Search results for: Poisson Regression model.
7775 Application of Feed-Forward Neural Networks Autoregressive Models in Gross Domestic Product Prediction
Authors: Ε. Giovanis
Abstract:
In this paper we present an autoregressive model with neural networks modeling and standard error backpropagation algorithm training optimization in order to predict the gross domestic product (GDP) growth rate of four countries. Specifically we propose a kind of weighted regression, which can be used for econometric purposes, where the initial inputs are multiplied by the neural networks final optimum weights from input-hidden layer after the training process. The forecasts are compared with those of the ordinary autoregressive model and we conclude that the proposed regression-s forecasting results outperform significant those of autoregressive model in the out-of-sample period. The idea behind this approach is to propose a parametric regression with weighted variables in order to test for the statistical significance and the magnitude of the estimated autoregressive coefficients and simultaneously to estimate the forecasts.Keywords: Autoregressive model, Error back-propagation Feed-Forward neural networks, , Gross Domestic Product
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 14197774 Statistical Modeling of Mobile Fading Channels Based on Triply Stochastic Filtered Marked Poisson Point Processes
Authors: Jihad S. Daba, J. P. Dubois
Abstract:
Understanding the statistics of non-isotropic scattering multipath channels that fade randomly with respect to time, frequency, and space in a mobile environment is very crucial for the accurate detection of received signals in wireless and cellular communication systems. In this paper, we derive stochastic models for the probability density function (PDF) of the shift in the carrier frequency caused by the Doppler Effect on the received illuminating signal in the presence of a dominant line of sight. Our derivation is based on a generalized Clarke’s and a two-wave partially developed scattering models, where the statistical distribution of the frequency shift is shown to be consistent with the power spectral density of the Doppler shifted signal.
Keywords: Doppler shift, filtered Poisson process, generalized Clark’s model, non-isotropic scattering, partially developed scattering, Rician distribution.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 8327773 Optimization of Slider Crank Mechanism Using Design of Experiments and Multi-Linear Regression
Authors: Galal Elkobrosy, Amr M. Abdelrazek, Bassuny M. Elsouhily, Mohamed E. Khidr
Abstract:
Crank shaft length, connecting rod length, crank angle, engine rpm, cylinder bore, mass of piston and compression ratio are the inputs that can control the performance of the slider crank mechanism and then its efficiency. Several combinations of these seven inputs are used and compared. The throughput engine torque predicted by the simulation is analyzed through two different regression models, with and without interaction terms, developed according to multi-linear regression using LU decomposition to solve system of algebraic equations. These models are validated. A regression model in seven inputs including their interaction terms lowered the polynomial degree from 3rd degree to 1st degree and suggested valid predictions and stable explanations.
Keywords: Design of experiments, regression analysis, SI Engine, statistical modeling.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 12517772 Categorical Data Modeling: Logistic Regression Software
Authors: Abdellatif Tchantchane
Abstract:
A Matlab based software for logistic regression is developed to enhance the process of teaching quantitative topics and assist researchers with analyzing wide area of applications where categorical data is involved. The software offers an option of performing stepwise logistic regression to select the most significant predictors. The software includes a feature to detect influential observations in data, and investigates the effect of dropping or misclassifying an observation on a predictor variable. The input data may consist either as a set of individual responses (yes/no) with the predictor variables or as grouped records summarizing various categories for each unique set of predictor variables' values. Graphical displays are used to output various statistical results and to assess the goodness of fit of the logistic regression model. The software recognizes possible convergence constraints when present in data, and the user is notified accordingly.
Keywords: Logistic regression, Matlab, Categorical data, Influential observation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 18817771 Speaker Independent Quranic Recognizer Basedon Maximum Likelihood Linear Regression
Authors: Ehab Mourtaga, Ahmad Sharieh, Mousa Abdallah
Abstract:
An automatic speech recognition system for the formal Arabic language is needed. The Quran is the most formal spoken book in Arabic, it is spoken all over the world. In this research, an automatic speech recognizer for Quranic based speakerindependent was developed and tested. The system was developed based on the tri-phone Hidden Markov Model and Maximum Likelihood Linear Regression (MLLR). The MLLR computes a set of transformations which reduces the mismatch between an initial model set and the adaptation data. It uses the regression class tree, as well as, estimates a set of linear transformations for the mean and variance parameters of a Gaussian mixture HMM system. The 30th Chapter of the Quran, with five of the most famous readers of the Quran, was used for the training and testing of the data. The chapter includes about 2000 distinct words. The advantages of using the Quranic verses as the database in this developed recognizer are the uniqueness of the words and the high level of orderliness between verses. The level of accuracy from the tested data ranged 68 to 85%.Keywords: Hidden Markov Model (HMM), MaximumLikelihood Linear Regression (MLLR), Quran, Regression ClassTree, Speech Recognition, Speaker-independent.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 19147770 Coverage Probability Analysis of WiMAX Network under Additive White Gaussian Noise and Predicted Empirical Path Loss Model
Authors: Chaudhuri Manoj Kumar Swain, Susmita Das
Abstract:
This paper explores a detailed procedure of predicting a path loss (PL) model and its application in estimating the coverage probability in a WiMAX network. For this a hybrid approach is followed in predicting an empirical PL model of a 2.65 GHz WiMAX network deployed in a suburban environment. Data collection, statistical analysis, and regression analysis are the phases of operations incorporated in this approach and the importance of each of these phases has been discussed properly. The procedure of collecting data such as received signal strength indicator (RSSI) through experimental set up is demonstrated. From the collected data set, empirical PL and RSSI models are predicted with regression technique. Furthermore, with the aid of the predicted PL model, essential parameters such as PL exponent as well as the coverage probability of the network are evaluated. This research work may assist in the process of deployment and optimisation of any cellular network significantly.
Keywords: WiMAX, RSSI, path loss, coverage probability, regression analysis.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 7057769 A Study of Panel Logit Model and Adaptive Neuro-Fuzzy Inference System in the Prediction of Financial Distress Periods
Authors: Ε. Giovanis
Abstract:
The purpose of this paper is to present two different approaches of financial distress pre-warning models appropriate for risk supervisors, investors and policy makers. We examine a sample of the financial institutions and electronic companies of Taiwan Security Exchange (TSE) market from 2002 through 2008. We present a binary logistic regression with paned data analysis. With the pooled binary logistic regression we build a model including more variables in the regression than with random effects, while the in-sample and out-sample forecasting performance is higher in random effects estimation than in pooled regression. On the other hand we estimate an Adaptive Neuro-Fuzzy Inference System (ANFIS) with Gaussian and Generalized Bell (Gbell) functions and we find that ANFIS outperforms significant Logit regressions in both in-sample and out-of-sample periods, indicating that ANFIS is a more appropriate tool for financial risk managers and for the economic policy makers in central banks and national statistical services.Keywords: ANFIS, Binary logistic regression, Financialdistress, Panel data
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 23417768 New Regression Model and I-Kaz Method for Online Cutting Tool Wear Monitoring
Authors: Jaharah A. Ghani, Muhammad Rizal, Ahmad Sayuti, Mohd Zaki Nuawi, Mohd Nizam Ab. Rahman, Che Hassan Che Haron
Abstract:
This study presents a new method for detecting the cutting tool wear based on the measured cutting force signals using the regression model and I-kaz method. The detection of tool wear was done automatically using the in-house developed regression model and 3D graphic presentation of I-kaz 3D coefficient during machining process. The machining tests were carried out on a CNC turning machine Colchester Master Tornado T4 in dry cutting condition, and Kistler 9255B dynamometer was used to measure the cutting force signals, which then stored and displayed in the DasyLab software. The progression of the cutting tool flank wear land (VB) was indicated by the amount of the cutting force generated. Later, the I-kaz was used to analyze all the cutting force signals from beginning of the cut until the rejection stage of the cutting tool. Results of the IKaz analysis were represented by various characteristic of I-kaz 3D coefficient and 3D graphic presentation. The I-kaz 3D coefficient number decreases when the tool wear increases. This method can be used for real time tool wear monitoring.Keywords: mathematical model, I-kaz method, tool wear
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 23987767 Two New Relative Efficiencies of Linear Weighted Regression
Authors: Shuimiao Wan, Chao Yuan, Baoguang Tian
Abstract:
In statistics parameter theory, usually the parameter estimations have two kinds, one is the least-square estimation (LSE), and the other is the best linear unbiased estimation (BLUE). Due to the determining theorem of minimum variance unbiased estimator (MVUE), the parameter estimation of BLUE in linear model is most ideal. But since the calculations are complicated or the covariance is not given, people are hardly to get the solution. Therefore, people prefer to use LSE rather than BLUE. And this substitution will take some losses. To quantize the losses, many scholars have presented many kinds of different relative efficiencies in different views. For the linear weighted regression model, this paper discusses the relative efficiencies of LSE of β to BLUE of β. It also defines two new relative efficiencies and gives their lower bounds.Keywords: Linear weighted regression, Relative efficiency, Lower bound, Parameter estimation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 21167766 Development of Regression Equation for Surface Finish and Analysis of Surface Integrity in EDM
Authors: Md. Ashikur Rahman Khan, M. M. Rahman
Abstract:
Electrical discharge machining (EDM) is a relatively modern machining process having distinct advantages over other machining processes and can machine Ti-alloys effectively. The present study emphasizes the features of the development of regression equation based on response surface methodology (RSM) for correlating the interactive and higher-order influences of machining parameters on surface finish of Titanium alloy Ti-6Al-4V. The process parameters selected in this study are discharge current, pulse on time, pulse off time and servo voltage. Machining has been accomplished using negative polarity of Graphite electrode. Analysis of variance is employed to ascertain the adequacy of the developed regression model. Experiments based on central composite of response surface method are carried out. Scanning electron microscopy (SEM) analysis was performed to investigate the surface topography of the EDMed job. The results evidence that the proposed regression equation can predict the surface roughness effectively. The lower ampere and short pulse on time yield better surface finish.
Keywords: Graphite electrode, regression model, response surface methodology, surface roughness.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 25457765 Advanced Stochastic Models for Partially Developed Speckle
Authors: Jihad S. Daba (Jean-Pierre Dubois), Philip Jreije
Abstract:
Speckled images arise when coherent microwave, optical, and acoustic imaging techniques are used to image an object, surface or scene. Examples of coherent imaging systems include synthetic aperture radar, laser imaging systems, imaging sonar systems, and medical ultrasound systems. Speckle noise is a form of object or target induced noise that results when the surface of the object is Rayleigh rough compared to the wavelength of the illuminating radiation. Detection and estimation in images corrupted by speckle noise is complicated by the nature of the noise and is not as straightforward as detection and estimation in additive noise. In this work, we derive stochastic models for speckle noise, with an emphasis on speckle as it arises in medical ultrasound images. The motivation for this work is the problem of segmentation and tissue classification using ultrasound imaging. Modeling of speckle in this context involves partially developed speckle model where an underlying Poisson point process modulates a Gram-Charlier series of Laguerre weighted exponential functions, resulting in a doubly stochastic filtered Poisson point process. The statistical distribution of partially developed speckle is derived in a closed canonical form. It is observed that as the mean number of scatterers in a resolution cell is increased, the probability density function approaches an exponential distribution. This is consistent with fully developed speckle noise as demonstrated by the Central Limit theorem.Keywords: Doubly stochastic filtered process, Poisson point process, segmentation, speckle, ultrasound
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 17437764 Performance Analysis of Adaptive LMS Filter through Regression Analysis using SystemC
Authors: Hyeong-Geon Lee, Jae-Young Park, Suk-ki Lee, Jong-Tae Kim
Abstract:
The LMS adaptive filter has several parameters which can affect their performance. From among these parameters, most papers handle the step size parameter for controlling the performance. In this paper, we approach three parameters: step-size, filter tap-size and filter form. The regression analysis is used for defining the relation between parameters and performance of LMS adaptive filter with using the system level simulation results. The results present that all parameters have performance trends in each own particular form, which can be estimated from equations drawn by regression analysis.
Keywords: System level model, adaptive LMS FIR filter, regression analysis, systemC.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 27997763 6D Posture Estimation of Road Vehicles from Color Images
Authors: Yoshimoto Kurihara, Tad Gonsalves
Abstract:
Currently, in the field of object posture estimation, there is research on estimating the position and angle of an object by storing a 3D model of the object to be estimated in advance in a computer and matching it with the model. However, in this research, we have succeeded in creating a module that is much simpler, smaller in scale, and faster in operation. Our 6D pose estimation model consists of two different networks – a classification network and a regression network. From a single RGB image, the trained model estimates the class of the object in the image, the coordinates of the object, and its rotation angle in 3D space. In addition, we compared the estimation accuracy of each camera position, i.e., the angle from which the object was captured. The highest accuracy was recorded when the camera position was 75°, the accuracy of the classification was about 87.3%, and that of regression was about 98.9%.
Keywords: AlexNet, Deep learning, image recognition, 6D posture estimation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 5887762 Statistical Analysis of the Impact of Maritime Transport Gross Domestic Product on Nigeria’s Economy
Authors: K. P. Oyeduntan, K. Oshinubi
Abstract:
Nigeria is referred as the ‘Giant of Africa’ due to high population, land mass and large economy. However, it still trails far behind many smaller economies in the continent in terms of maritime operations. As we have seen that the maritime industry is the sparkplug for national growth, because it houses the most crucial infrastructure that generates wealth for a nation, it is worrisome that a nation with six seaports lag in maritime activities. In this research, we have studied how the Gross Domestic Product (GDP) of the maritime transport influences the Nigerian economy. To do this, we applied Simple Linear Regression (SLR), Support Vector Machine (SVM), Polynomial Regression Model (PRM), Generalized Additive Model (GAM) and Generalized Linear Mixed Model (GLMM) to model the relationship between the nation’s Total GDP (TGDP) and the Maritime Transport GDP (MGDP) using a time series data of 20 years. The result showed that the MGDP is statistically significant to the Nigerian economy. Amongst the statistical tool applied, the PRM of order 4 describes the relationship better when compared to other methods. The recommendations presented in this study will guide policy makers and help improve the economy of Nigeria.
Keywords: Economy, GDP, maritime transport, port, regression.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1407761 Orthogonal Regression for Nonparametric Estimation of Errors-in-Variables Models
Authors: Anastasiia Yu. Timofeeva
Abstract:
Two new algorithms for nonparametric estimation of errors-in-variables models are proposed. The first algorithm is based on penalized regression spline. The spline is represented as a piecewise-linear function and for each linear portion orthogonal regression is estimated. This algorithm is iterative. The second algorithm involves locally weighted regression estimation. When the independent variable is measured with error such estimation is a complex nonlinear optimization problem. The simulation results have shown the advantage of the second algorithm under the assumption that true smoothing parameters values are known. Nevertheless the use of some indexes of fit to smoothing parameters selection gives the similar results and has an oversmoothing effect.
Keywords: Grade point average, orthogonal regression, penalized regression spline, locally weighted regression.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 21317760 A Multiple Linear Regression Model to Predict the Price of Cement in Nigeria
Authors: Kenneth M. Oba
Abstract:
This study investigated factors affecting the price of cement in Nigeria, and developed a mathematical model that can predict future cement prices. Cement is key in the Nigerian construction industry. The changes in price caused by certain factors could affect economic and infrastructural development; hence there is need for proper proactive planning. Secondary data were collected from published information on cement between 2014 and 2019. In addition, questionnaires were sent to some domestic cement retailers in Port Harcourt in Nigeria, to obtain the actual prices of cement between the same periods. The study revealed that the most critical factors affecting the price of cement in Nigeria are inflation rate, population growth rate, and Gross Domestic Product (GDP) growth rate. With the use of data from United Nations, International Monetary Fund, and Central Bank of Nigeria databases, amongst others, a Multiple Linear Regression model was formulated. The model was used to predict the price of cement for 2020-2025. The model was then tested with 95% confidence level, using a two-tailed t-test and an F-test, resulting in an R2 of 0.8428 and R2 (adj.) of 0.6069. The results of the tests and the correlation factors confirm the model to be fit and adequate. This study will equip researchers and stakeholders in the construction industry with information for planning, monitoring, and management of present and future construction projects that involve the use of cement.
Keywords: Cement price, multiple linear regression model, Nigerian Construction Industry, price prediction.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 7907759 Comparison of Neural Network and Logistic Regression Methods to Predict Xerostomia after Radiotherapy
Authors: Hui-Min Ting, Tsair-Fwu Lee, Ming-Yuan Cho, Pei-Ju Chao, Chun-Ming Chang, Long-Chang Chen, Fu-Min Fang
Abstract:
To evaluate the ability to predict xerostomia after radiotherapy, we constructed and compared neural network and logistic regression models. In this study, 61 patients who completed a questionnaire about their quality of life (QoL) before and after a full course of radiation therapy were included. Based on this questionnaire, some statistical data about the condition of the patients’ salivary glands were obtained, and these subjects were included as the inputs of the neural network and logistic regression models in order to predict the probability of xerostomia. Seven variables were then selected from the statistical data according to Cramer’s V and point-biserial correlation values and were trained by each model to obtain the respective outputs which were 0.88 and 0.89 for AUC, 9.20 and 7.65 for SSE, and 13.7% and 19.0% for MAPE, respectively. These parameters demonstrate that both neural network and logistic regression methods are effective for predicting conditions of parotid glands.
Keywords: NPC, ANN, logistic regression, xerostomia.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16357758 Elasto-Plastic Behavior of Rock during Temperature Drop
Authors: N. Reppas, Y. L. Gui, B. Wetenhall, C. T. Davie, J. Ma
Abstract:
A theoretical constitutive model describing the stress-strain behavior of rock subjected to different confining pressures is presented. A bounding surface plastic model with hardening effects is proposed which includes the effect of temperature drop. The bounding surface is based on a mapping rule and the temperature effect on rock is controlled by Poisson’s ratio. Validation of the results against available experimental data is also presented. The relation of deviatoric stress and axial strain is illustrated at different temperatures to analyze the effect of temperature decrease in terms of stiffness of the material.
Keywords: Bounding surface, cooling of rock, plasticity model, rock deformation, elasto-plastic behavior.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 9157757 Performance Analysis of Proprietary and Non-Proprietary Tools for Regression Testing Using Genetic Algorithm
Authors: K. Hema Shankari, R. Thirumalaiselvi, N. V. Balasubramanian
Abstract:
The present paper addresses to the research in the area of regression testing with emphasis on automated tools as well as prioritization of test cases. The uniqueness of regression testing and its cyclic nature is pointed out. The difference in approach between industry, with business model as basis, and academia, with focus on data mining, is highlighted. Test Metrics are discussed as a prelude to our formula for prioritization; a case study is further discussed to illustrate this methodology. An industrial case study is also described in the paper, where the number of test cases is so large that they have to be grouped as Test Suites. In such situations, a genetic algorithm proposed by us can be used to reconfigure these Test Suites in each cycle of regression testing. The comparison is made between a proprietary tool and an open source tool using the above-mentioned metrics. Our approach is clarified through several tables.Keywords: APFD metric, genetic algorithm, regression testing, RFT tool, test case prioritization, selenium tool.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 9167756 Currency Exchange Rate Forecasts Using Quantile Regression
Authors: Yuzhi Cai
Abstract:
In this paper, we discuss a Bayesian approach to quantile autoregressive (QAR) time series model estimation and forecasting. Together with a combining forecasts technique, we then predict USD to GBP currency exchange rates. Combined forecasts contain all the information captured by the fitted QAR models at different quantile levels and are therefore better than those obtained from individual models. Our results show that an unequally weighted combining method performs better than other forecasting methodology. We found that a median AR model can perform well in point forecasting when the predictive density functions are symmetric. However, in practice, using the median AR model alone may involve the loss of information about the data captured by other QAR models. We recommend that combined forecasts should be used whenever possible.Keywords: Exchange rate, quantile regression, combining forecasts.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 17767755 Comparison of Multivariate Adaptive Regression Splines and Random Forest Regression in Predicting Forced Expiratory Volume in One Second
Authors: P. V. Pramila, V. Mahesh
Abstract:
Pulmonary Function Tests are important non-invasive diagnostic tests to assess respiratory impairments and provides quantifiable measures of lung function. Spirometry is the most frequently used measure of lung function and plays an essential role in the diagnosis and management of pulmonary diseases. However, the test requires considerable patient effort and cooperation, markedly related to the age of patients resulting in incomplete data sets. This paper presents, a nonlinear model built using Multivariate adaptive regression splines and Random forest regression model to predict the missing spirometric features. Random forest based feature selection is used to enhance both the generalization capability and the model interpretability. In the present study, flow-volume data are recorded for N= 198 subjects. The ranked order of feature importance index calculated by the random forests model shows that the spirometric features FVC, FEF25, PEF, FEF25-75, FEF50 and the demographic parameter height are the important descriptors. A comparison of performance assessment of both models prove that, the prediction ability of MARS with the `top two ranked features namely the FVC and FEF25 is higher, yielding a model fit of R2= 0.96 and R2= 0.99 for normal and abnormal subjects. The Root Mean Square Error analysis of the RF model and the MARS model also shows that the latter is capable of predicting the missing values of FEV1 with a notably lower error value of 0.0191 (normal subjects) and 0.0106 (abnormal subjects) with the aforementioned input features. It is concluded that combining feature selection with a prediction model provides a minimum subset of predominant features to train the model, as well as yielding better prediction performance. This analysis can assist clinicians with a intelligence support system in the medical diagnosis and improvement of clinical care.
Keywords: FEV1, Multivariate Adaptive Regression Splines Pulmonary Function Test, Random Forest.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 37367754 A Model for Test Case Selection in the Software-Development Life Cycle
Authors: Adtha Lawanna
Abstract:
Software maintenance is one of the essential processes of Software-Development Life Cycle. The main philosophies of retaining software concern the improvement of errors, the revision of codes, the inhibition of future errors, and the development in piece and capacity. While the adjustment has been employing, the software structure has to be retested to an upsurge a level of assurance that it will be prepared due to the requirements. According to this state, the test cases must be considered for challenging the revised modules and the whole software. A concept of resolving this problem is ongoing by regression test selection such as the retest-all selections, random/ad-hoc selection and the safe regression test selection. Particularly, the traditional techniques concern a mapping between the test cases in a test suite and the lines of code it executes. However, there are not only the lines of code as one of the requirements that can affect the size of test suite but including the number of functions and faulty versions. Therefore, a model for test case selection is developed to cover those three requirements by the integral technique which can produce the smaller size of the test cases when compared with the traditional regression selection techniques.
Keywords: Software maintenance, regression test selection, test case.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16967753 A Model for Test Case Selection in the Software-Development Life Cycle
Authors: Adtha Lawanna
Abstract:
Software maintenance is one of the essential processes of Software-Development Life Cycle. The main philosophies of retaining software concern the improvement of errors, the revision of codes, the inhibition of future errors, and the development in piece and capacity. While the adjustment has been employing, the software structure has to be retested to an upsurge a level of assurance that it will be prepared due to the requirements. According to this state, the test cases must be considered for challenging the revised modules and the whole software. A concept of resolving this problem is ongoing by regression test selection such as the retest-all selections, random/ad-hoc selection and the safe regression test selection. Particularly, the traditional techniques concern a mapping between the test cases in a test suite and the lines of code it executes. However, there are not only the lines of code as one of the requirements that can affect the size of test suite but including the number of functions and faulty versions. Therefore, a model for test case selection is developed to cover those three requirements by the integral technique which can produce the smaller size of the test cases when compared with the traditional regression selection techniques.
Keywords: Software maintenance, regression test selection, test case.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15987752 Study on Optimal Control Strategy of PM2.5 in Wuhan, China
Authors: Qiuling Xie, Shanliang Zhu, Zongdi Sun
Abstract:
In this paper, we analyzed the correlation relationship among PM2.5 from other five Air Quality Indices (AQIs) based on the grey relational degree, and built a multivariate nonlinear regression equation model of PM2.5 and the five monitoring indexes. For the optimal control problem of PM2.5, we took the partial large Cauchy distribution of membership equation as satisfaction function. We established a nonlinear programming model with the goal of maximum performance to price ratio. And the optimal control scheme is given.
Keywords: Grey relational degree, multiple linear regression, membership function, nonlinear programming.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 14067751 Mathematical Modeling to Predict Surface Roughness in CNC Milling
Authors: Ab. Rashid M.F.F., Gan S.Y., Muhammad N.Y.
Abstract:
Surface roughness (Ra) is one of the most important requirements in machining process. In order to obtain better surface roughness, the proper setting of cutting parameters is crucial before the process take place. This research presents the development of mathematical model for surface roughness prediction before milling process in order to evaluate the fitness of machining parameters; spindle speed, feed rate and depth of cut. 84 samples were run in this study by using FANUC CNC Milling α-Τ14ιE. Those samples were randomly divided into two data sets- the training sets (m=60) and testing sets(m=24). ANOVA analysis showed that at least one of the population regression coefficients was not zero. Multiple Regression Method was used to determine the correlation between a criterion variable and a combination of predictor variables. It was established that the surface roughness is most influenced by the feed rate. By using Multiple Regression Method equation, the average percentage deviation of the testing set was 9.8% and 9.7% for training data set. This showed that the statistical model could predict the surface roughness with about 90.2% accuracy of the testing data set and 90.3% accuracy of the training data set.
Keywords: Surface roughness, regression analysis.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 21307750 Enhancing Spatial Interpolation: A Multi-Layer Inverse Distance Weighting Model for Complex Regression and Classification Tasks in Spatial Data Analysis
Authors: Yakin Hajlaoui, Richard Labib, Jean-Franc¸ois Plante, Michel Gamache
Abstract:
This study presents the Multi-Layer Inverse Distance Weighting Model (ML-IDW), inspired by the mathematical formulation of both multi-layer neural networks (ML-NNs) and Inverse Distance Weighting model (IDW). ML-IDW leverages ML-NNs’ processing capabilities, characterized by compositions of learnable non-linear functions applied to input features, and incorporates IDW’s ability to learn anisotropic spatial dependencies, presenting a promising solution for nonlinear spatial interpolation and learning from complex spatial data. We employ gradient descent and backpropagation to train ML-IDW. The performance of the proposed model is compared against conventional spatial interpolation models such as Kriging and standard IDW on regression and classification tasks using simulated spatial datasets of varying complexity. Our results highlight the efficacy of ML-IDW, particularly in handling complex spatial dataset, exhibiting lower mean square error in regression and higher F1 score in classification.
Keywords: Deep Learning, Multi-Layer Neural Networks, Gradient Descent, Spatial Interpolation, Inverse Distance Weighting.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 327749 Functional Decomposition Based Effort Estimation Model for Software-Intensive Systems
Authors: Nermin Sökmen
Abstract:
An effort estimation model is needed for softwareintensive projects that consist of hardware, embedded software or some combination of the two, as well as high level software solutions. This paper first focuses on functional decomposition techniques to measure functional complexity of a computer system and investigates its impact on system development effort. Later, it examines effects of technical difficulty and design team capability factors in order to construct the best effort estimation model. With using traditional regression analysis technique, the study develops a system development effort estimation model which takes functional complexity, technical difficulty and design team capability factors as input parameters. Finally, the assumptions of the model are tested.
Keywords: Functional complexity, functional decomposition, development effort, technical difficulty, design team capability, regression analysis.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 22777748 Application of Company Financial Crisis Early Warning Model- Use of “Financial Reference Database“
Authors: Chiung-ying Lee, Chia-hua Chang
Abstract:
In July 1, 2007, Taiwan Stock Exchange (TWSE) on market observation post system (MOPS) adds a new "Financial reference database" for investors to do investment reference. This database as a warning to public offering companies listed on the public financial information and it original within eight targets. In this paper, this database provided by the indicators for the application of company financial crisis early warning model verify that the database provided by the indicator forecast for the financial crisis, whether or not companies have a high accuracy rate as opposed to domestic and foreign scholars have positive results. There is use of Logistic Regression Model application of the financial early warning model, in which no joined back-conditions is the first model, joined it in is the second model, has been taken occurred in the financial crisis of companies to research samples and then business took place before the financial crisis point with T-1 and T-2 sample data to do positive analysis. The results show that this database provided the debt ratio and net per share for the best forecast variables.Keywords: Financial reference database, Financial early warning model, Logistic Regression.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 14267747 Climate Change in Albania and Its Effect on Cereal Yield
Abstract:
This study is focused on analyzing climate change in Albania and its potential effects on cereal yields. Initially, monthly temperature and rainfalls in Albania were studied for the period 1960-2021. Climacteric variables are important variables when trying to model cereal yield behavior, especially when significant changes in weather conditions are observed. For this purpose, in the second part of the study, linear and nonlinear models explaining cereal yield are constructed for the same period, 1960-2021. The multiple linear regression analysis and lasso regression method are applied to the data between cereal yield and each independent variable: average temperature, average rainfall, fertilizer consumption, arable land, land under cereal production, and nitrous oxide emissions. In our regression model, heteroscedasticity is not observed, data follow a normal distribution, and there is a low correlation between factors, so we do not have the problem of multicollinearity. Machine learning methods, such as Random Forest (RF), are used to predict cereal yield responses to climacteric and other variables. RF showed high accuracy compared to the other statistical models in the prediction of cereal yield. We found that changes in average temperature negatively affect cereal yield. The coefficients of fertilizer consumption, arable land, and land under cereal production are positively affecting production. Our results show that the RF method is an effective and versatile machine-learning method for cereal yield prediction compared to the other two methods: multiple linear regression and lasso regression method.
Keywords: Cereal yield, climate change, machine learning, multiple regression model, random forest.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2457746 A Statistical Model for the Geotechnical Parameters of Cement-Stabilised Hightown’s Soft Soil: A Case Stufy of Liverpool, UK
Authors: Hassnen M. Jafer, Khalid S. Hashim, W. Atherton, Ali W. Alattabi
Abstract:
This study investigates the effect of two important parameters (length of curing period and percentage of the added binder) on the strength of soil treated with OPC. An intermediate plasticity silty clayey soil with medium organic content was used in this study. This soft soil was treated with different percentages of a commercially available cement type 32.5-N. laboratory experiments were carried out on the soil treated with 0, 1.5, 3, 6, 9, and 12% OPC by the dry weight to determine the effect of OPC on the compaction parameters, consistency limits, and the compressive strength. Unconfined compressive strength (UCS) test was carried out on cement-treated specimens after exposing them to different curing periods (1, 3, 7, 14, 28, and 90 days). The results of UCS test were used to develop a non-linear multi-regression model to find the relationship between the predicted and the measured maximum compressive strength of the treated soil (qu). The results indicated that there was a significant improvement in the index of plasticity (IP) by treating with OPC; IP was decreased from 20.2 to 14.1 by using 12% of OPC; this percentage was enough to increase the UCS of the treated soil up to 1362 kPa after 90 days of curing. With respect to the statistical model of the predicted qu, the results showed that the regression coefficients (R2) was equal to 0.8534 which indicates a good reproducibility for the constructed model.Keywords: Cement admixtures, soft soil stabilisation, geotechnical parameters, unconfined compressive strength, multi-regression model.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1390