Search results for: Automatic bias control
4268 State-Space PD Feedback Control
Authors: John Florescu
Abstract:
A challenged control problem is when the performance is pushed to the limit. The state-derivative feedback control strategy directly uses acceleration information for feedback and state estimation. The derivative part is concerned with the rateof- change of the error with time. If the measured variable approaches the set point rapidly, then the actuator is backed off early to allow it to coast to the required level. Derivative action makes a control system behave much more intelligently. A sensor measures the variable to be controlled and the measured in formation is fed back to the controller to influence the controlled variable. A high gain problem can be also formulated for proportional plus derivative feedback transformation. Using MATLAB Simulink dynamic simulation tool this paper examines a system with a proportional plus derivative feedback and presents an automatic implementation of finding an acceptable controlled system. Using feedback transformations the system is transformed into another system.Keywords: Feedback, PD, state-space, derivative.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 20234267 Very High Speed Data Driven Dynamic NAND Gate at 22nm High K Metal Gate Strained Silicon Technology Node
Authors: Shobha Sharma, Amita Dev
Abstract:
Data driven dynamic logic is the high speed dynamic circuit with low area. The clock of the dynamic circuit is removed and data drives the circuit instead of clock for precharging purpose. This data driven dynamic nand gate is given static forward substrate biasing of Vsupply/2 as well as the substrate bias is connected to the input data, resulting in dynamic substrate bias. The dynamic substrate bias gives the shortest propagation delay with a penalty on the power dissipation. Propagation delay is reduced by 77.8% compared to the normal reverse substrate bias Data driven dynamic nand. Also dynamic substrate biased D3nand’s propagation delay is reduced by 31.26% compared to data driven dynamic nand gate with static forward substrate biasing of Vdd/2. This data driven dynamic nand gate with dynamic body biasing gives us the highest speed with no area penalty and finds its applications where power penalty is acceptable. Also combination of Dynamic and static Forward body bias can be used with reduced propagation delay compared to static forward biased circuit and with comparable increase in an average power. The simulations were done on hspice simulator with 22nm High-k metal gate strained Si technology HP models of Arizona State University, USA.Keywords: Data driven nand gate, dynamic substrate biasing, nand gate, static substrate biasing.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16164266 Studies on Automatic Measurement Technology for Surface Braided Angle of Three-Dimensional Braided Composite Material Performs
Authors: Na Li
Abstract:
This paper describes a new measuring algorithm for three-dimensional (3-D) braided composite material .Braided angle is an important parameter of braided composites. The objective of this paper is to present an automatic measuring system. In the paper, the algorithm is performed by using vcµ6.0 language on PC. An advanced filtered algorithm for image of 3-D braided composites material performs has been developed. The procedure is completely automatic and relies on the gray scale information content of the images and their local wavelet transform modulus maxims. Experimental results show that the proposed method is feasible. The algorithm was tested on both carbon-fiber and glass-fiber performs.Keywords: Three-Dimensional composite material, Mathematical morphology.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 13574265 GMDH Modeling Based on Polynomial Spline Estimation and Its Applications
Authors: LI qiu-min, TIAN yi-xiang, ZHANG gao-xun
Abstract:
GMDH algorithm can well describe the internal structure of objects. In the process of modeling, automatic screening of model structure and variables ensure the convergence rate.This paper studied a new GMDH model based on polynomial spline stimation. The polynomial spline function was used to instead of the transfer function of GMDH to characterize the relationship between the input variables and output variables. It has proved that the algorithm has the optimal convergence rate under some conditions. The empirical results show that the algorithm can well forecast Consumer Price Index (CPI).
Keywords: spline, GMDH, nonparametric, bias, forecast.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 21354264 Review of the Software Used for 3D Volumetric Reconstruction of the Liver
Authors: P. Strakos, M. Jaros, T. Karasek, T. Kozubek, P. Vavra, T. Jonszta
Abstract:
In medical imaging, segmentation of different areas of human body like bones, organs, tissues, etc. is an important issue. Image segmentation allows isolating the object of interest for further processing that can lead for example to 3D model reconstruction of whole organs. Difficulty of this procedure varies from trivial for bones to quite difficult for organs like liver. The liver is being considered as one of the most difficult human body organ to segment. It is mainly for its complexity, shape versatility and proximity of other organs and tissues. Due to this facts usually substantial user effort has to be applied to obtain satisfactory results of the image segmentation. Process of image segmentation then deteriorates from automatic or semi-automatic to fairly manual one. In this paper, overview of selected available software applications that can handle semi-automatic image segmentation with further 3D volume reconstruction of human liver is presented. The applications are being evaluated based on the segmentation results of several consecutive DICOM images covering the abdominal area of the human body.
Keywords: Image segmentation, semi-automatic, software, 3D volumetric reconstruction.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 44694263 A New Hybrid RMN Image Segmentation Algorithm
Authors: Abdelouahab Moussaoui, Nabila Ferahta, Victor Chen
Abstract:
The development of aid's systems for the medical diagnosis is not easy thing because of presence of inhomogeneities in the MRI, the variability of the data from a sequence to the other as well as of other different source distortions that accentuate this difficulty. A new automatic, contextual, adaptive and robust segmentation procedure by MRI brain tissue classification is described in this article. A first phase consists in estimating the density of probability of the data by the Parzen-Rozenblatt method. The classification procedure is completely automatic and doesn't make any assumptions nor on the clusters number nor on the prototypes of these clusters since these last are detected in an automatic manner by an operator of mathematical morphology called skeleton by influence zones detection (SKIZ). The problem of initialization of the prototypes as well as their number is transformed in an optimization problem; in more the procedure is adaptive since it takes in consideration the contextual information presents in every voxel by an adaptive and robust non parametric model by the Markov fields (MF). The number of bad classifications is reduced by the use of the criteria of MPM minimization (Maximum Posterior Marginal).Keywords: Clustering, Automatic Classification, SKIZ, MarkovFields, Image segmentation, Maximum Posterior Marginal (MPM).
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 14124262 Indian License Plate Detection and Recognition Using Morphological Operation and Template Matching
Authors: W. Devapriya, C. Nelson Kennedy Babu, T. Srihari
Abstract:
Automatic License plate recognition (ALPR) is a technology which recognizes the registration plate or number plate or License plate of a vehicle. In this paper, an Indian vehicle number plate is mined and the characters are predicted in efficient manner. ALPR involves four major technique i) Pre-processing ii) License Plate Location Identification iii) Individual Character Segmentation iv) Character Recognition. The opening phase, named pre-processing helps to remove noises and enhances the quality of the image using the conception of Morphological Operation and Image subtraction. The second phase, the most puzzling stage ascertain the location of license plate using the protocol Canny Edge detection, dilation and erosion. In the third phase, each characters characterized by Connected Component Approach (CCA) and in the ending phase, each segmented characters are conceptualized using cross correlation template matching- a scheme specifically appropriate for fixed format. Major application of ALPR is Tolling collection, Border Control, Parking, Stolen cars, Enforcement, Access Control, Traffic control. The database consists of 500 car images taken under dissimilar lighting condition is used. The efficiency of the system is 97%. Our future focus is Indian Vehicle License Plate Validation (Whether License plate of a vehicle is as per Road transport and highway standard).
Keywords: Automatic License plate recognition, Character recognition, Number plate Recognition, Template matching, morphological operation, canny edge detection.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 24064261 Grid Based and Random Based Ant Colony Algorithms for Automatic Hose Routing in 3D Space
Authors: Gishantha Thantulage, Tatiana Kalganova, Manissa Wilson
Abstract:
Ant Colony Algorithms have been applied to difficult combinatorial optimization problems such as the travelling salesman problem and the quadratic assignment problem. In this paper gridbased and random-based ant colony algorithms are proposed for automatic 3D hose routing and their pros and cons are discussed. The algorithm uses the tessellated format for the obstacles and the generated hoses in order to detect collisions. The representation of obstacles and hoses in the tessellated format greatly helps the algorithm towards handling free-form objects and speeds up computation. The performance of algorithm has been tested on a number of 3D models.Keywords: Ant colony algorithm, Automatic hose routing, tessellated format, RAPID.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15794260 A Web Pages Automatic Filtering System
Authors: O. Nouali, A. Saidi, H. Chahrat, A. Krinah, B. Toursel
Abstract:
This article describes a Web pages automatic filtering system. It is an open and dynamic system based on multi agents architecture. This system is built up by a set of agents having each a quite precise filtering task of to carry out (filtering process broken up into several elementary treatments working each one a partial solution). New criteria can be added to the system without stopping its execution or modifying its environment. We want to show applicability and adaptability of the multi-agents approach to the networks information automatic filtering. In practice, most of existing filtering systems are based on modular conception approaches which are limited to centralized applications which role is to resolve static data flow problems. Web pages filtering systems are characterized by a data flow which varies dynamically.Keywords: Agent, Distributed Artificial Intelligence, Multiagents System, Web pages filtering.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 13774259 Automatic Generating CNC-Code for Milling Machine
Authors: Chalakorn Chitsaart, Suchada Rianmora, Mann Rattana-Areeyagon, Wutichai Namjaiprasert
Abstract:
G-code is the main factor in computer numerical control (CNC) machine for controlling the toolpaths and generating the profile of the object’s features. For obtaining high surface accuracy of the surface finish, non-stop operation is required for CNC machine. Recently, to design a new product, the strategy that concerns about a change that has low impact on business and does not consume lot of resources has been introduced. Cost and time for designing minor changes can be reduced since the traditional geometric details of the existing models are applied. In order to support this strategy as the alternative channel for machining operation, this research proposes the automatic generating codes for CNC milling operation. Using this technique can assist the manufacturer to easily change the size and the geometric shape of the product during the operation where the time spent for setting up or processing the machine are reduced. The algorithm implemented on MATLAB platform is developed by analyzing and evaluating the geometric information of the part. Codes are created rapidly to control the operations of the machine. Comparing to the codes obtained from CAM, this developed algorithm can shortly generate and simulate the cutting profile of the part.
Keywords: Geometric shapes, Milling operation, Minor changes, CNC Machine, G-code, and Cutting parameters.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 73774258 Examining the Value of Attribute Scores for Author-Supplied Keyphrases in Automatic Keyphrase Extraction
Authors: Vicky Min-How Lim, Siew Fan Wong, Tong Ming Lim
Abstract:
Automatic keyphrase extraction is useful in efficiently locating specific documents in online databases. While several techniques have been introduced over the years, improvement on accuracy rate is minimal. This research examines attribute scores for author-supplied keyphrases to better understand how the scores affect the accuracy rate of automatic keyphrase extraction. Five attributes are chosen for examination: Term Frequency, First Occurrence, Last Occurrence, Phrase Position in Sentences, and Term Cohesion Degree. The results show that First Occurrence is the most reliable attribute. Term Frequency, Last Occurrence and Term Cohesion Degree display a wide range of variation but are still usable with suggested tweaks. Only Phrase Position in Sentences shows a totally unpredictable pattern. The results imply that the commonly used ranking approach which directly extracts top ranked potential phrases from candidate keyphrase list as the keyphrases may not be reliable.Keywords: Accuracy, Attribute Score, Author-supplied keyphrases, Automatic keyphrase extraction.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 13524257 Combined Automatic Speech Recognition and Machine Translation in Business Correspondence Domain for English-Croatian
Authors: Sanja Seljan, Ivan Dunđer
Abstract:
The paper presents combined automatic speech recognition (ASR) of English and machine translation (MT) for English and Croatian and Croatian-English language pairs in the domain of business correspondence. The first part presents results of training the ASR commercial system on English data sets, enriched by error analysis. The second part presents results of machine translation performed by free online tool for English and Croatian and Croatian-English language pairs. Human evaluation in terms of usability is conducted and internal consistency calculated by Cronbach's alpha coefficient, enriched by error analysis. Automatic evaluation is performed by WER (Word Error Rate) and PER (Position-independent word Error Rate) metrics, followed by investigation of Pearson’s correlation with human evaluation.
Keywords: Automatic machine translation, integrated language technologies, quality evaluation, speech recognition.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 29124256 A System of Automatic Speech Recognition based on the Technique of Temporal Retiming
Authors: Samir Abdelhamid, Noureddine Bouguechal
Abstract:
We report in this paper the procedure of a system of automatic speech recognition based on techniques of the dynamic programming. The technique of temporal retiming is a technique used to synchronize between two forms to compare. We will see how this technique is adapted to the field of the automatic speech recognition. We will expose, in a first place, the theory of the function of retiming which is used to compare and to adjust an unknown form with a whole of forms of reference constituting the vocabulary of the application. Then we will give, in the second place, the various algorithms necessary to their implementation on machine. The algorithms which we will present were tested on part of the corpus of words in Arab language Arabdic-10 [4] and gave whole satisfaction. These algorithms are effective insofar as we apply them to the small ones or average vocabularies.Keywords: Continuous speech recognition, temporal retiming, phonetic decoding, algorithms, vocal signal, dynamic programming.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 13484255 An IM-COH Algorithm Neural Network Optimization with Cuckoo Search Algorithm for Time Series Samples
Authors: Wullapa Wongsinlatam
Abstract:
Back propagation algorithm (BP) is a widely used technique in artificial neural network and has been used as a tool for solving the time series problems, such as decreasing training time, maximizing the ability to fall into local minima, and optimizing sensitivity of the initial weights and bias. This paper proposes an improvement of a BP technique which is called IM-COH algorithm (IM-COH). By combining IM-COH algorithm with cuckoo search algorithm (CS), the result is cuckoo search improved control output hidden layer algorithm (CS-IM-COH). This new algorithm has a better ability in optimizing sensitivity of the initial weights and bias than the original BP algorithm. In this research, the algorithm of CS-IM-COH is compared with the original BP, the IM-COH, and the original BP with CS (CS-BP). Furthermore, the selected benchmarks, four time series samples, are shown in this research for illustration. The research shows that the CS-IM-COH algorithm give the best forecasting results compared with the selected samples.Keywords: Artificial neural networks, back propagation algorithm, time series, local minima problem, metaheuristic optimization.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 10934254 Multivariable Control of Smart Timoshenko Beam Structures Using POF Technique
Authors: T.C. Manjunath, B. Bandyopadhyay
Abstract:
Active Vibration Control (AVC) is an important problem in structures. One of the ways to tackle this problem is to make the structure smart, adaptive and self-controlling. The objective of active vibration control is to reduce the vibration of a system by automatic modification of the system-s structural response. This paper features the modeling and design of a Periodic Output Feedback (POF) control technique for the active vibration control of a flexible Timoshenko cantilever beam for a multivariable case with 2 inputs and 2 outputs by retaining the first 2 dominant vibratory modes using the smart structure concept. The entire structure is modeled in state space form using the concept of piezoelectric theory, Timoshenko beam theory, Finite Element Method (FEM) and the state space techniques. Simulations are performed in MATLAB. The effect of placing the sensor / actuator at 2 finite element locations along the length of the beam is observed. The open loop responses, closed loop responses and the tip displacements with and without the controller are obtained and the performance of the smart system is evaluated for active vibration control.Keywords: Smart structure, Timoshenko theory, Euler-Bernoulli theory, Periodic output feedback control, Finite Element Method, State space model, Vibration control, Multivariable system, Linear Matrix Inequality
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 23194253 A Hybrid Classification Method using Artificial Neural Network Based Decision Tree for Automatic Sleep Scoring
Authors: Haoyu Ma, Bin Hu, Mike Jackson, Jingzhi Yan, Wen Zhao
Abstract:
In this paper we propose a new classification method for automatic sleep scoring using an artificial neural network based decision tree. It attempts to treat sleep scoring progress as a series of two-class problems and solves them with a decision tree made up of a group of neural network classifiers, each of which uses a special feature set and is aimed at only one specific sleep stage in order to maximize the classification effect. A single electroencephalogram (EEG) signal is used for our analysis rather than depending on multiple biological signals, which makes greatly simplifies the data acquisition process. Experimental results demonstrate that the average epoch by epoch agreement between the visual and the proposed method in separating 30s wakefulness+S1, REM, S2 and SWS epochs was 88.83%. This study shows that the proposed method performed well in all the four stages, and can effectively limit error propagation at the same time. It could, therefore, be an efficient method for automatic sleep scoring. Additionally, since it requires only a small volume of data it could be suited to pervasive applications.
Keywords: Sleep, Sleep stage, Automatic sleep scoring, Electroencephalography, Decision tree, Artificial neural network
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 20714252 New Design of a Broadband Microwave Zero Bias Power Limiter
Authors: K. Echchakhaoui, E. Abdelmounim, J. Zbitou, H. Bennis, N. Ababssi, M. Latrach
Abstract:
In this paper a new design of a broadband microwave power limiter is presented and validated into simulation by using ADS software (Advanced Design System) from Agilent technologies. The final circuit is built on microstrip lines by using identical Zero Bias Schottky diodes. The power limiter is designed by Associating 3 stages Schottky diodes. The obtained simulation results permit to validate this circuit with a threshold input power level of 0 dBm until a maximum input power of 30 dBm.
Keywords: Limiter, microstrip, zero-biais.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 37904251 Influence of Measurement System on Negative Bias Temperature Instability Characterization: Fast BTI vs Conventional BTI vs Fast Wafer Level Reliability
Authors: Vincent King Soon Wong, Hong Seng Ng, Florinna Sim
Abstract:
Negative Bias Temperature Instability (NBTI) is one of the critical degradation mechanisms in semiconductor device reliability that causes shift in the threshold voltage (Vth). However, thorough understanding of this reliability failure mechanism is still unachievable due to a recovery characteristic known as NBTI recovery. This paper will demonstrate the severity of NBTI recovery as well as one of the effective methods used to mitigate, which is the minimization of measurement system delays. Comparison was done in between two measurement systems that have significant differences in measurement delays to show how NBTI recovery causes result deviations and how fast measurement systems can mitigate NBTI recovery. Another method to minimize NBTI recovery without the influence of measurement system known as Fast Wafer Level Reliability (FWLR) NBTI was also done to be used as reference.Keywords: Fast vs slow BTI, Fast wafer level reliability, Negative bias temperature instability, NBTI measurement system, metal-oxide-semiconductor field-effect transistor, MOSFET, NBTI recovery, reliability.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16644250 Automatic Light Control in Domotics using Artificial Neural Networks
Authors: Carlos Machado, José A. Mendes
Abstract:
Home Automation is a field that, among other subjects, is concerned with the comfort, security and energy requirements of private homes. The configuration of automatic functions in this type of houses is not always simple to its inhabitants requiring the initial setup and regular adjustments. In this work, the ubiquitous computing system vision is used, where the users- action patterns are captured, recorded and used to create the contextawareness that allows the self-configuration of the home automation system. The system will try to free the users from setup adjustments as the home tries to adapt to its inhabitants- real habits. In this paper it is described a completely automated process to determine the light state and act on them, taking in account the users- daily habits. Artificial Neural Network (ANN) is used as a pattern recognition method, classifying for each moment the light state. The work presented uses data from a real house where a family is actually living.Keywords: ANN, Home Automation, Neural Systems, PatternRecognition, Ubiquitous Computing.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 20714249 Investigation of Constant Transconductance Circuit for Low Power Low-Noise Amplifier
Authors: Wei Yi Lim, M. Annamalai Arasu, M. Kumarasamy Raja, Minkyu Je
Abstract:
In this paper, the design of wide-swing constant transconductance (gm) bias circuit that generates bias voltage for low-noise amplifier (LNA) circuit design by using an off-chip resistor is demonstrated. The overall transconductance (Gm) generated by the constant gm bias circuit is important to maintain the overall gain and noise figure of the LNA circuit. Therefore, investigation is performed to study the variation in Gm with process, temperature and supply voltage (PVT). Temperature and supply voltage are swept from -10 °C to 85 °C and 1.425 V to 1.575 V respectively, while the process conditions are also varied to the extreme and the gm variation is eventually concluded at between -3 % to 7 %. With the slight variation in the gm value, through simulation, at worst condition of state SS, we are able to attain a conversion gain (S21) variation of -3.10 % and a noise figure (NF) variation of 18.71 %. The whole constant gm circuit draws approximately 100 µA from a 1.5V supply and is designed based on 0.13 µm CMOS process.
Keywords: Transconductance, LNA, temperature, process.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 41304248 Statistical Analysis of First Order Plus Dead-time System using Operational Matrix
Authors: Pham Luu Trung Duong, Moonyong Lee
Abstract:
To increase precision and reliability of automatic control systems, we have to take into account of random factors affecting the control system. Thus, operational matrix technique is used for statistical analysis of first order plus time delay system with uniform random parameter. Examples with deterministic and stochastic disturbance are considered to demonstrate the validity of the method. Comparison with Monte Carlo method is made to show the computational effectiveness of the method.
Keywords: First order plus dead-time, Operational matrix, Statistical analysis, Walsh function.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 13664247 Reliability of Chute-Feeders in Automatic Machines of High Production Capacity
Authors: R. Usubamatov, A. Usubamatova, S. Hussain
Abstract:
Modern highly automated production systems faces problems of reliability. Machine function reliability results in changes of productivity rate and efficiency use of expensive industrial facilities. Predicting of reliability has become an important research and involves complex mathematical methods and calculation. The reliability of high productivity technological automatic machines that consists of complex mechanical, electrical and electronic components is important. The failure of these units results in major economic losses of production systems. The reliability of transport and feeding systems for automatic technological machines is also important, because failure of transport leads to stops of technological machines. This paper presents reliability engineering on the feeding system and its components for transporting a complex shape parts to automatic machines. It also discusses about the calculation of the reliability parameters of the feeding unit by applying the probability theory. Equations produced for calculating the limits of the geometrical sizes of feeders and the probability of sticking the transported parts into the chute represents the reliability of feeders as a function of its geometrical parameters.Keywords: Chute-feeder, parts, reliability.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 14554246 Automatic Fluid-Structure Interaction Modeling and Analysis of Butterfly Valve Using Python Script
Authors: N. Guru Prasath, Sangjin Ma, Chang-Wan Kim
Abstract:
A butterfly valve is a quarter turn valve which is used to control the flow of a fluid through a section of pipe. Generally, butterfly valve is used in wide range of applications such as water distribution, sewage, oil and gas plants. In particular, butterfly valve with larger diameter finds its immense applications in hydro power plants to control the fluid flow. In-lieu with the constraints in cost and size to run laboratory setup, analysis of large diameter values will be mostly studied by computational method which is the best and inexpensive solution. For fluid and structural analysis, CFD and FEM software is used to perform large scale valve analyses, respectively. In order to perform above analysis in butterfly valve, the CAD model has to recreate and perform mesh in conventional software’s for various dimensions of valve. Therefore, its limitation is time consuming process. In-order to overcome that issue, python code was created to outcome complete pre-processing setup automatically in Salome software. Applying dimensions of the model clearly in the python code makes the running time comparatively lower and easier way to perform analysis of the valve. Hence, in this paper, an attempt was made to study the fluid-structure interaction (FSI) of butterfly valves by varying the valve angles and dimensions using python code in pre-processing software, and results are produced.
Keywords: Butterfly valve, fluid-structure interaction, automatic CFD analysis, flow coefficient.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 12974245 The Performance Improvement of Automatic Modulation Recognition Using Simple Feature Manipulation, Analysis of the HOS, and Voted Decision
Authors: Heroe Wijanto, Sugihartono, Suhartono Tjondronegoro, Kuspriyanto
Abstract:
The use of High Order Statistics (HOS) analysis is expected to provide so many candidates of features that can be selected for pattern recognition. More candidates of the feature can be extracted using simple manipulation through a specific mathematical function prior to the HOS analysis. Feature extraction method using HOS analysis combined with Difference to the Nth-Power manipulation has been examined in application for Automatic Modulation Recognition (AMR) to perform scheme recognition of three digital modulation signal, i.e. QPSK-16QAM-64QAM in the AWGN transmission channel. The simulation results is reported when the analysis of HOS up to order-12 and the manipulation of Difference to the Nth-Power up to N = 4. The obtained accuracy rate of AMR using the method of Simple Decision obtained 90% in SNR > 10 dB in its classifier, while using the method of Voted Decision is 96% in SNR > 2 dB.Keywords: modulation, automatic modulation recognition, feature analysis, feature manipulation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 21204244 Hybrid Neural Network Methods for Lithology Identification in the Algerian Sahara
Authors: S. Chikhi, M. Batouche, H. Shout
Abstract:
In this paper, we combine a probabilistic neural method with radial-bias functions in order to construct the lithofacies of the wells DF01, DF02 and DF03 situated in the Triassic province of Algeria (Sahara). Lithofacies is a crucial problem in reservoir characterization. Our objective is to facilitate the experts' work in geological domain and to allow them to obtain quickly the structure and the nature of lands around the drilling. This study intends to design a tool that helps automatic deduction from numerical data. We used a probabilistic formalism to enhance the classification process initiated by a Self-Organized Map procedure. Our system gives lithofacies, from well-log data, of the concerned reservoir wells in an aspect easy to read by a geology expert who identifies the potential for oil production at a given source and so forms the basis for estimating the financial returns and economic benefits.
Keywords: Classification, Lithofacies, Probabilistic formalism, Reservoir characterization, Well-log data.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 18974243 Some Applications of Gröbner bases
Authors: Hassan Noori, Abdolali Basiri, Sajjad Rahmany
Abstract:
In this paper we will introduce a brief introduction to theory of Gr¨obner bases and some applications of Gr¨obner bases to graph coloring problem, automatic geometric theorem proving and cryptography.Keywords: Gr¨obner bases, Application of Gr¨obner bases, Automatic Geometric Theorem Proving, Graph Coloring, Cryptography.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 49164242 Automatic Text Summarization
Authors: Mohamed Abdel Fattah, Fuji Ren
Abstract:
This work proposes an approach to address automatic text summarization. This approach is a trainable summarizer, which takes into account several features, including sentence position, positive keyword, negative keyword, sentence centrality, sentence resemblance to the title, sentence inclusion of name entity, sentence inclusion of numerical data, sentence relative length, Bushy path of the sentence and aggregated similarity for each sentence to generate summaries. First we investigate the effect of each sentence feature on the summarization task. Then we use all features score function to train genetic algorithm (GA) and mathematical regression (MR) models to obtain a suitable combination of feature weights. The proposed approach performance is measured at several compression rates on a data corpus composed of 100 English religious articles. The results of the proposed approach are promising.Keywords: Automatic Summarization, Genetic Algorithm, Mathematical Regression, Text Features.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 23364241 Automatic Landmark Selection Based on Feature Clustering for Visual Autonomous Unmanned Aerial Vehicle Navigation
Authors: Paulo Fernando Silva Filho, Elcio Hideiti Shiguemori
Abstract:
The selection of specific landmarks for an Unmanned Aerial Vehicles’ Visual Navigation systems based on Automatic Landmark Recognition has significant influence on the precision of the system’s estimated position. At the same time, manual selection of the landmarks does not guarantee a high recognition rate, which would also result on a poor precision. This work aims to develop an automatic landmark selection that will take the image of the flight area and identify the best landmarks to be recognized by the Visual Navigation Landmark Recognition System. The criterion to select a landmark is based on features detected by ORB or AKAZE and edges information on each possible landmark. Results have shown that disposition of possible landmarks is quite different from the human perception.Keywords: Clustering, edges, feature points, landmark selection, X-Means.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 8184240 Automatic Verification Technology of Virtual Machine Software Patch on IaaS Cloud
Authors: Yoji Yamato
Abstract:
In this paper, we propose an automatic verification technology of software patches for user virtual environments on IaaS Cloud to decrease verification costs of patches. In these days, IaaS services have been spread and many users can customize virtual machines on IaaS Cloud like their own private servers. Regarding to software patches of OS or middleware installed on virtual machines, users need to adopt and verify these patches by themselves. This task increases operation costs of users. Our proposed method replicates user virtual environments, extracts verification test cases for user virtual environments from test case DB, distributes patches to virtual machines on replicated environments and conducts those test cases automatically on replicated environments. We have implemented the proposed method on OpenStack using Jenkins and confirmed the feasibility. Using the implementation, we confirmed the effectiveness of test case creation efforts by our proposed idea of 2-tier abstraction of software functions and test cases. We also evaluated the automatic verification performance of environment replications, test cases extractions and test cases conductions.
Keywords: OpenStack, Cloud Computing, Automatic verification, Jenkins.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 21714239 Kurtosis, Renyi's Entropy and Independent Component Scalp Maps for the Automatic Artifact Rejection from EEG Data
Authors: Antonino Greco, Nadia Mammone, Francesco Carlo Morabito, Mario Versaci
Abstract:
The goal of this work is to improve the efficiency and the reliability of the automatic artifact rejection, in particular from the Electroencephalographic (EEG) recordings. Artifact rejection is a key topic in signal processing. The artifacts are unwelcome signals that may occur during the signal acquisition and that may alter the analysis of the signals themselves. A technique for the automatic artifact rejection, based on the Independent Component Analysis (ICA) for the artifact extraction and on some high order statistics such as kurtosis and Shannon-s entropy, was proposed some years ago in literature. In this paper we enhance this technique introducing the Renyi-s entropy. The performance of our method was tested exploiting the Independent Component scalp maps and it was compared to the performance of the method in literature and it showed to outperform it.
Keywords: Artifact, EEG, Renyi's entropy, independent component analysis, kurtosis.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2431