Search results for: Early adolescent
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 655

Search results for: Early adolescent

565 High-Intensity Nanosecond Pulsed Electric Field effects on Early Physiological Development in Arabidopsis thaliana

Authors: Wisuwat Songnuan, Phumin Kirawanich

Abstract:

The influences of pulsed electric fields on early physiological development in Arabidopsis thaliana were studied. Inside a 4-mm electroporation cuvette, pre-germination seeds were subjected to high-intensity, nanosecond electrical pulses generated using laboratory-assembled pulsed electric field system. The field strength was varied from 5 to 20 kV.cm-1 and the pulse width and the pulse number were maintained at 10 ns and 100, respectively, corresponding to the specific treatment energy from 300 J.kg-1 to 4.5 kJ.kg-1. Statistical analyses on the average leaf area 5 and 15 days following pulsed electric field treatment showed that the effects appear significant the second week after treatments with a maximum increase of 80% compared to the control (P < 0.01).

Keywords: Arabidopsis thaliana, full-wave analysis, leaf area, high-intensity nanosecond pulsed electric fields

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2194
564 Heterogenous Dimensional Super Resolution of 3D CT Scans Using Transformers

Authors: Helen Zhang

Abstract:

Accurate segmentation of the airways from CT scans is crucial for early diagnosis of lung cancer. However, the existing airway segmentation algorithms often rely on thin-slice CT scans, which can be inconvenient and costly. This paper presents a set of machine learning-based 3D super-resolution algorithms along heterogenous dimensions to improve the resolution of thicker CT scans to reduce the reliance on thin-slice scans. To evaluate the efficacy of the super-resolution algorithms, quantitative assessments using PSNR (Peak Signal to Noise Ratio) and SSIM (Structural SIMilarity index) were performed. The impact of super-resolution on airway segmentation accuracy is also studied. The proposed approach has the potential to make airway segmentation more accessible and affordable, thereby facilitating early diagnosis and treatment of lung cancer.

Keywords: 3D super-resolution, airway segmentation, thin-slice CT scans, machine learning.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 292
563 EEG-Based Screening Tool for School Student’s Brain Disorders Using Machine Learning Algorithms

Authors: Abdelrahman A. Ramzy, Bassel S. Abdallah, Mohamed E. Bahgat, Sarah M. Abdelkader, Sherif H. ElGohary

Abstract:

Attention-Deficit/Hyperactivity Disorder (ADHD), epilepsy, and autism affect millions of children worldwide, many of which are undiagnosed despite the fact that all of these disorders are detectable in early childhood. Late diagnosis can cause severe problems due to the late treatment and to the misconceptions and lack of awareness as a whole towards these disorders. Moreover, electroencephalography (EEG) has played a vital role in the assessment of neural function in children. Therefore, quantitative EEG measurement will be utilized as a tool for use in the evaluation of patients who may have ADHD, epilepsy, and autism. We propose a screening tool that uses EEG signals and machine learning algorithms to detect these disorders at an early age in an automated manner. The proposed classifiers used with epilepsy as a step taken for the work done so far, provided an accuracy of approximately 97% using SVM, Naïve Bayes and Decision tree, while 98% using KNN, which gives hope for the work yet to be conducted.

Keywords: ADHD, autism, epilepsy, EEG, SVM.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1005
562 Java Based Automatic Curriculum Generator for Children with Trisomy 21

Authors: E. Supriyanto, S. C. Seow

Abstract:

Early Intervention Program (EIP) is required to improve the overall development of children with Trisomy 21 (Down syndrome). In order to help trainer and parent in the implementation of EIP, a support system has been developed. The support system is able to screen data automatically, store and analyze data, generate individual EIP (curriculum) with optimal training duration and to generate training automatically. The system consists of hardware and software where the software has been implemented using Java language and Linux Fedora. The software has been tested to ensure the functionality and reliability. The prototype has been also tested in Down syndrome centers. Test result shows that the system is reliable to be used for generation of an individual curriculum which includes the training program to improve the motor, cognitive, and combination abilities of Down syndrome children under 6 years.

Keywords: Early intervention program (curriculum), Trisomy21, support system, Java.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1461
561 Designing Early Warning System: Prediction Accuracy of Currency Crisis by Using k-Nearest Neighbour Method

Authors: Nor Azuana Ramli, Mohd Tahir Ismail, Hooy Chee Wooi

Abstract:

Developing a stable early warning system (EWS) model that is capable to give an accurate prediction is a challenging task. This paper introduces k-nearest neighbour (k-NN) method which never been applied in predicting currency crisis before with the aim of increasing the prediction accuracy. The proposed k-NN performance depends on the choice of a distance that is used where in our analysis; we take the Euclidean distance and the Manhattan as a consideration. For the comparison, we employ three other methods which are logistic regression analysis (logit), back-propagation neural network (NN) and sequential minimal optimization (SMO). The analysis using datasets from 8 countries and 13 macro-economic indicators for each country shows that the proposed k-NN method with k = 4 and Manhattan distance performs better than the other methods.

Keywords: Currency crisis, k-nearest neighbour method, logit, neural network.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2302
560 Transcriptomics Analysis on Comparing Non-Small Cell Lung Cancer versus Normal Lung, and Early Stage Compared versus Late-Stages of Non-Small Cell Lung Cancer

Authors: Achitphol Chookaew, Paramee Thongsukhsai, Patamarerk Engsontia, Narongwit Nakwan, Pritsana Raugrut

Abstract:

Lung cancer is one of the most common malignancies and primary cause of death due to cancer worldwide. Non-small cell lung cancer (NSCLC) is the main subtype in which majority of patients present with advanced-stage disease. Herein, we analyzed differentially expressed genes to find potential biomarkers for lung cancer diagnosis as well as prognostic markers. We used transcriptome data from our 2 NSCLC patients and public data (GSE81089) composing of 8 NSCLC and 10 normal lung tissues. Differentially expressed genes (DEGs) between NSCLC and normal tissue and between early-stage and late-stage NSCLC were analyzed by the DESeq2. Pairwise correlation was used to find the DEGs with false discovery rate (FDR) adjusted p-value £ 0.05 and |log2 fold change| ³ 4 for NSCLC versus normal and FDR adjusted p-value £ 0.05 with |log2 fold change| ³ 2 for early versus late-stage NSCLC. Bioinformatic tools were used for functional and pathway analysis. Moreover, the top ten genes in each comparison group were verified the expression and survival analysis via GEPIA. We found 150 up-regulated and 45 down-regulated genes in NSCLC compared to normal tissues. Many immnunoglobulin-related genes e.g., IGHV4-4, IGHV5-10-1, IGHV4-31, IGHV4-61, and IGHV1-69D were significantly up-regulated. 22 genes were up-regulated, and five genes were down-regulated in late-stage compared to early-stage NSCLC. The top five DEGs genes were KRT6B, SPRR1A, KRT13, KRT6A and KRT5. Keratin 6B (KRT6B) was the most significantly increased gene in the late-stage NSCLC. From GEPIA analysis, we concluded that IGHV4-31 and IGKV1-9 might be used as diagnostic biomarkers, while KRT6B and KRT6A might be used as prognostic biomarkers. However, further clinical validation is needed.

Keywords: Bioinformatics, differentially expressed genes, non-small cell lung cancer, transcriptomics.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 910
559 Evaluation of Two Earliness Cotton Genotypes in Three Ecological Regions

Authors: Gholamhossein Hosseini

Abstract:

Two earliness cotton genotypes I and II, which had been developed by hybridization and backcross methods between sindise-80 as an early maturing gene parent and two other lines i.e. Red leaf and Bulgare-557 as a second parent, are subjected to different environmental conditions. The early maturing genotypes with coded names of I and II were compared with four native cotton cultivars in randomized complete block design (RCBD) with four replications in three ecological regions of Iran from 2016-2017. Two early maturing genotypes along with four native cultivars viz. Varamin, Oltan, Sahel and Arya were planted in Agricultural Research Station of Varamin, Moghan and Kashmar for evaluation. Earliness data were collected for six treatments during two years in the three regions except missing data for the second year of Kashmar. Therefore, missed data were estimated and imputed. For testing the homogeneity of error variances, each experiment at a given location or year is analyzed separately using Hartley and Bartlett’s Chi-square tests and both tests confirmed homogeneity of variance. Combined analysis of variance showed that genotypes I and II were superior in Varamin, Moghan and Kashmar regions. Earliness means and their interaction effects were compared with Duncan’s multiple range tests. Finally combined analysis of variance showed that genotypes I and II were superior in Varamin, Moghan and Kashmar regions. Earliness means and their interaction effects are compared with Duncan’s multiple range tests.

Keywords: Cotton, combined, analysis, earliness.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 573
558 BIP-Based Alarm Declaration and Clearing in SONET Networks Employing Automatic Protection Switching

Authors: Vitalice K. Oduol, C. Ardil

Abstract:

The paper examines the performance of bit-interleaved parity (BIP) methods in error rate monitoring, and in declaration and clearing of alarms in those transport networks that employ automatic protection switching (APS). The BIP-based error rate monitoring is attractive for its simplicity and ease of implementation. The BIP-based results are compared with exact results and are found to declare the alarms too late, and to clear the alarms too early. It is concluded that the standards development and systems implementation should take into account the fact of early clearing and late declaration of alarms. The window parameters defining the detection and clearing thresholds should be set so as to build sufficient hysteresis into the system to ensure that BIP-based implementations yield acceptable performance results.

Keywords: Automatic protection switching, bit interleaved parity, excessive bit error rate

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1895
557 Effects of Drought on Yield and Some Yield Components of Chickpea

Authors: E. Ceyhan, M. Önder, A. Kahraman, R. Topak, M.K. Ateş, S. Karadas, M.A. Avcı

Abstract:

This research was conducted to determine responses of chickpeas to drought in different periods (early period, late period, no-irrigation, two times irrigation as control). The trial was made in “Randomized Complete Block Design" with three replications on 2010 and 2011 years in Konya-Turkey. Genotypes were consisted from 7 lines of ICARDA, 2 certified lines and 1 local population. The results showed that; as means of years and genotypes, early period stress showed highest (207.47 kg da-1) seed yield and it was followed by control (202.33 kg da-1), late period (144.64 kg da-1) and normal (106.93 kg da-1) stress applications. The genotypes were affected too much by drought and, the lowest seed was taken from non-irrigated plots. As the means of years and stress applications, the highest (196.01 kg da-1) yield was taken from genotype 22255. The reason of yield variation could be derived from different responses of genotypes to drought.

Keywords: Chickpea, drought, seed yield.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1968
556 Evolving Digital Circuits for Early Stage Breast Cancer Detection Using Cartesian Genetic Programming

Authors: Zahra Khalid, Gul Muhammad Khan, Arbab Masood Ahmad

Abstract:

Cartesian Genetic Programming (CGP) is explored to design an optimal circuit capable of early stage breast cancer detection. CGP is used to evolve simple multiplexer circuits for detection of malignancy in the Fine Needle Aspiration (FNA) samples of breast. The data set used is extracted from Wisconsins Breast Cancer Database (WBCD). A range of experiments were performed, each with different set of network parameters. The best evolved network detected malignancy with an accuracy of 99.14%, which is higher than that produced with most of the contemporary non-linear techniques that are computational expensive than the proposed system. The evolved network comprises of simple multiplexers and can be implemented easily in hardware without any further complications or inaccuracy, being the digital circuit.

Keywords: Breast cancer detection, cartesian genetic programming, evolvable hardware, fine needle aspiration (FNA).

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 823
555 From Micro to Nanosystems: An Exploratory Study of Influences on Innovation Teams

Authors: Norbert Burger, Thorsten Staake

Abstract:

What influences microsystems (MEMS) and nanosystems (NEMS) innovation teams apart from technology complexity? Based on in-depth interviews with innovators, this research explores the key influences on innovation teams in the early phases of MEMS/NEMS. Projects are rare and may last from 5 to 10 years or more from idea to concept. As fundamental technology development in MEMS/NEMS is highly complex and interdisciplinary by involving expertise from different basic and engineering disciplines, R&D is rather a 'testing of ideas' with many uncertainties than a clearly structured process. The purpose of this study is to explore the innovation teams- environment and give specific insights for future management practices. The findings are grouped into three major areas: people, know-how and experience, and market. The results highlight the importance and differences of innovation teams- composition, transdisciplinary knowledge, project evaluation and management compared to the counterparts from new product development teams.

Keywords: Innovation teams, early phases, Microsystems, Nanosystems, technology developments.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1642
554 Data-Driven Decision-Making in Digital Entrepreneurship

Authors: Abeba Nigussie Turi, Xiangming Samuel Li

Abstract:

Data-driven business models are more typical for established businesses than early-stage startups that strive to penetrate a market. This paper provided an extensive discussion on the principles of data analytics for early-stage digital entrepreneurial businesses. Here, we developed data-driven decision-making (DDDM) framework that applies to startups prone to multifaceted barriers in the form of poor data access, technical and financial constraints, to state some. The startup DDDM framework proposed in this paper is novel in its form encompassing startup data analytics enablers and metrics aligning with startups' business models ranging from customer-centric product development to servitization which is the future of modern digital entrepreneurship.

Keywords: Startup data analytics, data-driven decision-making, data acquisition, data generation, digital entrepreneurship.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 838
553 A Low-Power Two-Stage Seismic Sensor Scheme for Earthquake Early Warning System

Authors: Arvind Srivastav, Tarun Kanti Bhattacharyya

Abstract:

The north-eastern, Himalayan, and Eastern Ghats Belt of India comprise of earthquake-prone, remote, and hilly terrains. Earthquakes have caused enormous damages in these regions in the past. A wireless sensor network based earthquake early warning system (EEWS) is being developed to mitigate the damages caused by earthquakes. It consists of sensor nodes, distributed over the region, that perform majority voting of the output of the seismic sensors in the vicinity, and relay a message to a base station to alert the residents when an earthquake is detected. At the heart of the EEWS is a low-power two-stage seismic sensor that continuously tracks seismic events from incoming three-axis accelerometer signal at the first-stage, and, in the presence of a seismic event, triggers the second-stage P-wave detector that detects the onset of P-wave in an earthquake event. The parameters of the P-wave detector have been optimized for minimizing detection time and maximizing the accuracy of detection.Working of the sensor scheme has been verified with seven earthquakes data retrieved from IRIS. In all test cases, the scheme detected the onset of P-wave accurately. Also, it has been established that the P-wave onset detection time reduces linearly with the sampling rate. It has been verified with test data; the detection time for data sampled at 10Hz was around 2 seconds which reduced to 0.3 second for the data sampled at 100Hz.

Keywords: Earthquake early warning system, EEWS, STA/LTA, polarization, wavelet, event detector, P-wave detector.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 785
552 Prediction Modeling of Alzheimer’s Disease and Its Prodromal Stages from Multimodal Data with Missing Values

Authors: M. Aghili, S. Tabarestani, C. Freytes, M. Shojaie, M. Cabrerizo, A. Barreto, N. Rishe, R. E. Curiel, D. Loewenstein, R. Duara, M. Adjouadi

Abstract:

A major challenge in medical studies, especially those that are longitudinal, is the problem of missing measurements which hinders the effective application of many machine learning algorithms. Furthermore, recent Alzheimer's Disease studies have focused on the delineation of Early Mild Cognitive Impairment (EMCI) and Late Mild Cognitive Impairment (LMCI) from cognitively normal controls (CN) which is essential for developing effective and early treatment methods. To address the aforementioned challenges, this paper explores the potential of using the eXtreme Gradient Boosting (XGBoost) algorithm in handling missing values in multiclass classification. We seek a generalized classification scheme where all prodromal stages of the disease are considered simultaneously in the classification and decision-making processes. Given the large number of subjects (1631) included in this study and in the presence of almost 28% missing values, we investigated the performance of XGBoost on the classification of the four classes of AD, NC, EMCI, and LMCI. Using 10-fold cross validation technique, XGBoost is shown to outperform other state-of-the-art classification algorithms by 3% in terms of accuracy and F-score. Our model achieved an accuracy of 80.52%, a precision of 80.62% and recall of 80.51%, supporting the more natural and promising multiclass classification.

Keywords: eXtreme Gradient Boosting, missing data, Alzheimer disease, early mild cognitive impairment, late mild cognitive impairment, multiclass classification, ADNI, support vector machine, random forest.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 966
551 A Computer Model of Language Acquisition – Syllable Learning – Based on Hebbian Cell Assemblies and Reinforcement Learning

Authors: Sepideh Fazeli, Fariba Bahrami

Abstract:

Investigating language acquisition is one of the most challenging problems in the area of studying language. Syllable learning as a level of language acquisition has a considerable significance since it plays an important role in language acquisition. Because of impossibility of studying language acquisition directly with children, especially in its developmental phases, computer models will be useful in examining language acquisition. In this paper a computer model of early language learning for syllable learning is proposed. It is guided by a conceptual model of syllable learning which is named Directions Into Velocities of Articulators model (DIVA). The computer model uses simple associational and reinforcement learning rules within neural network architecture which are inspired by neuroscience. Our simulation results verify the ability of the proposed computer model in producing phonemes during babbling and early speech. Also, it provides a framework for examining the neural basis of language learning and communication disorders.

Keywords: Brain modeling, computer models, language acquisition, reinforcement learning.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1594
550 Developing a Practice Guideline for Enhancing Communication in Hearing Families with Deaf Children

Authors: Nomataru P. Gontse, Lavanithum Joseph

Abstract:

Deafness coupled with a lack of support and resources in developing countries poses a serious threat to the well- being of children. The mismatch between the needs of persons with disabilities and the resources available to them is a key factor in service provision in resource constrained contexts. Furthermore, deafness in children is the most common childhood sensory disorder in developing countries, and as such seriously affected with regard to resource constraints. This paper discusses the issues and research protocol for a Ph.D. study that aims to develop a practice guideline that is contextually sensitive and includes an interdisciplinary approach that will improve the outcomes of learners and the relationships in hearing households with deaf learners in rural areas of the Eastern Cape, one of the poorest provinces in South Africa. The guideline developed will consider the lived experiences of deaf children and their hearing families on the impact deafness has on their relationships and communication at home. Ethical clearance for the study has been obtained. The methodology is a mixed-methods approach in the form of a survey using questionnaires and semi-structured interviews with deaf learners in primary and high school and their hearing parents to get their perspective on the impact deafness has on their relationships and communication at home. The study is conducted using adolescent learners from Grades 7 to 12 (excluding learners younger than 12 years and older than 21 years). An audiologist, teachers, and support staff will also give their views on how the intervention is currently done and possible suggestions on how management can be done differently. Data collection will be conducted in isiXhosa by the researcher, as isiXhosa is dominant in this region. The interviews will be conducted in South African Sign Language by the sign language interpreter for deaf learners and educational professionals. An expected outcome for this study is the development of recommendations and a practice guideline for deaf children diagnosed late from rural or under-resourced environments. To ensure the implementation of the findings, in the end, professionals will be given feedback on the outcomes of the study so that they can identify areas within their practices that require updated knowledge. The developed guideline is expected to have an impact on the Department of Education policies both regionally and nationally, providing recommendations for a strategic management plan and practice guidelines for this vulnerable and marginalized population. The IsiXhosa specific context could be generalized to other similar contexts.

Keywords: Deafness, family-centred approach, early identification, rural communities.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 389
549 Salinity on Survival and Early Development of Biofuel Feedstock Crops

Authors: Vincent M. Russo

Abstract:

Salinity level may affect early development of biofuel feedstock crops. The biofuel feedstock crops canola (Brassica napus L.), sorghum [Sorghum bicolor (L.) Moench], and sunflower (Helianthus annuus L.); and the potential feedstock crop sweet corn (Zea mays L.) were planted in media in pots and treated with aqueous solutions of 0, 0.1, 0.5 and 1.0 M NaCl once at: 1) planting; 2) 7-10 days after planting or 3) first true leaf expansion. An additional treatment (4) comprised of one-half strength of the 0.1, 0.5 and 1.0 M (concentrations 0.05, 0.25, 0.5 M at each application) was applied at first true leaf expansion and four days later. Survival of most crops decreased below 90% above 0.5 M; survival of canola decreased above 0.1 M. Application timing had little effect on crop survival. For canola root fresh and dry weights improved when application was at plant emergence; for sorghum top and root fresh weights improved when the split application was used. When application was at planting root dry weight was improved over most other applications. Sunflower top fresh weight was among the highest when saline solutions were split and top dry weight was among the highest when application was at plant emergence. Sweet corn root fresh weight was improved when the split application was used or application was at planting. Sweet corn root dry weight was highest when application was at planting or plant emergence. Even at high salinity rates survival rates greater than what might be expected occurred. Plants that survived appear to be able to adjust to saline during the early stages of development.

Keywords: Canola, Development, Sorghum, Sunflower, Sweetcorn, Survival

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1531
548 Breast Cancer Prediction Using Score-Level Fusion of Machine Learning and Deep Learning Models

Authors: [email protected]

Abstract:

Breast cancer is one of the most common types in women. Early prediction of breast cancer helps physicians detect cancer in its early stages. Big cancer data need a very powerful tool to analyze and extract predictions. Machine learning and deep learning are two of the most efficient tools for predicting cancer based on textual data. In this study, we developed a fusion model of two machine learning and deep learning models. To obtain the final prediction, Long-Short Term Memory (LSTM), ensemble learning with hyper parameters optimization, and score-level fusion is used. Experiments are done on the Breast Cancer Surveillance Consortium (BCSC) dataset after balancing and grouping the class categories. Five different training scenarios are used, and the tests show that the designed fusion model improved the performance by 3.3% compared to the individual models.

Keywords: Machine learning, Deep learning, cancer prediction, breast cancer, LSTM, Score-Level Fusion.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 419
547 The Design of Picture Books for Children from Tales of Amphawa Fireflies

Authors: Marut Pichetvit

Abstract:

The research objective aims to search information about storytelling and fable associated with fireflies in Amphawa community, in order to design and create a story book which is appropriate for the interests of children in early childhood. This book should help building the development of learning about the natural environment, imagination, and creativity among children, which then, brings about the promotion of the development, conservation and dissemination of cultural values and uniqueness of the Amphawa community. The population used in this study were 30 students in early childhood aged between 6-8 years-old, grade 1-3 from the Demonstration School of Suan Sunandha Rajabhat University. The method used for this study was purposive sampling and the research conducted by the query and analysis of data from both the document and the narrative field tales and fable associated with the fireflies of Amphawa community. Then, using the results to synthesize and create a conceptual design in a form of 8 visual images which were later applied to 1 illustrated children’s book and presented to the experts to evaluate and test this media.

Keywords: Children’s illustrated book, Fireflies, Amphawa.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1321
546 Synergy in Vertical Transformations of Expert Designers

Authors: G. Haupt

Abstract:

Existing literature ondesign reasoning seems to give either one sided accounts on expert design behaviour based on internal processing. In the same way ecological theoriesseem to focus one sidedly on external elementsthat result in a lack of unifying design cognition theory. Although current extended design cognition studies acknowledge the intellectual interaction between internal and external resources, there still seems to be insufficient understanding of the complexities involved in such interactive processes. As such,this paper proposes a novelmulti-directional model for design researchers tomap the complex and dynamic conduct controlling behaviour in which both the computational and ecological perspectives are integrated in a vertical manner. A clear distinction between identified intentional and emerging physical drivers, and relationships between them during the early phases of experts- design process, is demonstrated by presenting a case study in which the model was employed.

Keywords: External representation, early phases, extended design cognition, internal processes and external drivers, conduct controlling behaviour.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1254
545 Early Depression Detection for Young Adults with a Psychiatric and AI Interdisciplinary Multimodal Framework

Authors: Raymond Xu, Ashley Hua, Andrew Wang, Yuru Lin

Abstract:

During COVID-19, the depression rate has increased dramatically. Young adults are most vulnerable to the mental health effects of the pandemic. Lower-income families have a higher ratio to be diagnosed with depression than the general population, but less access to clinics. This research aims to achieve early depression detection at low cost, large scale, and high accuracy with an interdisciplinary approach by incorporating clinical practices defined by American Psychiatric Association (APA) as well as multimodal AI framework. The proposed approach detected the nine depression symptoms with Natural Language Processing sentiment analysis and a symptom-based Lexicon uniquely designed for young adults. The experiments were conducted on the multimedia survey results from adolescents and young adults and unbiased Twitter communications. The result was further aggregated with the facial emotional cues analyzed by the Convolutional Neural Network on the multimedia survey videos. Five experiments each conducted on 10k data entries reached consistent results with an average accuracy of 88.31%, higher than the existing natural language analysis models. This approach can reach 300+ million daily active Twitter users and is highly accessible by low-income populations to promote early depression detection to raise awareness in adolescents and young adults and reveal complementary cues to assist clinical depression diagnosis.

Keywords: Artificial intelligence, depression detection, facial emotion recognition, natural language processing, mental disorder.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1187
544 A Taxonomy Proposal on Criterion Structure for Evaluating Freight Village Concepts in Early-Stage Design Projects

Authors: Rıza Gürhan Korkut, Metin Çelik, Süleyman Özkaynak

Abstract:

The early-stage design and development projects for the freight village initiatives require a comprehensive analysis of both qualitative and quantitative data. Considering the literature review on structural and operational management requirements, this study proposed an original taxonomy on criterion structure to assess freight village conceptualization. The potential challenges and uncertainties of the developed taxonomy are extended. Besides requirement analysis, this study is also expected to contribute to forthcoming research on benchmarking of freight villages in different regions. The methodology used in this research is a systematic review on several articles as per their modelling approaches, sustainability, entities and decisions made together with the uncertainties and features of their models taken into consideration. The major findings of the study that are the categories for assessing the projects attributes on their environmental, socio-economical, accessibility and location aspects.

Keywords: Freight village, logistics centers, operational management, taxonomy.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 834
543 Javanese Adolescents- Future Orientation and Support for its Effort: An Indigenous Psychological Analysis

Authors: Niken Rarasati, Moh. A. Hakim, Kwartarini W. Yuniarti

Abstract:

This study aimed to explore future life orientation and support that needed to accomplish it. A total of 258 participants are Javanese high school student. The age of the sample ranges from 14 to 18 years old. Participants were asked about their future aspiration, their reason of choosing them as important goals in their life, and support that they need to accomplished their goals using open ended questionnaire. The responses were categorized through content analysis into four main categories. They are: (1) Self Fulfillment (72.1%) (2) Parents and Family (16.7%) (3) Altruism (8.1%) (4) Social and Economy Status (3.1%). Meanwhile, the categories for support that they needed are shown as follows: (1) Affection Support (64.7%) (2) Spiritual support (17.4%) (3) Material Support (10.9%) (4) Guidance Support (7.0%). The research found that affection support always gets the highest number in every future orientation categories. It can be concluded that although Javanese adolescents have different future orientation, they basically need affection support.

Keywords: Affection support, future orientation, indigenous psychology, Javanese adolescent

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2402
542 A Hybrid Scheme for on-Line Diagnostic Decision Making Using Optimal Data Representation and Filtering Technique

Authors: Hyun-Woo Cho

Abstract:

The early diagnostic decision making in industrial processes is absolutely necessary to produce high quality final products. It helps to provide early warning for a special event in a process, and finding its assignable cause can be obtained. This work presents a hybrid diagnostic schmes for batch processes. Nonlinear representation of raw process data is combined with classification tree techniques. The nonlinear kernel-based dimension reduction is executed for nonlinear classification decision boundaries for fault classes. In order to enhance diagnosis performance for batch processes, filtering of the data is performed to get rid of the irrelevant information of the process data. For the diagnosis performance of several representation, filtering, and future observation estimation methods, four diagnostic schemes are evaluated. In this work, the performance of the presented diagnosis schemes is demonstrated using batch process data.

Keywords: Diagnostics, batch process, nonlinear representation, data filtering, multivariate statistical approach

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1321
541 A Study on Performance Prediction in Early Design Stage of Apartment Housing Using Machine Learning

Authors: Seongjun Kim, Sanghoon Shim, Jinwooung Kim, Jaehwan Jung, Sung-Ah Kim

Abstract:

As the development of information and communication technology, the convergence of machine learning of the ICT area and design is attempted. In this way, it is possible to grasp the correlation between various design elements, which was difficult to grasp, and to reflect this in the design result. In architecture, there is an attempt to predict the performance, which is difficult to grasp in the past, by finding the correlation among multiple factors mainly through machine learning. In architectural design area, some attempts to predict the performance affected by various factors have been tried. With machine learning, it is possible to quickly predict performance. The aim of this study is to propose a model that predicts performance according to the block arrangement of apartment housing through machine learning and the design alternative which satisfies the performance such as the daylight hours in the most similar form to the alternative proposed by the designer. Through this study, a designer can proceed with the design considering various design alternatives and accurate performances quickly from the early design stage.

Keywords: Apartment housing, machine learning, multi-objective optimization, performance prediction.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1136
540 A Subtractive Clustering Based Approach for Early Prediction of Fault Proneness in Software Modules

Authors: Ramandeep S. Sidhu, Sunil Khullar, Parvinder S. Sandhu, R. P. S. Bedi, Kiranbir Kaur

Abstract:

In this paper, subtractive clustering based fuzzy inference system approach is used for early detection of faults in the function oriented software systems. This approach has been tested with real time defect datasets of NASA software projects named as PC1 and CM1. Both the code based model and joined model (combination of the requirement and code based metrics) of the datasets are used for training and testing of the proposed approach. The performance of the models is recorded in terms of Accuracy, MAE and RMSE values. The performance of the proposed approach is better in case of Joined Model. As evidenced from the results obtained it can be concluded that Clustering and fuzzy logic together provide a simple yet powerful means to model the earlier detection of faults in the function oriented software systems.

Keywords: Subtractive clustering, fuzzy inference system, fault proneness.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2584
539 Effects of Lateness Gene on Yield and Related Traits in Indica Rice

Authors: B. B. Rana, M. Yokota, Y. Shimizu, Y. Koide, I. Takamure, T. Kawano, M. Murai

Abstract:

Various genes which control or affect heading time have been found in rice. Out of them, Se1 and E1 loci play important roles in determining heading time by controlling photosensitivity. An isogenic-line pair of late and early lines were developed from progenies of the F1 from Suweon 258 × 36U. A lateness gene tentatively designated as “Ex” was found to control the difference in heading time between the early and late lines mentioned above. The present study was conducted to examine the effect of Ex on yield and related traits. Indica-type variety Suweon 258 was crossed with 36U, which is an Ur1 (Undulate rachis-1) isogenic line of IR36. In the F2 population, comparatively early-heading, late-heading and intermediate-heading plants were segregated. Segregation similar to that by the three types of heading was observed in the F3 and later generations. A late-heading plant and an early-heading plant were selected in the F8 population from an intermediate-heading F7 plant, for developing L and E of the isogenic-line pair, respectively. Experiments for L and E were conducted by randomized block design with three replications. Transplanting was conducted on May 3 at a planting distance of 30 cm × 15 cm with two seedlings per hill to an experimental field of the Faculty of Agriculture, Kochi University. Chemical fertilizers containing N, P2O5 and K2O were applied at the nitrogen levels of 4 g/m2, 9 g/m2 and 18 g/m2 in total being denoted by "N4", "N9" and "N18", respectively. Yield, yield components and other traits were measured. Ex delayed 80%-heading by 17 or 18 days in L as compared with E. In total brown rice yield (g/m2), L was 635, 606 and 590, and E was 577, 548 and 501, respectively, at N18, N9 and N4, indicating that Ex increased this trait by 10% to 18%. Ex increased yield-1.5 mm sieve (g/m2) b 9% to 15% at the three fertilizer levels. Ex increased the spikelet number per panicle by 16% to 22%. As a result, the spikelet number per m2 was increased by 11% to 18% at the three fertilizer levels. Ex decreased 1000-grain weight (g) by 2 to 4%. L was not significantly different from E in ripened-grain percentage, fertilized-spikelet percentage and percentage of ripened grains to fertilized spikelets. Hence, it is inferred that Ex increased yield by increasing spikelet number per panicle. Hence, Ex could be utilized to develop high yielding varieties for warmer districts.

Keywords: Heading time, lateness gene, photosensitivity, rice, yield, yield components.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 970
538 Early Supplier Involvement in New Product Development: A Casting-Network Collaboration Model

Authors: Taneli Eisto, Venlakaisa Hölttä, Katrine Mahlamäki, Janne Kollanus, Marko Nieminen

Abstract:

Early supplier involvement (ESI) benefits new product development projects several ways. Nevertheless, many castuser companies do not know the advantages of ESI and therefore do not utilize it. This paper presents reasons why to utilize ESI in casting industry and how that can be done. Further, this paper presents advantages and challenges related to ESI in casting industry, and introduces a Casting-Network Collaboration Model. The model presents practices for companies to build advantageous collaborative relationships. More detailed, the model describes three levels for company-network relationships in casting industry with different degrees of collaboration, and requirements for operating in each level. In our research, ESI was found to influence, for example, on project time, component cost, and quality. In addition, challenges related to ESI, such as, a lack of mutual trust and unawareness about the advantages were found. Our research approach was a case study including four cases.

Keywords: Casting Industry, Collaboration Model, EarlySupplier Involvement, New Product Development.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 8478
537 Impact of Shearing Date on Behaviors and Performances of Pregnant Rahmani Ewes

Authors: T. M. Mousa-Balabel, M. A. Salama

Abstract:

The effect of shearing date on behaviors and performances of 20 pregnant Rahmani ewes was evaluated in four groups (5each). Ewes were shorn at 70, 100 and 130 days of pregnancy in the first three groups respectively, while the fourth group was maintained unshorn as a control. Some behavioral and physiological data related to ewes in addition, blood cortisol level were recorded. Results revealed a significant increase in the frequencies of comfort and eating behaviors, respiratory rate, pulse rate, lamb birth weight and blood cortisol level in early and mid pregnancy shorn ewes. Also, a slight increase in pregnancy period was observed for those ewes. On the other hand, social behaviors, and core temperature were not affected by shearing. These results conclude that prenatal shearing (early and mid-pregnancy) of ewes increases the frequencies of comfort and eating behaviors, and improves the survival rates of lambs by increasing their birth weights.

Keywords: behavior, blood cortisol, pregnant rahmani ewes, shearing.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1695
536 Fabrication of Poly(Ethylene Oxide)/Chitosan/Indocyanine Green Nanoprobe by Co-Axial Electrospinning Method for Early Detection

Authors: Zeynep R. Ege, Aydin Akan, Faik N. Oktar, Betul Karademir, Oguzhan Gunduz

Abstract:

Early detection of cancer could save human life and quality in insidious cases by advanced biomedical imaging techniques. Designing targeted detection system is necessary in order to protect of healthy cells. Electrospun nanofibers are efficient and targetable nanocarriers which have important properties such as nanometric diameter, mechanical properties, elasticity, porosity and surface area to volume ratio. In the present study, indocyanine green (ICG) organic dye was stabilized and encapsulated in polymer matrix which polyethylene oxide (PEO) and chitosan (CHI) multilayer nanofibers via co-axial electrospinning method at one step. The co-axial electrospun nanofibers were characterized as morphological (SEM), molecular (FT-IR), and entrapment efficiency of Indocyanine Green (ICG) (confocal imaging). Controlled release profile of PEO/CHI/ICG nanofiber was also evaluated up to 40 hours.

Keywords: Chitosan, coaxial electrospinning, controlled releasing, indocyanine green, nanoprobe, polyethylene oxide.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 770