Search results for: rock mass classification
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 2242

Search results for: rock mass classification

1102 Spatio-Temporal Video Slice Edges Analysis for Shot Transition Detection and Classification

Authors: Aissa Saoudi, Hassane Essafi

Abstract:

In this work we will present a new approach for shot transition auto-detection. Our approach is based on the analysis of Spatio-Temporal Video Slice (STVS) edges extracted from videos. The proposed approach is capable to efficiently detect both abrupt shot transitions 'cuts' and gradual ones such as fade-in, fade-out and dissolve. Compared to other techniques, our method is distinguished by its high level of precision and speed. Those performances are obtained due to minimizing the problem of the boundary shot detection to a simple 2D image partitioning problem.

Keywords: Boundary shot detection, Shot transition detection, Video analysis, Video indexing.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1638
1101 Identification and Classification of Plastic Resins using Near Infrared Reflectance Spectroscopy

Authors: Hamed Masoumi, Seyed Mohsen Safavi, Zahra Khani

Abstract:

In this paper, an automated system is presented for identification and separation of plastic resins based on near infrared (NIR) reflectance spectroscopy. For identification and separation among resins, a "Two-Filter" identification method is proposed that is capable to distinguish among polyethylene terephthalate (PET), high density polyethylene (HDPE), polyvinyl chloride (PVC), polypropylene (PP) and polystyrene (PS). Through surveying effects of parameters such as surface contamination, sample thickness, label and cap existence, it was obvious that the "Two-Filter" method has a high efficiency in identification of resins. It is shown that accurate identification and separation of five major resins can be obtained through calculating the relative reflectance at two wavelengths in the NIR region.

Keywords: Identification, Near Infrared, Plastic, Separation, Spectroscopy

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 10016
1100 Comparison of Machine Learning and Deep Learning Algorithms for Automatic Classification of 80 Different Pollen Species

Authors: Endrick Barnacin, Jean-Luc Henry, Jimmy Nagau, Jack Molinié

Abstract:

Palynology is a field of interest in many disciplines due to its multiple applications: chronological dating, climatology, allergy treatment, and honey characterization. Unfortunately, the analysis of a pollen slide is a complicated and time consuming task that requires the intervention of experts in the field, which are becoming increasingly rare due to economic and social conditions. In this context, the automation of this task is urgent. In this work, we compare classical feature extraction methods (Shape, GLCM, LBP, and others) and Deep Learning (CNN and Transfer Learning) to perform a recognition task over 80 regional pollen species. It has been found that the use of Transfer Learning seems to be more precise than the other approaches.

Keywords: Image segmentation, stuck particles separation, Sobel operator, thresholding.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 201
1099 Kohonen Self-Organizing Maps as a New Method for Determination of Salt Composition of Multi-Component Solutions

Authors: Sergey A. Burikov, Tatiana A. Dolenko, Kirill A. Gushchin, Sergey A. Dolenko

Abstract:

The paper presents the results of clusterization by Kohonen self-organizing maps (SOM) applied for analysis of array of Raman spectra of multi-component solutions of inorganic salts, for determination of types of salts present in the solution. It is demonstrated that use of SOM is a promising method for solution of clusterization and classification problems in spectroscopy of multicomponent objects, as attributing a pattern to some cluster may be used for recognition of component composition of the object.

Keywords: Kohonen self-organizing maps, clusterization, multicomponent solutions, Raman spectroscopy.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1761
1098 Comparison of MODIS-Based Rice Extent Map and Landsat-Based Rice Classification Map in Determining Biomass Energy Potential of Rice Hull in Nueva Ecija, Philippines

Authors: Klathea Sevilla, Marjorie Remolador, Bryan Baltazar, Imee Saladaga, Loureal Camille Inocencio, Ma. Rosario Concepcion Ang

Abstract:

The underutilization of biomass resources in the Philippines, combined with its growing population and the rise in fossil fuel prices confirms demand for alternative energy sources. The goal of this paper is to provide a comparison of MODIS-based and Landsat-based agricultural land cover maps when used in the estimation of rice hull’s available energy potential. Biomass resource assessment was done using mathematical models and remote sensing techniques employed in a GIS platform.

Keywords: Biomass, geographic information system, GIS, renewable energy.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2243
1097 The Riemann Barycenter Computation and Means of Several Matrices

Authors: Miklos Palfia

Abstract:

An iterative definition of any n variable mean function is given in this article, which iteratively uses the two-variable form of the corresponding two-variable mean function. This extension method omits recursivity which is an important improvement compared with certain recursive formulas given before by Ando-Li-Mathias, Petz- Temesi. Furthermore it is conjectured here that this iterative algorithm coincides with the solution of the Riemann centroid minimization problem. Certain simulations are given here to compare the convergence rate of the different algorithms given in the literature. These algorithms will be the gradient and the Newton mehod for the Riemann centroid computation.

Keywords: Means, matrix means, operator means, geometric mean, Riemannian center of mass.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1788
1096 On Decomposition of Maximal Prefix Codes

Authors: Nikolai Krainiukov, Boris Melnikov

Abstract:

We study the properties of maximal prefix codes. The codes have many applications in computer science, theory of formal languages, data processing and data classification. Our approaches to study use finite state automata (so-called flower automata) for the representation of prefix codes. An important task is the decomposition of prefix codes into prime prefix codes (factors). We discuss properties of such prefix code decompositions. A linear time algorithm is designed to find the prime decomposition. We used the GAP computer algebra system, which allows us to perform algebraic operations for free semigroups, monoids and automata.

Keywords: Maximal prefix code, regular languages, flower automata, prefix code decomposing.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 70
1095 Analyzing Multi-Labeled Data Based on the Roll of a Concept against a Semantic Range

Authors: Masahiro Kuzunishi, Tetsuya Furukawa, Ke Lu

Abstract:

Classifying data hierarchically is an efficient approach to analyze data. Data is usually classified into multiple categories, or annotated with a set of labels. To analyze multi-labeled data, such data must be specified by giving a set of labels as a semantic range. There are some certain purposes to analyze data. This paper shows which multi-labeled data should be the target to be analyzed for those purposes, and discusses the role of a label against a set of labels by investigating the change when a label is added to the set of labels. These discussions give the methods for the advanced analysis of multi-labeled data, which are based on the role of a label against a semantic range.

Keywords: Classification Hierarchies, Data Analysis, Multilabeled Data, Orders of Sets of Labels

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1208
1094 An Approach for the Prediction of Cardiovascular Diseases

Authors: Nebi Gedik

Abstract:

Regardless of age or gender, cardiovascular illnesses are a serious health concern because of things like poor eating habits, stress, a sedentary lifestyle, hard work schedules, alcohol use, and weight. It tends to happen suddenly and has a high rate of recurrence. Machine learning models can be implemented to assist healthcare systems in the accurate detection and diagnosis of cardiovascular disease (CVD) in patients. Improved heart failure prediction is one of the primary goals of researchers using the heart disease dataset. The purpose of this study is to identify the feature or features that offer the best classification prediction for CVD detection. The support vector machine classifier is used to compare each feature's performance. It has been determined which feature produces the best results.

Keywords: Cardiovascular disease, feature extraction, supervised learning, support vector machine.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 170
1093 Artificial Neural Networks for Classifying Magnetic Measurements in Tokamak Reactors

Authors: A. Greco, N. Mammone, F.C. Morabito, M.Versaci

Abstract:

This paper is mainly concerned with the application of a novel technique of data interpretation to the characterization and classification of measurements of plasma columns in Tokamak reactors for nuclear fusion applications. The proposed method exploits several concepts derived from soft computing theory. In particular, Artifical Neural Networks have been exploited to classify magnetic variables useful to determine shape and position of the plasma with a reduced computational complexity. The proposed technique is used to analyze simulated databases of plasma equilibria based on ITER geometry configuration. As well as demonstrating the successful recovery of scalar equilibrium parameters, we show that the technique can yield practical advantages compares with earlier methods.

Keywords: Tokamak, sensors, artificial neural network.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1823
1092 Stock Movement Prediction Using Price Factor and Deep Learning

Authors: Hy Dang, Bo Mei

Abstract:

The development of machine learning methods and techniques has opened doors for investigation in many areas such as medicines, economics, finance, etc. One active research area involving machine learning is stock market prediction. This research paper tries to consider multiple techniques and methods for stock movement prediction using historical price or price factors. The paper explores the effectiveness of some deep learning frameworks for forecasting stock. Moreover, an architecture (TimeStock) is proposed which takes the representation of time into account apart from the price information itself. Our model achieves a promising result that shows a potential approach for the stock movement prediction problem.

Keywords: Classification, machine learning, time representation, stock prediction.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1155
1091 Moisture Diffusivity of AAC with Different Densities

Authors: Tomáš Korecký, Kamil Ďurana, Miroslava Lapková, Robert Černý

Abstract:

Method of determining of moisture diffusivity on two types of autoclaved aerated concretes with different bulk density is represented in the paper. On the specimens were measured one dimensional water transport only on liquid phase. Ever evaluation was done from moisture profiles measured in specific times by capacitance moisture meter. All values from capacitance meter were recalculated to moisture content by mass. Moisture diffusivity was determined in dependence on both moisture and temperature. The experiment temperatures were set at values 55, 65, 75 and 85°C.

Keywords: moisture diffusivity, autoclaved aerated concrete, capacitance moisture meter

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1830
1090 Analysis of High Resolution Seismic Reflection Data to Identify Different Regional Lithologies of the Zaria Batholith Located in the Basement Complex of North Central Nigeria

Authors: Collins C. Chiemeke, A. Onugba, P. Sule

Abstract:

High resolution seismic reflection has recently been carried out on Zaria batholith, with the aim of characterizing the granitic Zaria batholiths in terms of its lithology. The geology of the area has revealed that the older granite outcrops in the vicinity of Zaria are exposures of a syntectonics to late-tectonic granite batholiths which intruded a crystalline gneissic basement during the Pan-African Orogeny. During the data acquisition the geophone were placed at interval of 1 m, variable offset of 1 and 10 m was used. The common midpoint (CMP) method with 12 fold coverage was employed for the survey. Analysis of the generated 3D surface of the p wave velocities from different profiles for densities and bulk modulus revealed that the rock material is more consolidated in South East part of the batholith and less consolidated in the North Western part. This was in conformity with earlier identified geology of the area, with the South Eastern part majorly of granitic outcrop, while the North Western part is characterized with the exposure of gneisses and thick overburden cover. The difference in lithology was also confirmed by the difference in seismic sections and Arial satellite photograph. Hence two major lithologies were identified, the granitic and gneisses complex which are characterized by gradational boundaries.

Keywords: Basement Complex, Batholith, High Resolution, Lithologies, Seismic Reflection.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1445
1089 Mineralogical Characterization and Petrographic Classification of the Soil of Casablanca City

Authors: I. Fahi, T. Remmal, F. El Kamel, B. Ayoub

Abstract:

The treatment of the geotechnical database of the region of Casablanca was difficult to achieve due to the heterogeneity of the nomenclature of the lithological formations composing its soil. It appears necessary to harmonize the nomenclature of the facies and to produce cartographic documents useful for construction projects and studies before any investment program. To achieve this, more than 600 surveys made by the Public Laboratory for Testing and Studies (LPEE) in the agglomeration of Casablanca, were studied. Moreover, some local observations were made in different places of the metropolis. Each survey was the subject of a sheet containing lithological succession, macro and microscopic description of petrographic facies with photographic illustration, as well as measurements of geomechanical tests. In addition, an X-ray diffraction analysis was made in order to characterize the surficial formations of the region.

Keywords: Casablanca, guidebook, petrography, soil.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 919
1088 Performance Comparison and Evaluation of AdaBoost and SoftBoost Algorithms on Generic Object Recognition

Authors: Doaa Hegazy, Joachim Denzler

Abstract:

SoftBoost is a recently presented boosting algorithm, which trades off the size of achieved classification margin and generalization performance. This paper presents a performance evaluation of SoftBoost algorithm on the generic object recognition problem. An appearance-based generic object recognition model is used. The evaluation experiments are performed using a difficult object recognition benchmark. An assessment with respect to different degrees of label noise as well as a comparison to the well known AdaBoost algorithm is performed. The obtained results reveal that SoftBoost is encouraged to be used in cases when the training data is known to have a high degree of noise. Otherwise, using Adaboost can achieve better performance.

Keywords: SoftBoost algorithm, AdaBoost algorithm, Generic object recognition.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1829
1087 Study on the Heat Transfer Performance of the Annular Fin under Condensing Conditions

Authors: Abdenour Bourabaa, Malika Fekih, Mohamed Saighi

Abstract:

A numerical investigation of the fin efficiency and temperature distribution of an annular fin under dehumidification has been presented in this paper. The non-homogeneous second order differential equation that describes the temperature distribution from the fin base to the fin tip has been solved using the central finite difference method. The effects of variations in parameters including relative humidity, air temperature, air face velocity on temperature distribution and fin efficiency are investigated and compared with those under fully dry fin conditions. Also, the effect of fin pitch on the dimensionless temperature has been studied.

Keywords: Annular fin, Dehumidification, Fin efficiency, Heat and mass transfer, Wet fin.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 4508
1086 Anomaly Detection and Characterization to Classify Traffic Anomalies Case Study: TOT Public Company Limited Network

Authors: O. Siriporn, S. Benjawan

Abstract:

This paper represents four unsupervised clustering algorithms namely sIB, RandomFlatClustering, FarthestFirst, and FilteredClusterer that previously works have not been used for network traffic classification. The methodology, the result, the products of the cluster and evaluation of these algorithms with efficiency of each algorithm from accuracy are shown. Otherwise, the efficiency of these algorithms considering form the time that it use to generate the cluster quickly and correctly. Our work study and test the best algorithm by using classify traffic anomaly in network traffic with different attribute that have not been used before. We analyses the algorithm that have the best efficiency or the best learning and compare it to the previously used (K-Means). Our research will be use to develop anomaly detection system to more efficiency and more require in the future.

Keywords: Unsupervised, clustering, anomaly, machine learning.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2113
1085 Learning of Class Membership Values by Ellipsoidal Decision Regions

Authors: Leehter Yao, Chin-Chin Lin

Abstract:

A novel method of learning complex fuzzy decision regions in the n-dimensional feature space is proposed. Through the fuzzy decision regions, a given pattern's class membership value of every class is determined instead of the conventional crisp class the pattern belongs to. The n-dimensional fuzzy decision region is approximated by union of hyperellipsoids. By explicitly parameterizing these hyperellipsoids, the decision regions are determined by estimating the parameters of each hyperellipsoid.Genetic Algorithm is applied to estimate the parameters of each region component. With the global optimization ability of GA, the learned decision region can be arbitrarily complex.

Keywords: Ellipsoid, genetic algorithm, decision regions, classification.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1428
1084 Categorical Missing Data Imputation Using Fuzzy Neural Networks with Numerical and Categorical Inputs

Authors: Pilar Rey-del-Castillo, Jesús Cardeñosa

Abstract:

There are many situations where input feature vectors are incomplete and methods to tackle the problem have been studied for a long time. A commonly used procedure is to replace each missing value with an imputation. This paper presents a method to perform categorical missing data imputation from numerical and categorical variables. The imputations are based on Simpson-s fuzzy min-max neural networks where the input variables for learning and classification are just numerical. The proposed method extends the input to categorical variables by introducing new fuzzy sets, a new operation and a new architecture. The procedure is tested and compared with others using opinion poll data.

Keywords: Classifier, imputation techniques, fuzzy systems, fuzzy min-max neural networks.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1779
1083 A Classical Method of Optimizing Manufacturing Systems Using a Number of Industrial Engineering Techniques

Authors: John M. Ikome, Martha E. Ikome, Therese Van Wyk

Abstract:

Productivity optimization of a company can significantly increase the company’s output and productivity which can be in the form of corrective actions of ineffective activities, process simplification, and reduction of variations, responsiveness, and reduction of set-up-time which are all under the classification of waste within the manufacturing environment. Deriving a means to eliminate a number of these issues has a key importance for manufacturing organization. This paper focused on a number of industrial engineering techniques which include a cause and effect diagram, to identify and optimize the method or systems being used. Based on our results, it shows that there are a number of variations within the production processes that can significantly disrupt the expected output.

Keywords: Optimization, fishbone diagram, productivity.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1000
1082 A Study of Classification Models to Predict Drill-Bit Breakage Using Degradation Signals

Authors: Bharatendra Rai

Abstract:

Cutting tools are widely used in manufacturing processes and drilling is the most commonly used machining process. Although drill-bits used in drilling may not be expensive, their breakage can cause damage to expensive work piece being drilled and at the same time has major impact on productivity. Predicting drill-bit breakage, therefore, is important in reducing cost and improving productivity. This study uses twenty features extracted from two degradation signals viz., thrust force and torque. The methodology used involves developing and comparing decision tree, random forest, and multinomial logistic regression models for classifying and predicting drill-bit breakage using degradation signals.

Keywords: Degradation signal, drill-bit breakage, random forest, multinomial logistic regression.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2243
1081 Effect of Fill Material Density under Structures on Ground Motion Characteristics Due to Earthquake

Authors: Ahmed T. Farid, Khaled Z. Soliman

Abstract:

Due to limited areas and excessive cost of land for projects, backfilling process has become necessary. Also, backfilling will be done to overcome the un-leveling depths or raising levels of site construction, especially near the sea region. Therefore, backfilling soil materials used under the foundation of structures should be investigated regarding its effect on ground motion characteristics, especially at regions subjected to earthquakes. In this research, 60-meter thickness of sandy fill material was used above a fixed 240-meter of natural clayey soil underlying by rock formation to predict the modified ground motion characteristics effect at the foundation level. Comparison between the effect of using three different situations of fill material compaction on the recorded earthquake is studied, i.e. peak ground acceleration, time history, and spectra acceleration values. The three different densities of the compacted fill material used in the study were very loose, medium dense and very dense sand deposits, respectively. Shake computer program was used to perform this study. Strong earthquake records, with Peak Ground Acceleration (PGA) of 0.35 g, were used in the analysis. It was found that, higher compaction of fill material thickness has a significant effect on eliminating the earthquake ground motion properties at surface layer of fill material, near foundation level. It is recommended to consider the fill material characteristics in the design of foundations subjected to seismic motions. Future studies should be analyzed for different fill and natural soil deposits for different seismic conditions.

Keywords: Fill, material, density, compaction, earthquake, PGA.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 883
1080 Performance Appraisal System using Multifactorial Evaluation Model

Authors: C. C. Yee, Y.Y.Chen

Abstract:

Performance appraisal of employee is important in managing the human resource of an organization. With the change towards knowledge-based capitalism, maintaining talented knowledge workers is critical. However, management classification of “outstanding", “poor" and “average" performance may not be an easy decision. Besides that, superior might also tend to judge the work performance of their subordinates informally and arbitrarily especially without the existence of a system of appraisal. In this paper, we propose a performance appraisal system using multifactorial evaluation model in dealing with appraisal grades which are often express vaguely in linguistic terms. The proposed model is for evaluating staff performance based on specific performance appraisal criteria. The project was collaboration with one of the Information and Communication Technology company in Malaysia with reference to its performance appraisal process.

Keywords: Multifactorial Evaluation Model, performance appraisal system, decision support system.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 4268
1079 Scene Adaptive Shadow Detection Algorithm

Authors: Mohammed Ibrahim M, Anupama R.

Abstract:

Robustness is one of the primary performance criteria for an Intelligent Video Surveillance (IVS) system. One of the key factors in enhancing the robustness of dynamic video analysis is,providing accurate and reliable means for shadow detection. If left undetected, shadow pixels may result in incorrect object tracking and classification, as it tends to distort localization and measurement information. Most of the algorithms proposed in literature are computationally expensive; some to the extent of equalling computational requirement of motion detection. In this paper, the homogeneity property of shadows is explored in a novel way for shadow detection. An adaptive division image (which highlights homogeneity property of shadows) analysis followed by a relatively simpler projection histogram analysis for penumbra suppression is the key novelty in our approach.

Keywords: homogeneity, penumbra, projection histogram, shadow correction

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1902
1078 Vulnerability of Groundwater Resources Selected for Emergency Water Supply

Authors: Frantisek Bozek, Alena Bumbova, Eduard Bakos

Abstract:

Paper is dealing with vulnerability concerning elements of hydrological structures and elements of technological equipments which are acceptable for groundwater resources. The vulnerability assessment stems from the application of the register of hazards and a potential threat to individual water source elements within each type of hazard. The proposed procedure is pattern for assessing the risks of disturbance, damage, or destruction of water source by the identified natural or technological hazards and consequently for classification of these risks in relation to emergency water supply. Using of this procedure was verified on selected groundwater resource in particular region, which seems to be as potentially useful for crisis planning system.

Keywords: Hazard, Hydrogeological Structure, Elements, Index, Sensitivity, Water Source, Vulnerability

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1441
1077 Torque Based Selection of ANN for Fault Diagnosis of Wound Rotor Asynchronous Motor-Converter Association

Authors: Djalal Eddine Khodja, Boukhemis Chetate

Abstract:

In this paper, an automatic system of diagnosis was developed to detect and locate in real time the defects of the wound rotor asynchronous machine associated to electronic converter. For this purpose, we have treated the signals of the measured parameters (current and speed) to use them firstly, as indicating variables of the machine defects under study and, secondly, as inputs to the Artificial Neuron Network (ANN) for their classification in order to detect the defect type in progress. Once a defect is detected, the interpretation system of information will give the type of the defect and its place of appearance.

Keywords: Artificial Neuron Networks (ANN), Effective Value (RMS), Experimental results, Failure detection Indicating values, Motor-converter unit.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1500
1076 Hand Written Digit Recognition by Multiple Classifier Fusion based on Decision Templates Approach

Authors: Reza Ebrahimpour, Samaneh Hamedi

Abstract:

Classifier fusion may generate more accurate classification than each of the basic classifiers. Fusion is often based on fixed combination rules like the product, average etc. This paper presents decision templates as classifier fusion method for the recognition of the handwritten English and Farsi numerals (1-9). The process involves extracting a feature vector on well-known image databases. The extracted feature vector is fed to multiple classifier fusion. A set of experiments were conducted to compare decision templates (DTs) with some combination rules. Results from decision templates conclude 97.99% and 97.28% for Farsi and English handwritten digits.

Keywords: Decision templates, multi-layer perceptron, characteristics Loci, principle component analysis (PCA).

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1956
1075 Deficiencies of Lung Segmentation Techniques using CT Scan Images for CAD

Authors: Nisar Ahmed Memon, Anwar Majid Mirza, S.A.M. Gilani

Abstract:

Segmentation is an important step in medical image analysis and classification for radiological evaluation or computer aided diagnosis. This paper presents the problem of inaccurate lung segmentation as observed in algorithms presented by researchers working in the area of medical image analysis. The different lung segmentation techniques have been tested using the dataset of 19 patients consisting of a total of 917 images. We obtained datasets of 11 patients from Ackron University, USA and of 8 patients from AGA Khan Medical University, Pakistan. After testing the algorithms against datasets, the deficiencies of each algorithm have been highlighted.

Keywords: Computer Aided Diagnosis (CAD), MathematicalMorphology, Medical Image Analysis, Region Growing, Segmentation, Thresholding,

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2340
1074 Improving Academic Performance Prediction using Voting Technique in Data Mining

Authors: Ikmal Hisyam Mohamad Paris, Lilly Suriani Affendey, Norwati Mustapha

Abstract:

In this paper we compare the accuracy of data mining methods to classifying students in order to predicting student-s class grade. These predictions are more useful for identifying weak students and assisting management to take remedial measures at early stages to produce excellent graduate that will graduate at least with second class upper. Firstly we examine single classifiers accuracy on our data set and choose the best one and then ensembles it with a weak classifier to produce simple voting method. We present results show that combining different classifiers outperformed other single classifiers for predicting student performance.

Keywords: Classification, Data Mining, Prediction, Combination of Multiple Classifiers.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2754
1073 Using Fractional Factorial Designs for Variable Importance in Random Forest Models

Authors: Ewa. M. Sztendur, Neil T. Diamond

Abstract:

Random Forests are a powerful classification technique, consisting of a collection of decision trees. One useful feature of Random Forests is the ability to determine the importance of each variable in predicting the outcome. This is done by permuting each variable and computing the change in prediction accuracy before and after the permutation. This variable importance calculation is similar to a one-factor-at a time experiment and therefore is inefficient. In this paper, we use a regular fractional factorial design to determine which variables to permute. Based on the results of the trials in the experiment, we calculate the individual importance of the variables, with improved precision over the standard method. The method is illustrated with a study of student attrition at Monash University.

Keywords: Random Forests, Variable Importance, Fractional Factorial Designs, Student Attrition.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1997