

Abstract—We study the properties of maximal prefix codes. The

codes have many applications in computer science, theory of formal
languages, data processing and data classification. Our approaches to
study use finite state automata (so-called flower automata) for the
representation of prefix codes. An important task is the decomposition
of prefix codes into prime prefix codes (factors). We discuss properties
of such prefix code decompositions. A linear time algorithm is
designed to find the prime decomposition. We used the GAP computer
algebra system, which allows us to perform algebraic operations for
free semigroups, monoids and automata.

Keywords—Maximal prefix code, regular languages, flower
automata, prefix code decomposing.

I. INTRODUCTION

HIS paper discusses some properties of codes and maximal
prefix codes. Practical application is based on the

representation of the maximal prefix codes as a sequence of
words in specific order. Many books [1]-[5] and papers [6]-[8]
have shown how the most important theoretical tools are used
in this technology.

We investigate decomposition problems for the class of finite
prefix codes. The finite prefix code is a set of words, such that
none of the words in the code is a prefix of another word. In
other words, none of the words in the code are the left divisor
of another word in that code. Prefix codes are languages
recognized by special kind automata, so called flower automata.
This representation of the finite prefix code makes it possible to
decompose this code into a product of factor codes.

From a practical point of view, this type of representation and
decomposition algorithm can be used in some classification
algorithms in hardware technologies.

Section II of the paper contains preliminary information;
terminology related to formal languages, codes and finite
automata. Section III discusses the properties of maximal prefix
codes and presentation codes with flower automata. Section IV
describes algorithm of factorization of finite code.

II. BASIC DEFINITION: WORDS AND AUTOMATA

In this section, we give the necessary notions related to
words, finite automata, codes and properties of codes. The
following definitions taken from [1]-[3] will be used.

Let us consider a finite set letters Σ 𝑎, 𝑏, 𝑐 … which we
call an alphabet Σ. A word or string 𝑤 is finite length sequence
of letters over alphabet Σ. The word 𝑤 ∈ ∑∗ is an element of
Σ∗ and Σ∗ is the set of all finite words over Σ . The set of Σ∗ with

N. Krainiukov is with Shenzhen MSU–BIT University, Shenzhen, People's

Republic of China (corresponding author, phone: 135-287-049-16;
e-mail: 6620210015@smbu.edu.cn).

B. Melnikov is with Shenzhen MSU–BIT University, Shenzhen, People's
Republic of China (e-mail: bormel@mail.ru).

respect to the concatenation operation forms a free monoid.
Language 𝐿 is subset of monoid Σ∗. Free monoid Σ∗ contains
the empty word 𝜀 . Semigroup Σ Σ∗ \𝜀 is monoid Σ∗
without empty word 𝜀.

A basic operation of formal languages is concatenation of
two words 𝑤 𝑢𝑣. The concatenation can be expanded to the
formal languages 𝐿 𝐿1 ∙ 𝐿2 . But the complexity of the
inverse operation of decomposing a language 𝐿 into a nontrivial
concatenation 𝐿1, 𝐿2 is not well understood and more
complicated. A concatenation is obvious if one of languages
𝐿1, 𝐿2 consists exactly of the empty string. A language 𝐿 is
prime if it cannot be expressed as a non-trivial concatenation of
two languages 𝐿1 ∙ 𝐿2 . The prime factorization is the
decomposition into prime factors.

The problem of prime factorization is undecidable for
context-free languages [8], [9].

The word 𝑢 is a prefix of a word 𝑣, denoted as 𝑢 𝑣, if 𝑣
 𝑢𝑤 , for some 𝑤 ∈ ∑∗ . We say that 𝑢 and 𝑣 are prefix
comparable if either 𝑣 𝑢, or 𝑢 𝑣.

A set 𝑋 is a code if any word in 𝑋 can be written uniquely
as a product of words in X. To say other words, word 𝑤 ∈ 𝑋
has a unique factorization in words from 𝑋 . This is the reason,
why a code 𝑋 never contains the empty word 𝜀, because word
𝑤 𝜀𝑤 𝑤𝜀 has different presentation. It is easy to see that
any subset words from a code 𝑋 is a code.

A finite automaton 𝐴 over alphabet Σ consists of a finite set
of states 𝑄 , the initial states 𝐼 ⊂ 𝑄 , the final/terminal states
𝑇 ⊂ 𝑄 , and a set 𝐹 ⊂ 𝑄 𝐴 𝑄 called the set of edges.
The automaton is denoted by:

𝐴 𝑄, Σ, 𝐼, 𝑇 .

The automaton is finite when the set Q is finite.
Fig. 1 shows the automaton with three states, the set of initial

states 𝐼 1 , the set of terminal states 𝑇 3 , the set of
edges 𝑇 1, 𝑎, 1 , 1, 𝑎, 2 , 1, 𝑎, 3 , 1, 𝑏, 3 , 3, 𝑏, 3 .

III. MAXIMAL PREFIX CODES AND PRESENTATION CODES

WITH FLOWER AUTOMATA

In order to determine whether the set 𝑋 is a code, there are
criteria characterizing this property. One of these properties [1],
[3] is consisted in the following:

If a subset X of Σ∗ is a code, then any morphism 𝛽 ∶ Δ∗ →
 Σ∗ which induces a bijection of some alphabet Δ onto 𝑋 is
injective.

The work is supported by a grant from the scientific program of Chinese
universities “Higher Education Stability Support Program” (section “Shenzhen
2022 – Science, Technology and Innovation Commission of Shenzhen
Municipality”) – 深圳 市2022年高等院校定支持划助目.

On Decomposition of Maximal Prefix Codes
Nikolai Krainiukov, Boris Melnikov

T

World Academy of Science, Engineering and Technology
International Journal of Mathematical and Computational Sciences

 Vol:18, No:8, 2024

92International Scholarly and Scientific Research & Innovation 18(8) 2024 ISNI:0000000091950263

O
pe

n
Sc

ie
nc

e
In

de
x,

 M
at

he
m

at
ic

al
 a

nd
 C

om
pu

ta
tio

na
l S

ci
en

ce
s

V
ol

:1
8,

 N
o:

8,
 2

02
4

pu
bl

ic
at

io
ns

.w
as

et
.o

rg
/1

00
13

75
6.

pd
f

Fig. 1 Automaton with three states

The set 𝑋 𝑎, 𝑎𝑏, 𝑎𝑏𝑎 is not a code since the

 word 𝑤 𝑎𝑎𝑏𝑎 has two distinct factorizations
 𝑤 𝑎 𝑎𝑏𝑎 𝑎 𝑎𝑏 𝑎 .

Let us define the relation 𝑢 𝑣 a word 𝑢 is the left divisor
of another word 𝑣 . The infinite tree may present the free
monoid ∑∗ . In this case, the root of tree of relation over ∑∗ is
shown as in Fig. 2 as node 1. The root of the tree presents empty
word 𝜀. Each node of the tree represents a word 𝑤 in ∑∗. Then
subset 𝑋 is a prefix code if no element of 𝑋 is a proper prefix of
another element in 𝑋. This is equivalent to the fact that there are
no comparable words 𝑢 𝑣 of the relation in the set. For all
words 𝑢, 𝑣 ∈ 𝑋, if 𝑢 𝑣 then 𝑢 𝑣 .

The set 𝑋 𝑏𝑏, 𝑎𝑏𝑎 is prefix code. A convenient
representation for the prefix code is a tree view. Fig. 2 shows
the presentation of prefix code 𝑋 𝑏𝑏, 𝑎𝑏𝑎 . The bold lines
present the words of code, the dotted lines present the words ∈
 ∑∗ . To a given code 𝑋 of ∑∗ can be associated a subtree of the
literal representation of the prefix code 𝑋 is called the maximal
prefix code if it is prefix and if it is properly contained in no
other prefix code 𝑌 of ∑∗, that is, if 𝑋 ⊂ 𝑌 ⊂ ∑∗ and 𝑌 prefix
code implies 𝑋 𝑌 .

The prefix code 𝑋 𝑏𝑏, 𝑎𝑏𝑎 is not the maximal prefix
code because we can added words 𝑎𝑎, 𝑎𝑏, 𝑎𝑏𝑏, to code .
These words are not comparable in relation with
words 𝑏𝑏, 𝑎𝑏𝑎 .

Let us consider a convenient representation of the finite code
𝑋 𝑣1, 𝑣2, … 𝑣𝑛 in the form of a flower automaton 𝐴. The
words 𝑣1, 𝑣2, … 𝑣𝑛 are the edges of the flower automaton.

Fig. 2 Prefix code X={aba, bb}

Fig. 3 shows flower automaton for code 𝑏𝑏, 𝑎𝑏𝑎 . The
initial and terminal states are the same states 1 . All words of
code 𝑋 are the path from state 1 to state 1 .

Fig. 3 Flower automaton for code X = {bb, aba}

IV. ALGORITHM OF FACTORIZATION OF FINITE CODE

A. Problem of Factorization

The problem of prime factorizations of natural numbers is
fundamental in theory of numbers. In the theory of formal
languages, the problem factorization of formal languages was
introduced already at a very early stage [8], [9]. Let us consider
this problem about finite languages. When a nonempty finite
language 𝐿 can be written as a product: 𝐿 𝐿1 ∙ 𝐿2 ∙. . .∙ 𝐿𝑘,
where of the factors 𝐿𝑖, 1 𝑖 𝑘, finite languages.

The problem of factorization languages is related with the
subsets of potential roots in the problems of the formal
languages theory [10]-[13].

B. Factorization of Codes

The algorithm for solving this problem for finite codes is
described below.

Let the code 𝑋 is the product of two codes 𝑋1, 𝑋2
 𝑋 𝑋1 ∙ 𝑋2 𝑤 , 𝑤 , … , 𝑤 , where the words are
lexicographically ordered.

For certainty, we denote the words of the code 𝑋 in the form
of a product of words 𝑤 𝑣 𝑢 .

TABLE I

PRODUCT OF TWO CODES

 𝑢 … 𝑢

𝑣 𝑣 𝑢 … 𝑣 𝑢

…

…

𝑣 𝑣 𝑢 …. 𝑣 𝑢

Algorithm of codes factorization:
Step1. Choose a word 𝑤 of minimum length from

𝑋 𝑤 , 𝑤 , … , 𝑤 .
Step2. Choose words 𝐴 𝑤 , 𝑤 , … , 𝑤 from code

𝑋 starting with the same (first) letter as the word
𝑤 of minimum length.

Step3. From the set 𝐴 we choose the words

World Academy of Science, Engineering and Technology
International Journal of Mathematical and Computational Sciences

 Vol:18, No:8, 2024

93International Scholarly and Scientific Research & Innovation 18(8) 2024 ISNI:0000000091950263

O
pe

n
Sc

ie
nc

e
In

de
x,

 M
at

he
m

at
ic

al
 a

nd
 C

om
pu

ta
tio

na
l S

ci
en

ce
s

V
ol

:1
8,

 N
o:

8,
 2

02
4

pu
bl

ic
at

io
ns

.w
as

et
.o

rg
/1

00
13

75
6.

pd
f

𝐴 𝑤 , 𝑤 , … , 𝑤 the second letter, which
coincides with the second letter of the word 𝑤 .

…
StepM. From the set 𝐴 we choose the words

𝐴 𝑤 , 𝑤 , … , 𝑤 the Mth-order letter,
which coincides with the Mth-order letter of the
word 𝑤 of minimum length. If set 𝐴 ∅ go to
step M+1, if it is not go to next step.

StepM+1. The set 𝐴 will contain words whose left divisor
will coincide with maximum part the minimum word
𝑤 in the code 𝑋1. This part will be equal the word
𝑣 of minimal length in code X1. The left division
of words in set 𝐴 to this word 𝑣 gives the
words of the code X2.

StepM+2. Now we got the words from the code 𝑋2. To receive
words for the code 𝑋1 we do the right division of the
words from the set 𝑋. That we will get the words of
the
code 𝑋1.

The algorithm will finish its work after 𝐾 steps, where 𝐾 is

the number of letters in a word of minimum length in the
code X.

The uniqueness of the factorization follows from the
construction of the solution and the uniqueness of the word of
minimum length.

The algorithm has complexity 𝑂 𝑛 , where 𝑛 the number of
words code 𝑋 because it is necessary to search among all the
words of the source code 𝑋. Thus, it is possible to obtain a
factor decomposition of the code in linear time from the sum of
the lengths of all the words of the source code.

Let's consider the problem of decomposition for language in
product of two languages. This is a very difficult problem for
context-free languages, since this problem is unsolvable
algorithmically, that is, there is no algorithm that would allow
representing a context-free language as a product of two
languages.

If the final language is given in the form of a list of words,
then the factorization problem is obviously solved by a
complete search of the options for decomposing words into
factors, that factorization problem is obviously solved by brute
force. Since the description of the final language as a list can be
exponentially larger than the corresponding DFA, the algorithm
(brute force) is not useful for solving our problem.

To check the prime factorization of the finite language 𝐿, we
need to consider whether there are languages 𝐿 and 𝐿 they
decompose 𝐿 𝐿1 ∙ 𝐿2 , because we need to work with
language 𝐿 in forming a determinate finite automaton (DFA)
we need to study the states in which words are actually
separated.

Let's use the finite regular language 𝐿, giving both DFA 𝐴
 𝑄, 𝛴, 𝛿, 𝑠 , 𝐹 and 𝑃 ⊆ 𝑄 a set of states. We call the 𝑃 set of
sections and define the regular finite languages:

𝐿 : 𝑤 ∈ Σ∗|𝛿 𝑠, 𝑤 ∈ 𝑃

𝐿 : ⋂ 𝑤 ∈ Σ∗|𝛿 𝑝, 𝑤 ∈ 𝐹∈

The set of section 𝑃 allows us search decompositions to
those that arise from this construction, because this construction
gives factorization in form ⊇ 𝐿 ∙ 𝐿 .

The problem is, after guessing the set of partitions of 𝑃, to
check whether 𝐿 ⊆ 𝐿 ∙ 𝐿 . Unfortunately, the intersection of
𝑂 𝑛 sets and the union of two languages are ineffective, since
both can lead to an exponential increase in the number of states
of the corresponding automaton. Therefore, this algorithm for
factoring finite languages will probably have exponential
complexity, but in prefix codes the algorithm is more simple.

C. Practical Application

To verify the correctness of the proposed algorithms, we
implemented a system computer algebra GAP that accurately
performs the logical flow of algorithm cycle by cycle.

The GAP system is a free, open software package for
computation in discrete abstract algebra. We used also package
“automata” in GAP system. Using this package, we can build
deterministic and non-deterministic finite automata, perform
operations with regular languages and regular expressions. In
this package, we have implemented the algebraic part. This part
of the “automata” package aims to enhance its utility for finite
automata and formal languages theorists, since monoids are
already implemented in GAP, we can take advantage of this
fact.

Package has the function to compute a flower automaton in
order to obtain a finite automaton corresponding to the given
prefix code. Below is the example of program code for
construction free mononid m1 with two generators:

gap> m1:=FreeMonoid(["a","b"]);
<free monoid on the generators [a, b]>
gap> gm1:=GeneratorsOfMonoid(m1);
[a, b]
gap> a:=gm1[1];
a
gap> b:=gm1[2];
b

It is easy to form a list of elements of free monoids

(associative words) and the product of two lists, s1 and s2:

gap> s1:=[a,b*a,b*b];
[a, b*a, b^2]
gap> s2:=[a*a,b*a,b*b];
[a^2, b*a, b^2]
gap> s3:=Mult_Sp(sp1,s2);
[a^3, a*b*a, a*b^2, b*a^3, (b*a)^2, b*a*b^2,

b^2*a^2, b^3*a, b^4]

Now we will convert the list of associative words into a list

of words:

gap> aw1:=AssocWord_Sp(s3, gm1);
["aaa", "aba", "abb", "baaa", "baba", "babb",

"bbaa", "bbba", "bbbb"]

With functions from packages we construct a minimal

deterministic automaton new_3 from a list of words aw1:
new3:=ListOfWordsToAutomaton("ab",aw1);

World Academy of Science, Engineering and Technology
International Journal of Mathematical and Computational Sciences

 Vol:18, No:8, 2024

94International Scholarly and Scientific Research & Innovation 18(8) 2024 ISNI:0000000091950263

O
pe

n
Sc

ie
nc

e
In

de
x,

 M
at

he
m

at
ic

al
 a

nd
 C

om
pu

ta
tio

na
l S

ci
en

ce
s

V
ol

:1
8,

 N
o:

8,
 2

02
4

pu
bl

ic
at

io
ns

.w
as

et
.o

rg
/1

00
13

75
6.

pd
f

gap> Display(new3);
1 2 3 4 5 6 7
 a | 5 4 1 6 5 1 4
 b | 5 7 1 3 5 5 4
Initial state: [2]
Accepting state: [1]

The external program Graphviz is used for graph

visualization, allowing users to visualize automata. Its first
versions were developed by AT&T, and now it is available as a
set of utilities and libraries, as well as in source code under the
Eclipse Public License (EPL). Its diagram engine uses the DOT
graph description language, which is a textual description of the
graph structure: vertices, their connections, groups, and
attributes for their visual design. This convenient tool presently
operates smoothly under LINUX.

V. CONCLUSION

The article discusses the basic algorithms for the
decomposition of prefix codes and their practical
implementation in the system computer algebra 𝐺𝐴𝑃 . The
complexity of the decomposition algorithm is 𝑂 𝑛 , where 𝑛 is
the number of words in the prefix code. The application of an
approximate algorithm for finite languages will probably be
discussed in the following articles.

REFERENCES
[1] G. Lallement Semigroups and Combinatorial Applications. – NJ, Wiley

& Sons, Inc. – 1979. – 376 p
[2] J. Berstel, D. Perrin, Theory of Codes, Academic Press, New York, 1985.
[3] W. Brauer. Introduction in the Finite Automata Theory. Moscow: Radio

I Svyaz Publ., 1987, 390 p. (in Russian).
[4] M. Lothaire, Algebraic Combinatorics on Words, Cambridge University

Press, Cambridge, 2002
[5] B. Melnikov. Regular languages and nondeterministic finite automata.

Moscow: RGSU Publ., 2018. 179 p. (in Russian).
[6] B.F. Melnikov, A. A. Melnikova Polynomial algorithm for checking the

fulfillment of the condition of the morphic image of the extended maximal
prefix code, International Journal of Open Information Technologies. –
2022. – Vol. 10. No. 12. – P. 1–9 (in Russian).

[7] V. Dolgov, B. Melnikov, A. Melnikova. “The loops of the basis finite
automaton and the connected questions.” Bulletin of the Voronezh State
University. Series: Physics. Mathematics, no. 4, pp. 95–111, 2016
(in Russian).

[8] A. Mateescu, A. Salomaa, S. Yu, On the decomposition of finite
languages. Technical Report 222, Turku Centre for Computer Science
(1998).

[9] Mateescu, A., Salomaa, A., S. Yu, (2002). Factorizations of languages and
commutativity conditions. Acta Cybernetica, 15(3), 339-351.

[10] B.F. Melnikov. Semi-lattices of the subsets of potential roots in the
problems of the formal languages theory. Part I. Extracting the root from
the language. International Journal of Open Information Technologies.
2022. Vol. 10. No. 4. P. 1–9 (in Russian).

[11] B.F. Melnikov Semi-lattices of the subsets of potential roots in
theproblems of the formal languages theory. Part II. Constructing an
inverse morphism International Journal of Open Information
Technologies. 2022. Vol. 10. No 5. P. 1–8 (in Russian).

[12] B.F. Melnikov Semi-lattices of the subsets of potential roots in the
problems of the formal languages theory. Part III. The condition for the
existence of a lattice, International Journal of Open Information
Technologies. 2022. Vol. 10. No. 7. P. 1–9 (in Russian), pp. 8–16.

[13] V.V. Dang, N.L. Dodonova, S. Yu. Korabelshchikova, B.F. Melnikov
SH-weak duality of semigroups. and minimum semigroup of SH-
approximation University proceedings. Volga region. Physical and
mathematical sciences. 2019. No. 1 (49). P. 29–39 (in Russian).

Nikolai Krainiukov received M.Sc.degree in Applied
Mathematics and Control from Moscow Institute of
Physics and Technology, Moscow, Russia in 1982, and,
the Ph.D. degree in Application of mathematical methods,
mathematical modeling in scientific research from Samara
Aero-Space university, Samara, Russia in 1992. He is
currently Associate Professor Faculty of Computational
Mathematics and Cybernetics, Shenzhen MSU – BIT

University, Shenzhen, Chine. The research activities and interests of Prof.
Krainiukov are currently focused on the regular languages, prefix codes, finite
automata and networks.

Boris Melnikov received Specialist in Applied
Mathematics from Lomonosov Moscow State University,
Moscow, Russia in 1984, Candidate of sciences (PhD) in
Mathematical support and software of computers,
computer systems, complexes, and nets from Lomonosov
Moscow State University, Moscow, Russia in 1990, and,
Doctor of sciences in Mathematical support and software
of computers, computer systems, complexes, and nets

from Lomonosov Moscow State University, Moscow, Russia in 1997. His
research interests include several aspects of heuristic algorithms, discrete
optimization and networks.

World Academy of Science, Engineering and Technology
International Journal of Mathematical and Computational Sciences

 Vol:18, No:8, 2024

95International Scholarly and Scientific Research & Innovation 18(8) 2024 ISNI:0000000091950263

O
pe

n
Sc

ie
nc

e
In

de
x,

 M
at

he
m

at
ic

al
 a

nd
 C

om
pu

ta
tio

na
l S

ci
en

ce
s

V
ol

:1
8,

 N
o:

8,
 2

02
4

pu
bl

ic
at

io
ns

.w
as

et
.o

rg
/1

00
13

75
6.

pd
f

