
 

 

 
Abstract—We study the properties of maximal prefix codes. The 

codes have many applications in computer science, theory of formal 
languages, data processing and data classification. Our approaches to 
study use finite state automata (so-called flower automata) for the 
representation of prefix codes. An important task is the decomposition 
of prefix codes into prime prefix codes (factors). We discuss properties 
of such prefix code decompositions. A linear time algorithm is 
designed to find the prime decomposition. We used the GAP computer 
algebra system, which allows us to perform algebraic operations for 
free semigroups, monoids and automata. 
 

Keywords—Maximal prefix code, regular languages, flower 
automata, prefix code decomposing. 

I. INTRODUCTION 

HIS paper discusses some properties of codes and maximal 
prefix codes. Practical application is based on the 

representation of the maximal prefix codes as a sequence of 
words in specific order. Many books [1]-[5] and papers [6]-[8] 
have shown how the most important theoretical tools are used 
in this technology.  

We investigate decomposition problems for the class of finite 
prefix codes. The finite prefix code is a set of words, such that 
none of the words in the code is a prefix of another word. In 
other words, none of the words in the code are the left divisor 
of another word in that code. Prefix codes are languages 
recognized by special kind automata, so called flower automata. 
This representation of the finite prefix code makes it possible to 
decompose this code into a product of factor codes.  

From a practical point of view, this type of representation and 
decomposition algorithm can be used in some classification 
algorithms in hardware technologies. 

Section II of the paper contains preliminary information; 
terminology related to formal languages, codes and finite 
automata. Section III discusses the properties of maximal prefix 
codes and presentation codes with flower automata. Section IV 
describes algorithm of factorization of finite code. 

II. BASIC DEFINITION: WORDS AND AUTOMATA 

In this section, we give the necessary notions related to 
words, finite automata, codes and properties of codes. The 
following definitions taken from [1]-[3] will be used.  

Let us consider a finite set letters Σ  𝑎, 𝑏, 𝑐 …  which we 
call an alphabet Σ. A word or string 𝑤 is finite length sequence 
of letters over alphabet Σ. The word 𝑤 ∈  ∑∗ is an element of 
Σ∗ and Σ∗ is the set of all finite words over Σ . The set of Σ∗ with 
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respect to the concatenation operation forms a free monoid. 
Language 𝐿 is subset of monoid Σ∗. Free monoid Σ∗ contains 
the empty word 𝜀 . Semigroup Σ  Σ∗ \𝜀  is monoid Σ∗ 
without empty word 𝜀. 

A basic operation of formal languages is concatenation of 
two words 𝑤  𝑢𝑣. The concatenation can be expanded to the 
formal languages 𝐿 𝐿1 ∙ 𝐿2 . But the complexity of the 
inverse operation of decomposing a language 𝐿 into a nontrivial 
concatenation 𝐿1, 𝐿2 is not well understood and more 
complicated. A concatenation is obvious if one of languages 
𝐿1, 𝐿2 consists exactly of the empty string. A language 𝐿  is 
prime if it cannot be expressed as a non-trivial concatenation of 
two languages 𝐿1 ∙ 𝐿2 . The prime factorization is the 
decomposition into prime factors. 

The problem of prime factorization is undecidable for 
context-free languages [8], [9]. 

The word 𝑢 is a prefix of a word 𝑣, denoted as 𝑢 𝑣, if 𝑣 
 𝑢𝑤 , for some 𝑤 ∈  ∑∗  . We say that 𝑢 and 𝑣  are prefix 
comparable if either 𝑣 𝑢, or 𝑢 𝑣.  

A set 𝑋 is a code if any word in 𝑋  can be written uniquely 
as a product of words in X. To say other words, word 𝑤 ∈ 𝑋  
has a unique factorization in words from 𝑋 . This is the reason, 
why a code 𝑋 never contains the empty word 𝜀, because word 
𝑤  𝜀𝑤 𝑤𝜀 has different presentation. It is easy to see that 
any subset words from a code 𝑋 is a code. 

A finite automaton 𝐴 over alphabet Σ consists of a finite set 
of states 𝑄 , the initial states 𝐼 ⊂ 𝑄 , the final/terminal states 
𝑇 ⊂  𝑄 , and a set 𝐹 ⊂  𝑄  𝐴  𝑄 called the set of edges. 
The automaton is denoted by: 

 
𝐴  𝑄, Σ, 𝐼, 𝑇 . 

 
The automaton is finite when the set Q is finite. 
Fig. 1 shows the automaton with three states, the set of initial 

states 𝐼 1 , the set of terminal states 𝑇 3 , the set of 
edges 𝑇 1, 𝑎, 1 , 1, 𝑎, 2 , 1, 𝑎, 3 , 1, 𝑏, 3 , 3, 𝑏, 3 .  

III. MAXIMAL PREFIX CODES AND PRESENTATION CODES 

WITH FLOWER AUTOMATA  

In order to determine whether the set 𝑋 is a code, there are 
criteria characterizing this property. One of these properties [1], 
[3] is consisted in the following:  

If a subset X of Σ∗ is a code, then any morphism 𝛽 ∶  Δ∗  →
 Σ∗  which induces a bijection of some alphabet Δ  onto 𝑋  is 
injective.  
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Fig. 1 Automaton with three states 
 
The set 𝑋  𝑎, 𝑎𝑏, 𝑎𝑏𝑎  is not a code since the  

 word 𝑤 𝑎𝑎𝑏𝑎  has two distinct factorizations 
 𝑤 𝑎 𝑎𝑏𝑎 𝑎 𝑎𝑏 𝑎 . 

Let us define the relation 𝑢 𝑣 a word 𝑢 is the left divisor 
of another word 𝑣 . The infinite tree may present the free 
monoid ∑∗ . In this case, the root of tree of relation  over ∑∗ is 
shown as in Fig. 2 as node 1. The root of the tree presents empty 
word 𝜀. Each node of the tree represents a word 𝑤 in ∑∗. Then 
subset 𝑋 is a prefix code if no element of 𝑋 is a proper prefix of 
another element in 𝑋. This is equivalent to the fact that there are 
no comparable words 𝑢 𝑣 of the relation  in the set. For all 
words 𝑢, 𝑣 ∈ 𝑋, if 𝑢 𝑣 then 𝑢 𝑣 . 

The set 𝑋  𝑏𝑏, 𝑎𝑏𝑎  is prefix code. A convenient 
representation for the prefix code is a tree view. Fig. 2 shows 
the presentation of prefix code 𝑋  𝑏𝑏, 𝑎𝑏𝑎 . The bold lines 
present the words of code, the dotted lines present the words ∈
 ∑∗ . To a given code 𝑋 of ∑∗ can be associated a subtree of the 
literal representation of the prefix code 𝑋 is called the maximal 
prefix code if it is prefix and if it is properly contained in no 
other prefix code 𝑌 of ∑∗, that is, if 𝑋 ⊂  𝑌 ⊂  ∑∗ and 𝑌 prefix 
code implies 𝑋  𝑌 . 

The prefix code 𝑋  𝑏𝑏, 𝑎𝑏𝑎  is not the maximal prefix 
code because we can added words 𝑎𝑎, 𝑎𝑏, 𝑎𝑏𝑏,  to code . 
These words are not comparable in relation  with  
words 𝑏𝑏, 𝑎𝑏𝑎  . 

Let us consider a convenient representation of the finite code 
𝑋 𝑣1, 𝑣2, …  𝑣𝑛  in the form of a flower automaton 𝐴. The 
words 𝑣1, 𝑣2, …  𝑣𝑛 are the edges of the flower automaton. 

 

 

Fig. 2 Prefix code X={aba, bb} 
 

Fig. 3 shows flower automaton for code  𝑏𝑏, 𝑎𝑏𝑎 . The 
initial and terminal states are the same states 1 . All words of 
code 𝑋 are the path from state 1  to state 1  .  

 

 

Fig. 3 Flower automaton for code X = {bb, aba} 

IV. ALGORITHM OF FACTORIZATION OF FINITE CODE 

A. Problem of Factorization 

The problem of prime factorizations of natural numbers is 
fundamental in theory of numbers. In the theory of formal 
languages, the problem factorization of formal languages was 
introduced already at a very early stage [8], [9]. Let us consider 
this problem about finite languages. When a nonempty finite 
language 𝐿 can be written as a product: 𝐿  𝐿1 ∙ 𝐿2 ∙. . .∙ 𝐿𝑘,  
where of the factors 𝐿𝑖, 1  𝑖  𝑘, finite languages. 

The problem of factorization languages is related with the 
subsets of potential roots in the problems of the formal 
languages theory [10]-[13]. 

B. Factorization of Codes 

The algorithm for solving this problem for finite codes is 
described below. 

Let the code 𝑋  is the product of two codes 𝑋1, 𝑋2 
 𝑋  𝑋1 ∙ 𝑋2 𝑤  , 𝑤 , … , 𝑤  , where the words are 
lexicographically ordered.  

For certainty, we denote the words of the code 𝑋 in the form 
of a product of words 𝑤 𝑣 𝑢  . 

 
TABLE I 

PRODUCT OF TWO CODES 

 𝑢  … 𝑢  

𝑣  𝑣 𝑢  … 𝑣 𝑢  

…    

…    

𝑣  𝑣 𝑢  …. 𝑣 𝑢  

 

Algorithm of codes factorization:  
Step1.  Choose a word 𝑤  of minimum length from 

𝑋 𝑤  , 𝑤 , … , 𝑤  . 
Step2.  Choose words 𝐴 𝑤  , 𝑤 , … , 𝑤   from code 

𝑋  starting with the same (first) letter as the word 
𝑤  of minimum length. 

Step3.  From the set 𝐴 we choose the words  
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𝐴 𝑤  , 𝑤 , … , 𝑤   the second letter, which 
coincides with the second letter of the word 𝑤  . 

… 
StepM. From the set 𝐴 we choose the words  

𝐴 𝑤  , 𝑤 , … , 𝑤   the Mth-order letter, 
which coincides with the Mth-order letter of the 
word 𝑤  of minimum length. If set 𝐴 ∅ go to 
step M+1, if it is not go to next step. 

StepM+1. The set 𝐴  will contain words whose left divisor 
will coincide with maximum part the minimum word 
𝑤  in the code 𝑋1. This part will be equal the word 
𝑣  of minimal length in code X1. The left division 
of words in set 𝐴  to this word 𝑣  gives the 
words of the code X2.  

StepM+2. Now we got the words from the code 𝑋2. To receive 
words for the code 𝑋1 we do the right division of the 
words from the set 𝑋. That we will get the words of 
the  
code 𝑋1. 

 
The algorithm will finish its work after 𝐾 steps, where 𝐾 is 

the number of letters in a word of minimum length in the  
code X.  

The uniqueness of the factorization follows from the 
construction of the solution and the uniqueness of the word of 
minimum length. 

The algorithm has complexity 𝑂 𝑛 , where 𝑛 the number of 
words code 𝑋 because it is necessary to search among all the 
words of the source code 𝑋. Thus, it is possible to obtain a 
factor decomposition of the code in linear time from the sum of 
the lengths of all the words of the source code. 

Let's consider the problem of decomposition for language in 
product of two languages. This is a very difficult problem for 
context-free languages, since this problem is unsolvable 
algorithmically, that is, there is no algorithm that would allow 
representing a context-free language as a product of two 
languages.  

If the final language is given in the form of a list of words, 
then the factorization problem is obviously solved by a 
complete search of the options for decomposing words into 
factors, that factorization problem is obviously solved by brute 
force. Since the description of the final language as a list can be 
exponentially larger than the corresponding DFA, the algorithm 
(brute force) is not useful for solving our problem.  

To check the prime factorization of the finite language 𝐿, we 
need to consider whether there are languages 𝐿  and 𝐿  they 
decompose 𝐿 𝐿1 ∙ 𝐿2 , because we need to work with 
language 𝐿 in forming a determinate finite automaton (DFA) 
we need to study the states in which words are actually 
separated.  

Let's use the finite regular language 𝐿, giving both DFA 𝐴
 𝑄, 𝛴, 𝛿, 𝑠 , 𝐹  and 𝑃 ⊆ 𝑄 a set of states. We call the 𝑃 set of 
sections and define the regular finite languages: 

 
𝐿 : 𝑤 ∈ Σ∗|𝛿 𝑠, 𝑤 ∈ 𝑃   

𝐿 : ⋂ 𝑤 ∈ Σ∗|𝛿 𝑝, 𝑤 ∈ 𝐹∈   

The set of section 𝑃  allows us search decompositions to 
those that arise from this construction, because this construction 
gives factorization in form  ⊇ 𝐿 ∙ 𝐿  .  

The problem is, after guessing the set of partitions of 𝑃, to 
check whether 𝐿 ⊆ 𝐿 ∙ 𝐿 . Unfortunately, the intersection of 
𝑂 𝑛  sets and the union of two languages are ineffective, since 
both can lead to an exponential increase in the number of states 
of the corresponding automaton. Therefore, this algorithm for 
factoring finite languages will probably have exponential 
complexity, but in prefix codes the algorithm is more simple. 

C. Practical Application 

To verify the correctness of the proposed algorithms, we 
implemented a system computer algebra GAP that accurately 
performs the logical flow of algorithm cycle by cycle.  

The GAP system is a free, open software package for 
computation in discrete abstract algebra. We used also package 
“automata” in GAP system. Using this package, we can build 
deterministic and non-deterministic finite automata, perform 
operations with regular languages and regular expressions. In 
this package, we have implemented the algebraic part. This part 
of the “automata” package aims to enhance its utility for finite 
automata and formal languages theorists, since monoids are 
already implemented in GAP, we can take advantage of this 
fact.  

Package has the function to compute a flower automaton in 
order to obtain a finite automaton corresponding to the given 
prefix code. Below is the example of program code for 
construction free mononid m1 with two generators:  

 
gap> m1:=FreeMonoid(["a","b"]); 
<free monoid on the generators [ a, b ]> 
gap> gm1:=GeneratorsOfMonoid(m1); 
[ a, b ] 
gap> a:=gm1[1]; 
a 
gap> b:=gm1[2]; 
b 
 
It is easy to form a list of elements of free monoids 

(associative words) and the product of two lists, s1 and s2: 
 
gap> s1:=[a,b*a,b*b]; 
[ a, b*a, b^2 ] 
gap> s2:=[a*a,b*a,b*b]; 
[ a^2, b*a, b^2 ] 
gap> s3:=Mult_Sp(sp1,s2); 
[ a^3, a*b*a, a*b^2, b*a^3, (b*a)^2, b*a*b^2, 

b^2*a^2, b^3*a, b^4 ] 
 
Now we will convert the list of associative words into a list 

of words: 
 
gap> aw1:=AssocWord_Sp(s3, gm1); 
[ "aaa", "aba", "abb", "baaa", "baba", "babb", 

"bbaa", "bbba", "bbbb" ] 
 
With functions from packages we construct a minimal 

deterministic automaton new_3 from a list of words aw1: 
new3:=ListOfWordsToAutomaton("ab",aw1); 
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gap> Display(new3); 
   |  1  2  3  4  5  6  7 
------------------------------------- 
 a |  5  4  1  6  5  1  4 
 b |  5  7  1  3  5  5  4 
Initial state: [ 2 ] 
Accepting state: [ 1 ] 
 
The external program Graphviz is used for graph 

visualization, allowing users to visualize automata. Its first 
versions were developed by AT&T, and now it is available as a 
set of utilities and libraries, as well as in source code under the 
Eclipse Public License (EPL). Its diagram engine uses the DOT 
graph description language, which is a textual description of the 
graph structure: vertices, their connections, groups, and 
attributes for their visual design. This convenient tool presently 
operates smoothly under LINUX. 

V. CONCLUSION 

The article discusses the basic algorithms for the 
decomposition of prefix codes and their practical 
implementation in the system computer algebra 𝐺𝐴𝑃 . The 
complexity of the decomposition algorithm is 𝑂 𝑛 , where 𝑛 is 
the number of words in the prefix code. The application of an 
approximate algorithm for finite languages will probably be 
discussed in the following articles. 
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