Search results for: Classify Bird Sounds
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 321

Search results for: Classify Bird Sounds

231 Advanced Convolutional Neural Network Paradigms-Comparison of VGG16 with Resnet50 in Crime Detection

Authors: Taiwo. M. Akinmuyisitan, John Cosmas

Abstract:

This paper practically demonstrates the theories and concepts of an Advanced Convolutional Neural Network in the design and development of a scalable artificial intelligence model for the detection of criminal masterminds. The technique uses machine vision algorithms to compute the facial characteristics of suspects and classify actors as criminal or non-criminal faces. The paper proceeds further to compare the results of the error accuracy of two popular custom convolutional pre-trained networks, VGG16 and Resnet50. The result shows that VGG16 is probably more efficient than ResNet50 for the dataset we used.

Keywords: Artificial intelligence, convolutional neural networks, Resnet50, VGG16.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 283
230 Pruning Method of Belief Decision Trees

Authors: Salsabil Trabelsi, Zied Elouedi, Khaled Mellouli

Abstract:

The belief decision tree (BDT) approach is a decision tree in an uncertain environment where the uncertainty is represented through the Transferable Belief Model (TBM), one interpretation of the belief function theory. The uncertainty can appear either in the actual class of training objects or attribute values of objects to classify. In this paper, we develop a post-pruning method of belief decision trees in order to reduce size and improve classification accuracy on unseen cases. The pruning of decision tree has a considerable intention in the areas of machine learning.

Keywords: machine learning, uncertainty, belief function theory, belief decision tree, pruning.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1910
229 Multi-Channel Information Fusion in C-OTDR Monitoring Systems: Various Approaches to Classify of Targeted Events

Authors: Andrey V. Timofeev

Abstract:

The paper presents new results concerning selection of optimal information fusion formula for ensembles of C-OTDR channels. The goal of information fusion is to create an integral classificator designed for effective classification of seismoacoustic target events. The LPBoost (LP-β and LP-B variants), the Multiple Kernel Learning, and Weighing of Inversely as Lipschitz Constants (WILC) approaches were compared. The WILC is a brand new approach to optimal fusion of Lipschitz Classifiers Ensembles. Results of practical usage are presented.

Keywords: Lipschitz Classifier, Classifiers Ensembles, LPBoost, C-OTDR systems, ν-OTDR systems.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1667
228 Generator of Hypotheses an Approach of Data Mining Based on Monotone Systems Theory

Authors: Rein Kuusik, Grete Lind

Abstract:

Generator of hypotheses is a new method for data mining. It makes possible to classify the source data automatically and produces a particular enumeration of patterns. Pattern is an expression (in a certain language) describing facts in a subset of facts. The goal is to describe the source data via patterns and/or IF...THEN rules. Used evaluation criteria are deterministic (not probabilistic). The search results are trees - form that is easy to comprehend and interpret. Generator of hypotheses uses very effective algorithm based on the theory of monotone systems (MS) named MONSA (MONotone System Algorithm).

Keywords: data mining, monotone systems, pattern, rule.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1256
227 Adopting Flocks of Birds Approach to Predator for Anomalies Detection on Industrial Control Systems

Authors: M. Okeke, A. Blyth

Abstract:

Industrial Control Systems (ICS) such as Supervisory Control And Data Acquisition (SCADA) can be seen in many different critical infrastructures, from nuclear management to utility, medical equipment, power, waste and engine management on ships and planes. The role SCADA plays in critical infrastructure has resulted in a call to secure them. Many lives depend on it for daily activities and the attack vectors are becoming more sophisticated. Hence, the security of ICS is vital as malfunction of it might result in huge risk. This paper describes how the application of Prey Predator (PP) approach in flocks of birds could enhance the detection of malicious activities on ICS. The PP approach explains how these animals in groups or flocks detect predators by following some simple rules. They are not necessarily very intelligent animals but their approach in solving complex issues such as detection through corporation, coordination and communication worth emulating. This paper will emulate flocking behavior seen in birds in detecting predators. The PP approach will adopt six nearest bird approach in detecting any predator. Their local and global bests are based on the individual detection as well as group detection. The PP algorithm was designed following MapReduce methodology that follows a Split Detection Convergence (SDC) approach.

Keywords: Industrial control systems, prey predator, SCADA, SDC.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1174
226 An Advanced Method for Speech Recognition

Authors: Meysam Mohamad pour, Fardad Farokhi

Abstract:

In this paper in consideration of each available techniques deficiencies for speech recognition, an advanced method is presented that-s able to classify speech signals with the high accuracy (98%) at the minimum time. In the presented method, first, the recorded signal is preprocessed that this section includes denoising with Mels Frequency Cepstral Analysis and feature extraction using discrete wavelet transform (DWT) coefficients; Then these features are fed to Multilayer Perceptron (MLP) network for classification. Finally, after training of neural network effective features are selected with UTA algorithm.

Keywords: Multilayer perceptron (MLP) neural network, Discrete Wavelet Transform (DWT) , Mels Scale Frequency Filter , UTA algorithm.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2366
225 A Methodology for Characterising the Tail Behaviour of a Distribution

Authors: Serge Provost, Yishan Zang

Abstract:

Following a review of various approaches that are utilized for classifying the tail behavior of a distribution, an easily implementable methodology that relies on an arctangent transformation is presented. The classification criterion is actually based on the difference between two specific quantiles of the transformed distribution. The resulting categories enable one to classify distributional tails as distinctly short, short, nearly medium, medium, extended medium and somewhat long, providing that at least two moments exist. Distributions possessing a single moment are said to be long tailed while those failing to have any finite moments are classified as having an extremely long tail. Several illustrative examples will be presented.

Keywords: Arctangent transformation, change of variables, heavy-tailed distributions, tail classification.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 687
224 Using Teager Energy Cepstrum and HMM distancesin Automatic Speech Recognition and Analysis of Unvoiced Speech

Authors: Panikos Heracleous

Abstract:

In this study, the use of silicon NAM (Non-Audible Murmur) microphone in automatic speech recognition is presented. NAM microphones are special acoustic sensors, which are attached behind the talker-s ear and can capture not only normal (audible) speech, but also very quietly uttered speech (non-audible murmur). As a result, NAM microphones can be applied in automatic speech recognition systems when privacy is desired in human-machine communication. Moreover, NAM microphones show robustness against noise and they might be used in special systems (speech recognition, speech conversion etc.) for sound-impaired people. Using a small amount of training data and adaptation approaches, 93.9% word accuracy was achieved for a 20k Japanese vocabulary dictation task. Non-audible murmur recognition in noisy environments is also investigated. In this study, further analysis of the NAM speech has been made using distance measures between hidden Markov model (HMM) pairs. It has been shown the reduced spectral space of NAM speech using a metric distance, however the location of the different phonemes of NAM are similar to the location of the phonemes of normal speech, and the NAM sounds are well discriminated. Promising results in using nonlinear features are also introduced, especially under noisy conditions.

Keywords: Speech recognition, unvoiced speech, nonlinear features, HMM distance measures

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1647
223 Applying Wavelet Entropy Principle in Fault Classification

Authors: S. El Safty, A. El-Zonkoly

Abstract:

The ability to detect and classify the type of fault plays a great role in the protection of power system. This procedure is required to be precise with no time consumption. In this paper detection of fault type has been implemented using wavelet analysis together with wavelet entropy principle. The simulation of power system is carried out using PSCAD/EMTDC. Different types of faults were studied obtaining various current waveforms. These current waveforms were decomposed using wavelet analysis into different approximation and details. The wavelet entropy of such decompositions is analyzed reaching a successful methodology for fault classification. The suggested approach is tested using different fault types and proven successful identification for the type of fault.

Keywords: Fault classification, wavelet transform, waveletentropy.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1935
222 Frequency- and Content-Based Tag Cloud Font Distribution Algorithm

Authors: Ágnes Bogárdi-Mészöly, Takeshi Hashimoto, Shohei Yokoyama, Hiroshi Ishikawa

Abstract:

The spread of Web 2.0 has caused user-generated content explosion. Users can tag resources to describe and organize them. Tag clouds provide rough impression of relative importance of each tag within overall cloud in order to facilitate browsing among numerous tags and resources. The goal of our paper is to enrich visualization of tag clouds. A font distribution algorithm has been proposed to calculate a novel metric based on frequency and content, and to classify among classes from this metric based on power law distribution and percentages. The suggested algorithm has been validated and verified on the tag cloud of a real-world thesis portal.

Keywords: Tag cloud, font distribution algorithm, frequency-based, content-based, power law.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2093
221 Status, Habitat Use, and Behaviour of Wintering Greater Flamingos Phoenicopterus roseus in Semi-Arid and Saharan Wetlands of Algeria

Authors: E. Bensaci, M. Saheb, Y. Nouidjem, A. Zoubiri, A. Bouzegag, M. Houhamdi

Abstract:

The Greater flamingo is considered the flagship species of wetlands across semi-arid and Saharan regions of Africa, especially Chotts and Sebkhas, which also concentrate significant numbers of bird species. Flamingos have different status (wintering and breeder) which vary between sites in different parts of Algeria. We conducted surveys and recorded banded flamingos across distinct regions within two climatic belts: semi-arid (Hauts Plateaux) and arid (Sahara), showing the importance of these sites in the migratory flyways particularly the relation between West Mediterranean and West Africa populations. The distribution of Greater flamingos varied between sites and seasons, where the concentrations mainly were in the wide, lees deep and salt lakes. Many of the sites (17) in the surveyed area were regularly supporting at least 1% of the regional population during winter. The analysis of Greater flamingos behaviour in different climatic regions in relation showed that the feeding is the dominant diurnal activity with rates exceeding 60% of the time. While feeding varies between seasons, and showed a negative relationship with the degree of disturbance.

Keywords: Algeria, greater flamingo, Phoenicopterus roseus, Sahara, semi-arid.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1147
220 Temporal Variation of Shorebirds Population in Two Different Mudflats Areas

Authors: N. Norazlimi, R. Ramli

Abstract:

A study was conducted to determine the diversity and abundance of shorebird species habituating the mudflat area of Jeram Beach and Remis Beach, Selangor, Peninsular Malaysia. Direct observation technique (using binoculars and video camera) was applied to record the presence of bird species in the sampling sites from August 2013 until July 2014. A total of 32 species of shorebird were recorded during both migratory and non-migratory seasons. Of these, eleven species (48%) are migrants, six species (26%) have both migrant and resident populations, four species (17%) are vagrants and two species (9%) are residents. The compositions of the birds differed significantly in all months (χ2 = 84.35, p < 0.001). There is a significant difference in avian abundance between migratory and non-migratory seasons (Mann-Whitney, t = 2.39, p = 0.036). The avian abundance were differed significantly in Jeram and Remis Beaches during migratory periods (t = 4.39, p = 0.001) but not during non-migratory periods (t = 0.78, p = 0.456). Shorebird diversity was also affected by tidal cycle. There is a significance difference between high tide and low tide (Mann-Whitney, t = 78.0, p < 0.005). Frequency of disturbance also affected the shorebird distribution (Mann-Whitney, t = 57.0, p = 0.0134). Therefore, this study concluded that tides and disturbances are two factors that affecting temporal distribution of shorebird in mudflats area.

Keywords: Biodiversity, distribution, migratory birds, direct observation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2291
219 Towards an Effective Reputation Assessment Process in Peer-to-Peer Systems

Authors: Farag Azzedin, Ahmad Ridha

Abstract:

The need for reputation assessment is particularly strong in peer-to-peer (P2P) systems because the peers' personal site autonomy is amplified by the inherent technological decentralization of the environment. However, the decentralization notion makes the problem of designing a peer-to-peer based reputation assessment substantially harder in P2P networks than in centralized settings.Existing reputation systems tackle the reputation assessment process in an ad-hoc manner. There is no systematic and coherent way to derive measures and analyze the current reputation systems. In this paper, we propose a reputation assessment process and use it to classify the existing reputation systems. Simulation experiments are conducted and focused on the different methods in selecting the recommendation sources and retrieving the recommendations. These two phases can contribute significantly to the overall performance due to communication cost and coverage.

Keywords: P2P Systems, Trust, Reputation, Performance.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1443
218 Artificial Neural Networks for Classifying Magnetic Measurements in Tokamak Reactors

Authors: A. Greco, N. Mammone, F.C. Morabito, M.Versaci

Abstract:

This paper is mainly concerned with the application of a novel technique of data interpretation to the characterization and classification of measurements of plasma columns in Tokamak reactors for nuclear fusion applications. The proposed method exploits several concepts derived from soft computing theory. In particular, Artifical Neural Networks have been exploited to classify magnetic variables useful to determine shape and position of the plasma with a reduced computational complexity. The proposed technique is used to analyze simulated databases of plasma equilibria based on ITER geometry configuration. As well as demonstrating the successful recovery of scalar equilibrium parameters, we show that the technique can yield practical advantages compares with earlier methods.

Keywords: Tokamak, sensors, artificial neural network.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1823
217 Parametric Primitives for Hand Gesture Recognition

Authors: Sanmohan Krüger, Volker Krüger

Abstract:

Imitation learning is considered to be an effective way of teaching humanoid robots and action recognition is the key step to imitation learning. In this paper an online algorithm to recognize parametric actions with object context is presented. Objects are key instruments in understanding an action when there is uncertainty. Ambiguities arising in similar actions can be resolved with objectn context. We classify actions according to the changes they make to the object space. Actions that produce the same state change in the object movement space are classified to belong to the same class. This allow us to define several classes of actions where members of each class are connected with a semantic interpretation.

Keywords: Parametric actions, Action primitives, Hand gesture recognition, Imitation learning

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1487
216 Estimation of Reconnaissance Drought Index (RDI) for Bhavnagar District, Gujarat, India

Authors: Ravi Shah, V. L. Manekar, R. A. Christian, N. J. Mistry

Abstract:

There are two types of drought as conceptual drought and operational drought. The three parameters as the beginning, the end and the degree of severity of the drought can be identifying in operational drought by average precipitation in the whole region. One of the methods classified to measure drought is Reconnaissance Drought Index (RDI). Evapotranspiration is calculated using Penman-Monteith method by analyzing thirty nine years prolong climatic data. The evapotranspiration is then utilized in RDI to classify normalized and standardized RDI. These RDI classifications led to what kind of drought faced in Bhavnagar region on 12 month time scale basis. The comparison between actual drought conditions and RDI method used to find out drought are also illustrated. It can be concluded that the index results of drought in a particular year are same in both methods but having different index values where as severity remain same.

Keywords: Drought, Drought index, Reconnaissance Drought Index (RDI), Precipitation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3494
215 Presenting a Combinatorial Feature to Estimate Depth of Anesthesia

Authors: Toktam Zoughi, Reza Boostani

Abstract:

Determining depth of anesthesia is a challenging problem in the context of biomedical signal processing. Various methods have been suggested to determine a quantitative index as depth of anesthesia, but most of these methods suffer from high sensitivity during the surgery. A novel method based on energy scattering of samples in the wavelet domain is suggested to represent the basic content of electroencephalogram (EEG) signal. In this method, first EEG signal is decomposed into different sub-bands, then samples are squared and energy of samples sequence is constructed through each scale and time, which is normalized and finally entropy of the resulted sequences is suggested as a reliable index. Empirical Results showed that applying the proposed method to the EEG signals can classify the awake, moderate and deep anesthesia states similar to BIS.

Keywords: Depth of anesthesia, EEG, BIS, Wavelet transforms.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1853
214 An Efficient Classification Method for Inverse Synthetic Aperture Radar Images

Authors: Sang-Hong Park

Abstract:

This paper proposes an efficient method to classify inverse synthetic aperture (ISAR) images. Because ISAR images can be translated and rotated in the 2-dimensional image place, invariance to the two factors is indispensable for successful classification. The proposed method achieves invariance to translation and rotation of ISAR images using a combination of two-dimensional Fourier transform, polar mapping and correlation-based alignment of the image. Classification is conducted using a simple matching score classifier. In simulations using the real ISAR images of five scaled models measured in a compact range, the proposed method yields classification ratios higher than 97 %.

Keywords: Radar, ISAR, radar target classification, radar imaging.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2194
213 Chilean Wines Classification based only on Aroma Information

Authors: Nicolás H. Beltrán, Manuel A. Duarte-Mermoud, Víctor A. Soto, Sebastián A. Salah, and Matías A. Bustos

Abstract:

Results of Chilean wine classification based on the information provided by an electronic nose are reported in this paper. The classification scheme consists of two parts; in the first stage, Principal Component Analysis is used as feature extraction method to reduce the dimensionality of the original information. Then, Radial Basis Functions Neural Networks is used as pattern recognition technique to perform the classification. The objective of this study is to classify different Cabernet Sauvignon, Merlot and Carménère wine samples from different years, valleys and vineyards of Chile.

Keywords: Feature extraction techniques, Pattern recognitiontechniques, Principal component analysis, Radial basis functionsneural networks, Wine classification.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1547
212 Framework and Characterization of Physical Internet

Authors: Charifa Fergani, Adiba El Bouzekri El Idrissi, Suzanne Marcotte, Abdelowahed Hajjaji

Abstract:

Over the last years, a new paradigm known as Physical Internet has been developed, and studied in logistics management. The purpose of this global and open system is to deal with logistics grand challenge by setting up an efficient and sustainable Logistics Web. The purpose of this paper is to review scientific articles dedicated to Physical Internet topic, and to provide a clustering strategy enabling to classify the literature on the Physical Internet, to follow its evolution, as well as to criticize it. The classification is based on three factors: Logistics Web, organization, and resources. Several papers about Physical Internet have been classified and analyzed along the Logistics Web, resources and organization views at a strategic, tactical and operational level, respectively. A developed cluster analysis shows which topics of the Physical Internet that are the less covered actually. Future researches are outlined for these topics.

Keywords: Logistics web, Physical Internet, PI characterization, taxonomy.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 857
211 Effect of Rearing Systems on Fatty Acid Composition and Cholesterol Content of Thai Indigenous Chicken Meat

Authors: W. Molee, P. Puttaraksa, S. Khempaka

Abstract:

The experiment was conducted to study the effect of rearing systems on fatty acid composition and cholesterol content of Thai indigenous chicken meat. Three hundred and sixty chicks were allocated to 2 different rearing systems: conventional, housing in an indoor pen (5 birds/m2); free-range, housing in an indoor pen (5 birds/m2) with access to a grass paddock (1 bird/m2) from 8 wk of age until slaughter. All birds were provided with the same diet during the experimental period. At 16 wk of age, 24 birds per group were slaughtered to evaluate the fatty acid composition and cholesterol content of breast and thigh meat. The results showed that the proportion of SFA, MUFA and PUFA in breast and thigh meat were not different among groups (P>0.05). However, the proportion of n-3 fatty acids was higher and the ratio of n-6 to n-3 fatty acids was lower in free-range system than in conventional system (P<0.05). There was no difference between groups in cholesterol content in breast and thigh meat (P>0.05). The data indicated that the free-range system could increase the proportion of n-3 fatty acids, but no effect on cholesterol content in Thai indigenous chicken meat.

Keywords: Cholesterol, fatty acid composition, free-range, Thai indigenous chicken

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2019
210 Investigating Intrusion Detection Systems in MANET and Comparing IDSs for Detecting Misbehaving Nodes

Authors: Marjan Kuchaki Rafsanjani, Ali Movaghar, Faroukh Koroupi

Abstract:

As mobile ad hoc networks (MANET) have different characteristics from wired networks and even from standard wireless networks, there are new challenges related to security issues that need to be addressed. Due to its unique features such as open nature, lack of infrastructure and central management, node mobility and change of dynamic topology, prevention methods from attacks on them are not enough. Therefore intrusion detection is one of the possible ways in recognizing a possible attack before the system could be penetrated. All in all, techniques for intrusion detection in old wireless networks are not suitable for MANET. In this paper, we classify the architecture for Intrusion detection systems that have so far been introduced for MANETs, and then existing intrusion detection techniques in MANET presented and compared. We then indicate important future research directions.

Keywords: Intrusion Detection System(IDS), Misbehavingnodes, Mobile Ad Hoc Network(MANET), Security.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2025
209 A Convolutional Deep Neural Network Approach for Skin Cancer Detection Using Skin Lesion Images

Authors: Firas Gerges, Frank Y. Shih

Abstract:

Malignant Melanoma, known simply as Melanoma, is a type of skin cancer that appears as a mole on the skin. It is critical to detect this cancer at an early stage because it can spread across the body and may lead to the patient death. When detected early, Melanoma is curable. In this paper we propose a deep learning model (Convolutional Neural Networks) in order to automatically classify skin lesion images as Malignant or Benign. Images underwent certain pre-processing steps to diminish the effect of the normal skin region on the model. The result of the proposed model showed a significant improvement over previous work, achieving an accuracy of 97%.

Keywords: Deep learning, skin cancer, image processing, melanoma.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1540
208 The Labeled Classification and its Application

Authors: M. Nemissi, H. Seridi, H. Akdag

Abstract:

This paper presents and evaluates a new classification method that aims to improve classifiers performances and speed up their training process. The proposed approach, called labeled classification, seeks to improve convergence of the BP (Back propagation) algorithm through the addition of an extra feature (labels) to all training examples. To classify every new example, tests will be carried out each label. The simplicity of implementation is the main advantage of this approach because no modifications are required in the training algorithms. Therefore, it can be used with others techniques of acceleration and stabilization. In this work, two models of the labeled classification are proposed: the LMLP (Labeled Multi Layered Perceptron) and the LNFC (Labeled Neuro Fuzzy Classifier). These models are tested using Iris, wine, texture and human thigh databases to evaluate their performances.

Keywords: Artificial neural networks, Fusion of neural networkfuzzysystems, Learning theory, Pattern recognition.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1410
207 Definition in Law: Transgender Identities and Marriage

Authors: Kimberly Tao

Abstract:

This paper looks at transgender identities and the law in the context of marriage. It particularly focuses on the role of language and definition in classifying transgendered individuals into a legal category. Two lines of cases in transgender jurisprudence are examined. The former cases decided the definition of 'man' and 'woman' on the basis of biological criteria while the latter cases held that biological factors should not be the sole criterion for defining a man or a woman. Three categories were found to classify transgender people, namely male, female and "monstrous". Since transgender people challenge the core gender distinction that the law stresses, they are often regarded as problematic and monstrous which caused them to be subjected to severe legal consequences. This paper discusses these issues by analyzing and comparing different cases in transgender jurisprudence as well as examining how these issues play out in contemporary Hong Kong.

Keywords: Trangender, Monstrousness, Categorization, Definition.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2190
206 Automatic Fingerprint Classification Using Graph Theory

Authors: Mana Tarjoman, Shaghayegh Zarei

Abstract:

Using efficient classification methods is necessary for automatic fingerprint recognition system. This paper introduces a new structural approach to fingerprint classification by using the directional image of fingerprints to increase the number of subclasses. In this method, the directional image of fingerprints is segmented into regions consisting of pixels with the same direction. Afterwards the relational graph to the segmented image is constructed and according to it, the super graph including prominent information of this graph is formed. Ultimately we apply a matching technique to compare obtained graph with the model graphs in order to classify fingerprints by using cost function. Increasing the number of subclasses with acceptable accuracy in classification and faster processing in fingerprints recognition, makes this system superior.

Keywords: Classification, Directional image, Fingerprint, Graph, Super graph.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3634
205 Instance-Based Ontology Matching Using Different Kinds of Formalism

Authors: Katrin Zaiß, Tim Schlüter, Stefan Conrad

Abstract:

Ontology Matching is a task needed in various applica-tions, for example for comparison or merging purposes. In literature,many algorithms solving the matching problem can be found, butmost of them do not consider instances at all. Mappings are deter-mined by calculating the string-similarity of labels, by recognizinglinguistic word relations (synonyms, subsumptions etc.) or by ana-lyzing the (graph) structure. Due to the facts that instances are oftenmodeled within the ontology and that the set of instances describesthe meaning of the concepts better than their meta information,instances should definitely be incorporated into the matching process.In this paper several novel instance-based matching algorithms arepresented which enhance the quality of matching results obtainedwith common concept-based methods. Different kinds of formalismsare use to classify concepts on account of their instances and finallyto compare the concepts directly.KeywordsInstances, Ontology Matching, Semantic Web

Keywords: Instances, Ontology Matching, Semantic Web

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1526
204 A Proposed Approach for Emotion Lexicon Enrichment

Authors: Amr Mansour Mohsen, Hesham Ahmed Hassan, Amira M. Idrees

Abstract:

Document Analysis is an important research field that aims to gather the information by analyzing the data in documents. As one of the important targets for many fields is to understand what people actually want, sentimental analysis field has been one of the vital fields that are tightly related to the document analysis. This research focuses on analyzing text documents to classify each document according to its opinion. The aim of this research is to detect the emotions from text documents based on enriching the lexicon with adapting their content based on semantic patterns extraction. The proposed approach has been presented, and different experiments are applied by different perspectives to reveal the positive impact of the proposed approach on the classification results.

Keywords: Document analysis, sentimental analysis, emotion detection, WEKA tool, NRC Lexicon.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1456
203 Analysis of Users’ Behavior on Book Loan Log Based On Association Rule Mining

Authors: Kanyarat Bussaban, Kunyanuth Kularbphettong

Abstract:

This research aims to create a model for analysis of student behavior using Library resources based on data mining technique in case of Suan Sunandha Rajabhat University. The model was created under association rules, Apriori algorithm. The results were found 14 rules and the rules were tested with testing data set and it showed that the ability of classify data was 79.24percent and the MSE was 22.91. The results showed that the user’s behavior model by using association rule technique can use to manage the library resources.

Keywords: Behavior, data mining technique, Apriori algorithm.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2306
202 Lexicon-Based Sentiment Analysis for Stock Movement Prediction

Authors: Zane Turner, Kevin Labille, Susan Gauch

Abstract:

Sentiment analysis is a broad and expanding field that aims to extract and classify opinions from textual data. Lexicon-based approaches are based on the use of a sentiment lexicon, i.e., a list of words each mapped to a sentiment score, to rate the sentiment of a text chunk. Our work focuses on predicting stock price change using a sentiment lexicon built from financial conference call logs. We present a method to generate a sentiment lexicon based upon an existing probabilistic approach. By using a domain-specific lexicon, we outperform traditional techniques and demonstrate that domain-specific sentiment lexicons provide higher accuracy than generic sentiment lexicons when predicting stock price change.

Keywords: Lexicon, sentiment analysis, stock movement prediction., computational finance.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 779