoc network we have proposed a solution which is based on Threshold Cryptography, a new vibe in the cryptographic world where trust is distributed among multiple nodes in the network.
Keywords: Ad hoc network, Mobile Agent, Security, Threats, Threshold Cryptography.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 19665180 Optimal Design of the Power Generation Network in California: Moving towards 100% Renewable Electricity by 2045
Authors: Wennan Long, Yuhao Nie, Yunan Li, Adam Brandt
Abstract:
To fight against climate change, California government issued the Senate Bill No. 100 (SB-100) in 2018 September, which aims at achieving a target of 100% renewable electricity by the end of 2045. A capacity expansion problem is solved in this case study using a binary quadratic programming model. The optimal locations and capacities of the potential renewable power plants (i.e., solar, wind, biomass, geothermal and hydropower), the phase-out schedule of existing fossil-based (nature gas) power plants and the transmission of electricity across the entire network are determined with the minimal total annualized cost measured by net present value (NPV). The results show that the renewable electricity contribution could increase to 85.9% by 2030 and reach 100% by 2035. Fossil-based power plants will be totally phased out around 2035 and solar and wind will finally become the most dominant renewable energy resource in California electricity mix.
Keywords: 100% renewable electricity, California, capacity expansion, binary quadratic programming.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 7315179 Load Modeling for Power Flow and Transient Stability Computer Studies at BAKHTAR Network
Authors: M. Sedighizadeh, A. Rezazadeh
Abstract:
A method has been developed for preparing load models for power flow and stability. The load modeling (LOADMOD) computer software transforms data on load class mix, composition, and characteristics into the from required for commonly–used power flow and transient stability simulation programs. Typical default data have been developed for load composition and characteristics. This paper defines LOADMOD software and describes the dynamic and static load modeling techniques used in this software and results of initial testing for BAKHTAR power system.Keywords: Load Modelling, Static, Power Flow.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 20635178 Neural Network Supervisory Proportional-Integral-Derivative Control of the Pressurized Water Reactor Core Power Load Following Operation
Authors: Derjew Ayele Ejigu, Houde Song, Xiaojing Liu
Abstract:
This work presents the particle swarm optimization trained neural network (PSO-NN) supervisory proportional integral derivative (PID) control method to monitor the pressurized water reactor (PWR) core power for safe operation. The proposed control approach is implemented on the transfer function of the PWR core, which is computed from the state-space model. The PWR core state-space model is designed from the neutronics, thermal-hydraulics, and reactivity models using perturbation around the equilibrium value. The proposed control approach computes the control rod speed to maneuver the core power to track the reference in a closed-loop scheme. The particle swarm optimization (PSO) algorithm is used to train the neural network (NN) and to tune the PID simultaneously. The controller performance is examined using integral absolute error, integral time absolute error, integral square error, and integral time square error functions, and the stability of the system is analyzed by using the Bode diagram. The simulation results indicated that the controller shows satisfactory performance to control and track the load power effectively and smoothly as compared to the PSO-PID control technique. This study will give benefit to design a supervisory controller for nuclear engineering research fields for control application.
Keywords: machine learning, neural network, pressurized water reactor, supervisory controller
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 5145177 Energy Efficient In-Network Data Processing in Sensor Networks
Authors: Prakash G L, Thejaswini M, S H Manjula, K R Venugopal, L M Patnaik
Abstract:
The Sensor Network consists of densely deployed sensor nodes. Energy optimization is one of the most important aspects of sensor application design. Data acquisition and aggregation techniques for processing data in-network should be energy efficient. Due to the cross-layer design, resource-limited and noisy nature of Wireless Sensor Networks(WSNs), it is challenging to study the performance of these systems in a realistic setting. In this paper, we propose optimizing queries by aggregation of data and data redundancy to reduce energy consumption without requiring all sensed data and directed diffusion communication paradigm to achieve power savings, robust communication and processing data in-network. To estimate the per-node power consumption POWERTossim mica2 energy model is used, which provides scalable and accurate results. The performance analysis shows that the proposed methods overcomes the existing methods in the aspects of energy consumption in wireless sensor networks.Keywords: Data Aggregation, Directed Diffusion, Partial Aggregation, Packet Merging, Query Plan.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 18325176 Influence of Power Flow Controller on Energy Transaction Charges in Restructured Power System
Authors: Manisha Dubey, Gaurav Gupta, Anoop Arya
Abstract:
The demand for power supply increases day by day in developing countries like India henceforth demand of reactive power support in the form of ancillary services provider also has been increased. The multi-line and multi-type Flexible alternating current transmission system (FACTS) controllers are playing a vital role to regulate power flow through the transmission line. Unified power flow controller and interline power flow controller can be utilized to control reactive power flow through the transmission line. In a restructured power system, the demand of such controller is being popular due to their inherent capability. The transmission pricing by using reactive power cost allocation through modified matrix methodology has been proposed. The FACTS technologies have quite costly assembly, so it is very useful to apportion the expenses throughout the restructured electricity industry. Therefore, in this work, after embedding the FACTS devices into load flow, the impact on the costs allocated to users in fraction to the transmission framework utilization has been analyzed. From the obtained results, it is clear that the total cost recovery is enhanced towards the Reactive Power flow through the different transmission line for 5 bus test system. The fair pricing policy towards reactive power can be achieved by the proposed method incorporating FACTS controller towards cost recovery of the transmission network.
Keywords: Inter line power flow controller, Transmission Pricing, Unified power flow controller, cost allocation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 6855175 Heuristic Optimization Techniques for Network Reconfiguration in Distribution System
Authors: A. Charlangsut, N. Rugthaicharoencheep, S. Auchariyamet
Abstract:
Network reconfiguration is an operation to modify the network topology. The implementation of network reconfiguration has many advantages such as loss minimization, increasing system security and others. In this paper, two topics about the network reconfiguration in distribution system are briefly described. The first topic summarizes its impacts while the second explains some heuristic optimization techniques for solving the network reconfiguration problem.Keywords: Network Reconfiguration, Optimization Techniques, Distribution System
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 27565174 Performance Analysis of Bluetooth Low Energy Mesh Routing Algorithm in Case of Disaster Prediction
Authors: Asmir Gogic, Aljo Mujcic, Sandra Ibric, Nermin Suljanovic
Abstract:
Ubiquity of natural disasters during last few decades have risen serious questions towards the prediction of such events and human safety. Every disaster regardless its proportion has a precursor which is manifested as a disruption of some environmental parameter such as temperature, humidity, pressure, vibrations and etc. In order to anticipate and monitor those changes, in this paper we propose an overall system for disaster prediction and monitoring, based on wireless sensor network (WSN). Furthermore, we introduce a modified and simplified WSN routing protocol built on the top of the trickle routing algorithm. Routing algorithm was deployed using the bluetooth low energy protocol in order to achieve low power consumption. Performance of the WSN network was analyzed using a real life system implementation. Estimates of the WSN parameters such as battery life time, network size and packet delay are determined. Based on the performance of the WSN network, proposed system can be utilized for disaster monitoring and prediction due to its low power profile and mesh routing feature.Keywords: Bluetooth low energy, disaster prediction, mesh routing protocols, wireless sensor networks.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 28575173 Analysis of Transformer Reactive Power Fluctuations during Adverse Space Weather
Authors: Patience Muchini, Electdom Matandiroya, Emmanuel Mashonjowa
Abstract:
A ground-end manifestation of space weather phenomena is known as geomagnetically induced currents (GICs). GICs flow along the electric power transmission cables connecting the transformers and between the grounding points of power transformers during significant geomagnetic storms. Zimbabwe has no study that notes if grid failures have been caused by GICs. Research and monitoring are needed to investigate this possible relationship purpose of this paper is to characterize GICs with a power grid network. This paper analyses data collected, which are geomagnetic data, which include the Kp index, Disturbance storm time (DST) index, and the G-Scale from geomagnetic storms and also analyses power grid data, which includes reactive power, relay tripping, and alarms from high voltage substations and then correlates the data. This research analysis was first theoretically analyzed by studying geomagnetic parameters and then experimented upon. To correlate, MATLAB was used as the basic software to analyze the data. Latitudes of the substations were also brought into scrutiny to note if they were an impact due to the location as low latitudes areas like most parts of Zimbabwe, there are less severe geomagnetic variations. Based on theoretical and graphical analysis, it has been proven that there is a slight relationship between power system failures and GICs. Further analyses can be done by implementing measuring instruments to measure any currents in the grounding of high-voltage transformers when geomagnetic storms occur. Mitigation measures can then be developed to minimize the susceptibility of the power network to GICs.
Keywords: Adverse space weather, DST index, geomagnetically induced currents, Kp index, reactive power.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1575172 Efficient System for Speech Recognition using General Regression Neural Network
Authors: Abderrahmane Amrouche, Jean Michel Rouvaen
Abstract:
In this paper we present an efficient system for independent speaker speech recognition based on neural network approach. The proposed architecture comprises two phases: a preprocessing phase which consists in segmental normalization and features extraction and a classification phase which uses neural networks based on nonparametric density estimation namely the general regression neural network (GRNN). The relative performances of the proposed model are compared to the similar recognition systems based on the Multilayer Perceptron (MLP), the Recurrent Neural Network (RNN) and the well known Discrete Hidden Markov Model (HMM-VQ) that we have achieved also. Experimental results obtained with Arabic digits have shown that the use of nonparametric density estimation with an appropriate smoothing factor (spread) improves the generalization power of the neural network. The word error rate (WER) is reduced significantly over the baseline HMM method. GRNN computation is a successful alternative to the other neural network and DHMM.Keywords: Speech Recognition, General Regression NeuralNetwork, Hidden Markov Model, Recurrent Neural Network, ArabicDigits.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 21835171 Multiple Peaks Tracking Algorithm using Particle Swarm Optimization Incorporated with Artificial Neural Network
Authors: Mei Shan Ngan, Chee Wei Tan
Abstract:
Due to the non-linear characteristics of photovoltaic (PV) array, PV systems typically are equipped with the capability of maximum power point tracking (MPPT) feature. Moreover, in the case of PV array under partially shaded conditions, hotspot problem will occur which could damage the PV cells. Partial shading causes multiple peaks in the P-V characteristic curves. This paper presents a hybrid algorithm of Particle Swarm Optimization (PSO) and Artificial Neural Network (ANN) MPPT algorithm for the detection of global peak among the multiple peaks in order to extract the true maximum energy from PV panel. The PV system consists of PV array, dc-dc boost converter controlled by the proposed MPPT algorithm and a resistive load. The system was simulated using MATLAB/Simulink package. The simulation results show that the proposed algorithm performs well to detect the true global peak power. The results of the simulations are analyzed and discussed.Keywords: Photovoltaic (PV), Partial Shading, Maximum Power Point Tracking (MPPT), Particle Swarm Optimization (PSO) and Artificial Neural Network (ANN)
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3756