Search results for: Aluminum frame soundproofing wall
1191 Simulation of Non-Linear Behavior of Shear Wall under Seismic Loading
Authors: M. A. Ghorbani, M. Pasbani Khiavi
Abstract:
The seismic response of steel shear wall system considering nonlinearity effects using finite element method is investigated in this paper. The non-linear finite element analysis has potential as usable and reliable means for analyzing of civil structures with the availability of computer technology. In this research the large displacements and materially nonlinear behavior of shear wall is presented with developing of finite element code. A numerical model based on the finite element method for the seismic analysis of shear wall is presented with developing of finite element code in this research. To develop the finite element code, the standard Galerkin weighted residual formulation is used. Two-dimensional plane stress model and total Lagrangian formulation was carried out to present the shear wall response and the Newton-Raphson method is applied for the solution of nonlinear transient equations. The presented model in this paper can be developed for analysis of civil engineering structures with different material behavior and complicated geometry.
Keywords: Finite element, steel shear wall, nonlinear, earthquake
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 18411190 Wetting Front Propagation during Quenching of Aluminum Plate by Water Spray
Authors: M. M. Seraj, M. S. Gadala
Abstract:
This study presents a systematic analysis of wetted region due to cooling of aluminum plate by water spray impingement with respect to different water flow rates, spray nozzle heights, and subcooling. Unlike jet impingement, the wetting is not commenced upon spray impingement and there is a delay in wetness of hot test surface. After initiation, the wetting (black zone) progresses gradually to cover all test plate and provides efficient cooling in nucleate boiling regime. Generally, spray cooling is found function of spray flow rate, spray-to-surface distance and water subcooling. Wetting delay is decreasing by increasing of spray flow rate until spray impact area is not become bigger that test surface. Otherwise, higher spray flow rate is not practically accelerated start of wetting. Very fast wetting due to spray cooling can be obtained by dense spray (high floe rate) discharged from adjacent nozzle to the test surface. Highly subcooling water spray also triggers earlier wetting of hot aluminum plate.
Keywords: Water spray, wetting, aluminum plate, flow rate.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 19561189 Behavior of Generated Gas in Lost Foam Casting
Authors: M. Khodai, S. M. H. Mirbagheri
Abstract:
In the Lost Foam Casting process, melting point temperature of metal, as well as volume and rate of the foam degradation have significant effect on the mold filling pattern. Therefore, gas generation capacity and gas gap length are two important parameters for modeling of mold filling time of the lost foam casting processes. In this paper, the gas gap length at the liquidfoam interface for a low melting point (aluminum) alloy and a high melting point (Carbon-steel) alloy are investigated by the photography technique. Results of the photography technique indicated, that the gas gap length and the mold filling time are increased with increased coating thickness and density of the foam. The Gas gap lengths measured in aluminum and Carbon-steel, depend on the foam density, and were approximately 4-5 and 25-60 mm, respectively. By using a new system, the gas generation capacity for the aluminum and steel was measured. The gas generation capacity measurements indicated that gas generation in the Aluminum and Carbon-steel lost foam casting was about 50 CC/g and 3200 CC/g polystyrene, respectively.Keywords: gas gap, lost foam casting, photographytechnique.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 35011188 Effect of Aging Condition on Semisolid Cast 2024 Aluminum Alloy
Authors: Wisutmethangoon S., Pannaray S., Plookphol T., Wannasin J.
Abstract:
2024 Aluminum alloy was squeezed cast by the Gas Induced Semi Solid (GISS) process. Effect of artificial aging on microstructure and mechanical properties of this alloy was studied in the present work. The solutionized specimens were aged hardened at temperatures of 175°C, 200°C, and 225°C under various time durations. The highest hardness of about 77.7 HRE was attained from specimen aged at the temperature of 175°C for 36h. Upon investigation the microstructure by using transmission electron microscopy (TEM), the S’ phase was mainly attributed to the strengthening effect in the aged alloy. The apparent activation energy for precipitation hardening of the alloy was calculated as 133,805 J/mol.
Keywords: 2024 aluminum alloy, Gas induced semi solid, T6 heat treatment, Aged hardening, Transmission electron microscopy.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 30121187 Modeling and Investigation of Elongation in Free Explosive Forming of Aluminum Alloy Plate
Authors: R. Alipour, F.Najarian
Abstract:
Because of high ductility, aluminum alloys, have been widely used as an important base of metal forming industries. But the main week point of these alloys is their low strength so in forming them with conventional methods like deep drawing, hydro forming, etc have been always faced with problems like fracture during of forming process. Because of this, recently using of explosive forming method for forming of these plates has been recommended. In this paper free explosive forming of A2024 aluminum alloy is numerically simulated and during it, explosion wave propagation process is studied. Consequences of this simulation can be effective in prediction of quality of production. These consequences are compared with an experimental test and show the superiority of this method to similar methods like hydro forming and deep drawing.
Keywords: Free explosive forming, CEL, Johnson cook.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 23081186 Numerical Study for Compressive Strength of Basalt Composite Sandwich Infill Panel
Authors: Viriyavudh Sim, Jung Kyu Choi, Yong Ju Kwak, Oh Hyeon Jeon, Woo Young Jung
Abstract:
In this study, we investigated the buckling performance of basalt fiber reinforced polymer (BFRP) sandwich infill panels. Fiber Reinforced Polymer (FRP) is a major evolution for energy dissipation when used as infill material of frame structure, a basic Polymer Matrix Composite (PMC) infill wall system consists of two FRP laminates surrounding an infill of foam core. Furthermore, this type of component is for retrofitting and strengthening frame structure to withstand the seismic disaster. In-plane compression was considered in the numerical analysis with ABAQUS platform to determine the buckling failure load of BFRP infill panel system. The present result shows that the sandwich BFRP infill panel system has higher resistance to buckling failure than those of glass fiber reinforced polymer (GFRP) infill panel system, i.e. 16% increase in buckling resistance capacity.
Keywords: Basalt fiber reinforced polymer, buckling performance, FEM analysis, sandwich infill panel.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 13501185 Hygrothermal Assessment of Internally Insulated Prefabricated Concrete Wall in Polish Climatic Condition
Authors: D. Kaczorek
Abstract:
Internal insulation of external walls is often problematic due to increased moisture content in the wall and interstitial or surface condensation risk. In this paper, the hygrothermal performance of prefabricated, concrete, large panel, external wall typical for WK70 system, commonly used in Poland in the 70’s, with inside, additional insulation was investigated. Thermal insulation board made out of hygroscopic, natural materials with moisture buffer capacity and extruded polystyrene (EPS) board was used as interior insulation. Experience with this natural insulation is rare in Poland. The analysis was performed using WUFI software. First of all, the impact of various standard boundary conditions on the behavior of the different wall assemblies was tested. The comparison of results showed that the moisture class according to the EN ISO 13788 leads to too high values of total moisture content in the wall since the boundary condition according to the EN 15026 should be usually applied. Then, hygrothermal 1D-simulations were conducted by WUFI Pro for analysis of internally added insulation, and the weak point like the joint of the wall with the concrete ceiling was verified using 2D simulations. Results showed that, in the Warsaw climate and the indoor conditions adopted in accordance with EN 15026, in the tested wall assemblies, regardless of the type of interior insulation, there would not be any problems with moisture - inside the structure and on the interior surface.
Keywords: Concrete large panel wall, hygrothermal simulation, internal insulation, moisture related issues.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 7191184 The Implementation of Word Study Wall in an Online English Word Memorization Class
Authors: Yidan Shao
Abstract:
With the advancement of the economy, technology promotes online teaching, and learning has become one of the common features in the educational field. Meanwhile, the dramatic expansion of the online environment provides opportunities for more learners, including second language learners. A greater command of vocabulary improves students’ learning capacity, and word acquisition and development play a critical role in learning. Furthermore, the Word Wall is an effective tool to improve students’ knowledge of words, which works for a wide range of age groups. Therefore, this study is going to use the Word Wall as an intervention to examine whether it can bring some memorization changes in an online English language class for a second language learner based on the word morphology method. The participant will take ten courses in the experiment as it plans. The findings show that the Word Wall activity plays a slight role in improving word memorizing, but it does affect instant memorization. If longer periods and more comprehensive designs of research can be applied, it is expected to have more value.
Keywords: Second language acquisition, word morphology, word memorization, the Word Wall.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2741183 An Experimental Study on the Tensile Behavior of the Cracked Aluminum Plates Repaired with FML Composite Patches
Authors: A. Pourkamali Anaraki, G. H. Payganeh, F. Ashena ghasemi, A. Fallah
Abstract:
Repairing of the cracks by fiber metal laminates (FMLs) was first done by some aeronautical laboratories in early 1970s. In this study, experimental investigations were done on the effect of repairing the center-cracked aluminum plates using the FML patches. The repairing processes were conducted to characterize the response of the repaired structures to tensile tests. The composite patches were made of one aluminum layer and two woven glassepoxy composite layers. Three different crack lengths in three crack angles and different patch lay-ups were examined. It was observed for the lengthen cracks, the effect of increasing the crack angle on ultimate tensile load in the structure was increase. It was indicated that the situation of metal layer in the FML patches had an important effect on the tensile response of the tested specimens. It was found when the aluminum layer is farther, the ultimate tensile load has the highest amount.Keywords: Crack, Composite patch repair, Fiber metal laminate (FML), Patch Lay-up, Repair surface, Ultimate load
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 18431182 Smart Surveillance using PDA
Authors: Basem Mustafa Abd. Amer , Syed Abdul Rahman Al-Attas
Abstract:
The aim of this research is to develop a fast and reliable surveillance system based on a personal digital assistant (PDA) device. This is to extend the capability of the device to detect moving objects which is already available in personal computers. Secondly, to compare the performance between Background subtraction (BS) and Temporal Frame Differencing (TFD) techniques for PDA platform as to which is more suitable. In order to reduce noise and to prepare frames for the moving object detection part, each frame is first converted to a gray-scale representation and then smoothed using a Gaussian low pass filter. Two moving object detection schemes i.e., BS and TFD have been analyzed. The background frame is updated by using Infinite Impulse Response (IIR) filter so that the background frame is adapted to the varying illuminate conditions and geometry settings. In order to reduce the effect of noise pixels resulting from frame differencing morphological filters erosion and dilation are applied. In this research, it has been found that TFD technique is more suitable for motion detection purpose than the BS in term of speed. On average TFD is approximately 170 ms faster than the BS techniqueKeywords: Surveillance, PDA, Motion Detection, ImageProcessing , Background Subtraction.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 17591181 Effects of Roughness on Forward Facing Step in an Open Channel
Authors: S. M. Rifat, André L. Marchildon, Mark F. Tachie
Abstract:
Experiments were performed to investigate the effects of roughness on the reattachment and redevelopment regions over a 12 mm forward facing step (FFS) in an open channel flow. The experiments were performed over an upstream smooth wall and a smooth FFS, an upstream wall coated with sandpaper 36 grit and a smooth FFS and an upstream rough wall produced from sandpaper 36 grit and a FFS coated with sandpaper 36 grit. To investigate only the wall roughness effects, Reynolds number, Froude number, aspect ratio and blockage ratio were kept constant. Upstream profiles showed reduced streamwise mean velocities close to the rough wall compared to the smooth wall, but the turbulence level was increased by upstream wall roughness. The reattachment length for the smooth-smooth wall experiment was 1.78h; however, when it is replaced with rough-smooth wall the reattachment length decreased to 1.53h. It was observed that the upstream roughness increased the physical size of contours of maximum turbulence level; however, the downstream roughness decreased both the size and magnitude of contours in the vicinity of the leading edge of the step. Quadrant analysis was performed to investigate the dominant Reynolds shear stress contribution in the recirculation region. The Reynolds shear stress and turbulent kinetic energy profiles after the reattachment showed slower recovery compared to the streamwise mean velocity, however all the profiles fairly collapse on their corresponding upstream profiles at x/h = 60. It was concluded that to obtain a complete collapse several more streamwise distances would be required.Keywords: Forward facing step, open channel, separated and reattached turbulent flows, wall roughness.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16571180 Numerical Study of Natural Convection Effects in Latent Heat Storage using Aluminum Fins and Spiral Fillers
Authors: Lippong Tan, Yuenting Kwok, Ahbijit Date, Aliakbar Akbarzadeh
Abstract:
A numerical investigation has carried out to understand the melting characteristics of phase change material (PCM) in a fin type latent heat storage with the addition of embedded aluminum spiral fillers. It is known that melting performance of PCM can be significantly improved by increasing the number of embedded metallic fins in the latent heat storage system but to certain values where only lead to small improvement in heat transfer rate. Hence, adding aluminum spiral fillers within the fin gap can be an option to improve heat transfer internally. This paper presents extensive computational visualizations on the PCM melting patterns of the proposed fin-spiral fillers configuration. The aim of this investigation is to understand the PCM-s melting behaviors by observing the natural convection currents movement and melting fronts formation. Fluent 6.3 simulation software was utilized in producing twodimensional visualizations of melting fractions, temperature distributions and flow fields to illustrate the melting process internally. The results show that adding aluminum spiral fillers in Fin type latent heat storage can promoted small but more active natural convection currents and improve melting of PCM.
Keywords: Phase change material, thermal enhancement, aluminum spiral fillers, fins
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 34051179 The Building Thermal Performance and Carbon Sequestration Evaluation for Psophocarpus tetrogonobulus on Biofaçade Wall in the Tropical Environment
Authors: Abdul M. A. Rahman , Foong S. Yeok, Atikah F. Amir
Abstract:
Plants are commonly known for its positive correlation in reducing temperature. Since it can benefit buildings by modifying the microclimate, it-s also believed capable of reducing the internal temperature. Various experiments have been done in Universiti Sains Malaysia, Penang to investigate the comparison in thermal benefits between two rooms, one being a typical control room (exposed wall) and the other a biofacade room (plant shaded wall). The investigations were conducted during non-rainy season for approximately a month. Climbing plant Psophocarpus tetrogonobulus from legume species was selected as insulation for the biofacade wall. Conclusions were made on whether the biofacade can be used to tackle the energy efficiency, based on the parameters taken into consideration.Keywords: biofacade, thermal benefits, carbon sequestration, Psophocarpus tetrogonobulus.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 51631178 Effects of Solar Absorption Coefficient of External Wall on Building Energy Consumption
Authors: Jian Yao, Chengwen Yan
Abstract:
The principle concern of this paper is to determine the impact of solar absorption coefficient of external wall on building energy consumption. Simulations were carried out on a typical residential building by using the simulation Toolkit DeST-h. Results show that reducing solar absorption coefficient leads to a great reduction in building energy consumption and thus light-colored materials are suitable.Keywords: Solar absorption coefficient, External wall, Buildingenergy consumption.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 44261177 Conceptual Investigation of Short-Columns and Masonary Infill Frames Effect in the Earthquakes
Authors: Ebrahim Khalilzadeh Vahidi, Maryam Mokhtari Malekabadi
Abstract:
This paper highlights the importance of the selection of the building-s wall material,and the shortcomings of the most commonly used framed structures with masonry infills .The objective of this study is investigating the behavior of infill walls as structural components in existing structures.Structural infill walls are very important in structural behavior under earthquake effects. Structural capacity under the effect of earthquake,displacement and relative story displacement are affected by the structural irregularities .The presence of nonstructural masonry infill walls can modify extensively the global seismic behavior of framed buildings .The stability and integrity of reinforced concrete frames are enhanced by masonry infill walls. Masonry infill walls alter displacement and base shear of the frame as well. Short columns have great importance during earthquakes,because their failure may lead to additional structural failures and result in total building collapse. Consequently the effects of short columns are considered in this study.Keywords: Short columns , Infill masonary wall , Buildings , Earthquake.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 34591176 Dynamic TDMA Slot Reservation Protocol for QoS Provisioning in Cognitive Radio Ad Hoc Networks
Authors: S. M. Kamruzzaman
Abstract:
In this paper, we propose a dynamic TDMA slot reservation (DTSR) protocol for cognitive radio ad hoc networks. Quality of Service (QoS) guarantee plays a critically important role in such networks. We consider the problem of providing QoS guarantee to users as well as to maintain the most efficient use of scarce bandwidth resources. According to one hop neighboring information and the bandwidth requirement, our proposed protocol dynamically changes the frame length and the transmission schedule. A dynamic frame length expansion and shrinking scheme that controls the excessive increase of unassigned slots has been proposed. This method efficiently utilizes the channel bandwidth by assigning unused slots to new neighboring nodes and increasing the frame length when the number of slots in the frame is insufficient to support the neighboring nodes. It also shrinks the frame length when half of the slots in the frame of a node are empty. An efficient slot reservation protocol not only guarantees successful data transmissions without collisions but also enhance channel spatial reuse to maximize the system throughput. Our proposed scheme, which provides both QoS guarantee and efficient resource utilization, be employed to optimize the channel spatial reuse and maximize the system throughput. Extensive simulation results show that the proposed mechanism achieves desirable performance in multichannel multi-rate cognitive radio ad hoc networks.Keywords: TDMA, cognitive radio, ad hoc networks, QoSguarantee, dynamic frame length.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 26541175 A Comparison of Single Point Incremental Forming Formability between Carbon Steel and Stainless Steel
Authors: K. Rattanachan
Abstract:
In sheet metal forming process, raw material mechanical properties are important parameters. This paper is to compare the wall’s incline angle or formability of SS 400 steel and SUS 304 stainless steel in single point incremental forming. The two materials are ferrous base alloyed, which have the different unit cell, mechanical property and chemical composition. They were forming into cone shape specimens having 100 mm diameter with different wall’s incline angle: 90o, 75o and 60o. The investigation was continued until the specimens formed surface facture. The experimental result showed that the smaller the wall incline angle higher the formability with the both materials. The formability limit of the ferrous base alloy was approx. 60o wall’s incline angle. By nature, SS 400 has higher formability than SUS 304. This result can be used as the initial data in designing the single point incremental forming parts.
Keywords: NC incremental forming, Single point incremental forming, Wall incline angle, Formability.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 26861174 Wall Pressure Fluctuations in Naturally Developing Boundary Layer Flows on Axisymmetric Bodies
Authors: Chinsuk Hong
Abstract:
This paper investigates the characteristics of wall pressure fluctuations in naturally developing boundary layer flows on axisymmetric bodies experimentally. The axisymmetric body has a modified ellipsoidal blunt nose. Flush-mounted microphones are used to measure the wall pressure fluctuations in the boundary layer flow over the body. The measurements are performed in a low noise wind tunnel. It is found that the correlation between the flow regime and the characteristics of the pressure fluctuations is distinct. The process from small fluctuation in laminar flow to large fluctuation in turbulent flow is investigated. Tollmien-Schlichting wave (T-S wave) is found to generate and develop in transition. Because of the T-S wave, the wall pressure fluctuations in the transition region are higher than those in the turbulent boundary layer.Keywords: Wall Pressure Fluctuation, Boundary Layer Flow, Transition, Turbulent Flow, Axisymmetric Body, Flow Noise.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 17021173 Tool Wear of Aluminum/Chromium/Tungsten-Based-Coated Cemented Carbide Tools in Cutting Sintered Steel
Authors: Tadahiro Wada, Hiroyuki Hanyu
Abstract:
In this study, to clarify the effectiveness of an aluminum/chromium/tungsten-based-coated tool for cutting sintered steel, tool wear was experimentally investigated. The sintered steel was turned with the (Al60,Cr25,W15)N-, (Al60,Cr25,W15)(C,N)- and (Al64,Cr28,W8)(C,N)-coated cemented carbide tools according to the physical vapor deposition (PVD) method. Moreover, the tool wear of the aluminum/chromium/tungsten-based-coated item was compared with that of the (Al,Cr)N coated tool. Furthermore, to clarify the tool wear mechanism of the aluminum/chromium/tungsten-coating film for cutting sintered steel, Scanning Electron Microscope observation and Energy Dispersive x-ray Spectroscopy mapping analysis were conducted on the abraded surface. The following results were obtained: (1) The wear progress of the (Al64,Cr28,W8)(C,N)-coated tool was the slowest among that of the five coated tools. (2) Adding carbon (C) to the aluminum/chromium/tungsten-based-coating film was effective for improving the wear-resistance. (3) The main wear mechanism of the (Al60,Cr25,W15)N-, the (Al60,Cr25,W15)(C,N)- and the (Al64,Cr28,W8)(C,N)-coating films was abrasive wear.Keywords: Cutting, physical vapor deposition coating method, tool wear, tool wear mechanism, sintered steel.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16631172 Experimental Study on Using the Aluminum Sacrificial Anode as a Cathodic Protection for Marine Structures
Authors: A. Radwan, A. Elbatran, A. Mehanna, M. Shehadeh
Abstract:
The corrosion is natural chemical phenomenon that is applied in many engineering structures. Hence, it is one of the important topics to study in the engineering research. Ship and offshore structures are most exposed to corrosion due to the presence of corrosive medium of air and the seawater. Consequently, investigation of the corrosion behavior and properties over ship and offshore hulls is one of the important topics to study in the marine engineering research. Using sacrificial anode is the most popular solution for protecting marine structures from corrosion. Hence, this research investigates the extent of corrosion between the composite ship model and relative velocity of water, along with the sacrificial aluminum anode consumption and its degree of protection in seawater. In this study, the consumption rate of sacrificial aluminum anode with respect to relative velocity at different Reynold’s numbers was studied experimentally, and it was found that, the degree of cathodic protection represented by the cathode potential at a given distance from the aluminum anode was decreased slightly with increment of the relative velocity.Keywords: Corrosion, Reynold’s numbers, sacrificial anode, velocity.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 19981171 The Effect of Frame Geometry on the Seismic Response of Self-Centering Concentrically- Braced Frames
Authors: David A. Roke, M. R. Hasan
Abstract:
Conventional concentrically-braced frame (CBF) systems have limited drift capacity before brace buckling and related damage leads to deterioration in strength and stiffness. Self-centering concentrically-braced frame (SC-CBF) systems have been developed to increase drift capacity prior to initiation of damage and minimize residual drift. SC-CBFs differ from conventional CBFs in that the SC-CBF columns are designed to uplift from the foundation at a specified level of lateral loading, initiating a rigid-body rotation (rocking) of the frame. Vertically-aligned post-tensioning bars resist uplift and provide a restoring force to return the SC-CBF columns to the foundation (self-centering the system). This paper presents a parametric study of different prototype buildings using SC-CBFs. The bay widths of the SC-CBFs have been varied in these buildings to study different geometries. Nonlinear numerical analyses of the different SC-CBFs are presented to illustrate the effect of frame geometry on the behavior and dynamic response of the SC-CBF system.Keywords: Earthquake resistant structures, nonlinear analysis, seismic analysis, self-centering structural systems.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 19191170 Enhancement of Tribological Behavior for Diesel Engine Piston of Solid Skirt by an Optimal Choice of Interface Material
Authors: M. Amara, M. Tahar Abbes, A. Dokkiche, M. Benbrike
Abstract:
Shear stresses generate frictional forces thus lead to the reduction of engine performance due to the power losses. This friction can also cause damage to the piston material. Thus, the choice of an optimal material for the piston is necessary to improve the elastohydrodynamical contacts of the piston. In this study, to achieve this objective, an elastohydrodynamical lubrication model that satisfies the best tribological behavior of the piston with the optimum choice of material is developed. Several aluminum alloys composed of different components are studied in this simulation. An application is made on the piston 60 x 120 mm Diesel engine type F8L413 currently mounted on Deutz trucks TB230 by using different aluminum alloys where alloys based on aluminum-silicon have better tribological performance.
Keywords: EHD lubricated contacts, friction, properties of materials, tribological performance.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 12171169 Seismic Performance Assessment of Pre-70 RC Frame Buildings with FEMA P-58
Authors: D. Cardone
Abstract:
Past earthquakes have shown that seismic events may incur large economic losses in buildings. FEMA P-58 provides engineers a practical tool for the performance seismic assessment of buildings. In this study, FEMA P-58 is applied to two typical Italian pre-1970 reinforced concrete frame buildings, characterized by plain rebars as steel reinforcement and masonry infills and partitions. Given that suitable tools for these buildings are missing in FEMA P- 58, specific fragility curves and loss functions are first developed. Next, building performance is evaluated following a time-based assessment approach. Finally, expected annual losses for the selected buildings are derived and compared with past applications to old RC frame buildings representative of the US building stock.Keywords: FEMA P-58, RC frame buildings, plain rebars, masonry infills, fragility functions, loss functions, expected annual loss.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 19251168 Effects of Upstream Wall Roughness on Separated Turbulent Flow over a Forward Facing Step in an Open Channel
Authors: S. M. Rifat, André L. Marchildon, Mark F. Tachie
Abstract:
The effect of upstream surface roughness over a smooth forward facing step in an open channel was investigated using a particle image velocimetry technique. Three different upstream surface topographies consisting of hydraulically smooth wall, sandpaper 36 grit and sand grains were examined. Besides the wall roughness conditions, all other upstream flow characteristics were kept constant. It was also observed that upstream roughness decreased the approach velocity by 2% and 10% but increased the turbulence intensity by 14% and 35% at the wall-normal distance corresponding to the top plane of the step compared to smooth upstream. The results showed that roughness decreased the reattachment lengths by 14% and 30% compared to smooth upstream. Although the magnitudes of maximum positive and negative Reynolds shear stress in separated and reattached region were 0.02Ue for all the cases, the physical size of both the maximum and minimum contour levels were decreased by increasing upstream roughness.Keywords: Forward facing step, open channel, separated and reattached turbulent flows, wall roughness.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 13911167 Frame and Burst Acquisition in TDMA Satellite Communication Networks with Transponder Hopping
Authors: Vitalice K. Oduol, C. Ardil
Abstract:
The paper presents frame and burst acquisition in a satellite communication network based on time division multiple access (TDMA) in which the transmissions may be carried on different transponders. A unique word pattern is used for the acquisition process. The search for the frame is aided by soft-decision of QPSK modulated signals in an additive white Gaussian channel. Results show that when the false alarm rate is low the probability of detection is also low, and the acquisition time is long. Conversely when the false alarm rate is high, the probability of detection is also high and the acquisition time is short. Thus the system operators can trade high false alarm rates for high detection probabilities and shorter acquisition times.
Keywords: burst acquisition, burst time plan, frame acquisition, satellite access, satellite TDMA, unique word detection
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 91571166 Numerical Investigation on Anchored Sheet Pile Quay Wall with Separated Relieving Platform
Authors: Mahmoud Roushdy, Mohamed El Naggar, Ahmed Yehia Abdelaziz
Abstract:
Anchored sheet pile has been used worldwide as front quay walls for decades. With the increase in vessel drafts and weights, those sheet pile walls need to be upgraded by increasing the depth of the dredging line in front of the wall. One of the upgrades for the sheet pile wall is to add a separated platform to the system, where the platform is structurally separated from the front wall. The platform is structurally separated from the front wall. This paper presents a numerical investigation utilizing finite element analysis on the behavior of separated relieve platforms installed within existing anchored sheet pile quay walls. The investigation was done in two steps: a verification step followed by a parametric study. In the verification step, the numerical model was verified based on field measurements performed by others. The validated model was extended within the parametric study to a series of models with different backfill soils, separation gap width, and number of pile rows supporting the platform. The results of the numerical investigation show that using stiff clay as backfill soil (neglecting consolidation) gives better performance for the front wall and the first pile row adjacent to sandy backfills. The degree of compaction of the sandy backfill slightly increases lateral deformations but reduces bending moment acting on pile rows, while the effect is minor on the front wall. In addition, the increase in the separation gap width gradually increases bending moments on the front wall regardless of the backfill soil type, while this effect is reversed on pile rows (gradually decrease). Finally, the paper studies the possibility of deepening the basin along with the separation to take advantage of the positive separation effect on piles, and front wall.
Keywords: Anchored sheet pile, relieving platform, separation gap, upgrade quay wall.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2771165 Evaluation of Gasoline Engine Piston with Various Coating Materials Using Finite Element Method
Authors: Nouby Ghazaly, Gamal Fouad, Ali Abd-El-Tawwab, K. A. Abd El-Gwwad
Abstract:
The purpose of this paper is to examine the piston stress distribution using several thicknesses of the coating materials to achieve higher gasoline engine performance. First of all, finite element structure analysis is used to uncoated petrol piston made of aluminum alloy. Then, steel and cast-iron piston materials are conducted and compared with the aluminum piston. After that, investigation of four coating materials namely, yttria-stabilized zirconia, magnesia-stabilized zirconia, alumina, and mullite are studied for each piston materials. Next, influence of various thickness coating layers on the structure stresses of the top surfaces is examined. Comparison between simulated results for aluminum, steel, and cast-iron materials is reported. Moreover, the influences of different coating thickness on the Von Mises stresses of four coating materials are investigated. From the simulation results, it can report that the maximum Von Mises stresses and deformations for the piston materials are decreasing with increasing the coating thickness for magnesia-stabilized zirconia, yttria-stabilized zirconia, mullite and alumina coated materials.
Keywords: Structure analysis, aluminum piston, MgZrO3, YTZ, mullite and alumina.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 7841164 Limited Component Evaluation of the Effect of Regular Cavities on the Sheet Metal Element of the Steel Plate Shear Wall
Authors: Seyyed Abbas Mojtabavi, Mojtaba Fatzaneh Moghadam, Masoud Mahdavi
Abstract:
Steel Metal Shear Wall is one of the most common and widely used energy dissipation systems in structures, which is used today as a damping system due to the increase in the construction of metal structures. In the present study, the shear wall of the steel plate with dimensions of 5×3 m and thickness of 0.024 m was modeled with 2 floors of total height from the base level with finite element method in Abaqus software. The loading is done as a concentrated load at the upper point of the shear wall on the second floor based on step type buckle. The mesh in the model is applied in two directions of length and width of the shear wall, equal to 0.02 and 0.033, respectively, and the mesh in the models is of sweep type. Finally, it was found that the steel plate shear wall with cavity (CSPSW) compared to the SPSW model, S (Mises), Smax (In-Plane Principal), Smax (In-Plane Principal-ABS), Smax (Min Principal) increased by 53%, 70%, 68% and 43%, respectively. The presence of cavities has led to an increase in the estimated stresses, but their presence has caused critical stresses and critical deformations created to be removed from the inner surface of the shear wall and transferred to the desired sections (regular cavities) which can be suggested as a solution in seismic design and improvement of the structure to transfer possible damage during the earthquake and storm to the desired and pre-designed location in the structure.
Keywords: Steel plate shear wall, Abacus software, finite element method, boundary element, seismic structural improvement, Von misses Stress.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 5181163 Behavior Evaluation of an Anchored Wall
Authors: Polo G. Yohn Edison, Rocha F. Pedricto
Abstract:
This work presents a study about a retaining structure designed for the duplication of the rail FEPASA on the 74th km between Santos and São Paulo. This structure, an anchored retaining wall, was instrumented in the anchors heads with strain gauges in order to monitor its loads. The load measurements occurred during the performance test, locking and also after the works were concluded. A decrease on anchors loads is noticed at the moment immediately after the locking, during construction and after the works finished. It was observed that a loss of load in the anchors occurred to a maximum of 54%.
Keywords: Anchors, Instrumentation, Retaining wall, Strain gauges.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 17001162 Mechanical Behavior of Deep-Drawn Cups with Aluminum/Duralumin Multi-Layered Clad Structures
Authors: Hideaki Tsukamoto, Yoshiki Komiya, Hisashi Sato, Yoshimi Watanabe
Abstract:
This study aims to investigate mechanical behavior of deep-drawn cups consisting of aluminum (A1050)/ duralumin (A2017) multi-layered clad structures with micro- and macro-scale functional gradients. Such multi-layered clad structures are possibly used for a new type of crash-boxes in automobiles to effectively absorb the impact forces generated when automobiles having collisions. The effect of heat treatments on microstructure, compositional gradient, micro hardness in 2 and 6-layered aluminum/ duralumin clad structures, which were fabricated by hot rolling, have been investigated. Impact compressive behavior of deep-drawn cups consisting of such aluminum/ duralumin clad structures has been also investigated in terms of energy absorption and maximum force. Deep-drawn cups consisting of 6-layerd clad structures with microand macro-scale functional gradients exhibit superior properties in impact compressive tests.Keywords: Crash box, functionally graded material (FGM), Impact compressive property, Multi-layered clad structure.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2130