Search results for: power spectral density
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 4093

Search results for: power spectral density

2953 Real Power Generation Scheduling to Improve Steady State Stability Limit in the Java-Bali 500kV Interconnection Power System

Authors: Indar Chaerah Gunadin, Adi Soeprijanto, Ontoseno Penangsang

Abstract:

This paper will discuss about an active power generator scheduling method in order to increase the limit level of steady state systems. Some power generator optimization methods such as Langrange, PLN (Indonesian electricity company) Operation, and the proposed Z-Thevenin-based method will be studied and compared in respect of their steady state aspects. A method proposed in this paper is built upon the thevenin equivalent impedance values between each load respected to each generator. The steady state stability index obtained with the REI DIMO method. This research will review the 500kV-Jawa-Bali interconnection system. The simulation results show that the proposed method has the highest limit level of steady state stability compared to other optimization techniques such as Lagrange, and PLN operation. Thus, the proposed method can be used to create the steady state stability limit of the system especially in the peak load condition.

Keywords: generation scheduling, steady-state stability limit, REI Dimo, margin stability

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2246
2952 Earth Station Neural Network Control Methodology and Simulation

Authors: Hanaa T. El-Madany, Faten H. Fahmy, Ninet M. A. El-Rahman, Hassen T. Dorrah

Abstract:

Renewable energy resources are inexhaustible, clean as compared with conventional resources. Also, it is used to supply regions with no grid, no telephone lines, and often with difficult accessibility by common transport. Satellite earth stations which located in remote areas are the most important application of renewable energy. Neural control is a branch of the general field of intelligent control, which is based on the concept of artificial intelligence. This paper presents the mathematical modeling of satellite earth station power system which is required for simulating the system.Aswan is selected to be the site under consideration because it is a rich region with solar energy. The complete power system is simulated using MATLAB–SIMULINK.An artificial neural network (ANN) based model has been developed for the optimum operation of earth station power system. An ANN is trained using a back propagation with Levenberg–Marquardt algorithm. The best validation performance is obtained for minimum mean square error. The regression between the network output and the corresponding target is equal to 96% which means a high accuracy. Neural network controller architecture gives satisfactory results with small number of neurons, hence better in terms of memory and time are required for NNC implementation. The results indicate that the proposed control unit using ANN can be successfully used for controlling the satellite earth station power system.

Keywords: Satellite, neural network, MATLAB, power system.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1843
2951 Bright–Dark Pulses in Nonlinear Polarisation Rotation Based Erbium-Doped Fiber Laser

Authors: R. Z. R. R. Rosdin, N. M. Ali, S. W. Harun, H. Arof

Abstract:

We have experimentally demonstrated bright-dark pulses in a nonlinear polarization rotation (NPR) based mode-locked Erbium-doped fiber laser (EDFL) with a long cavity configuration. Bright–dark pulses could be achieved when the laser works in the passively mode-locking regime and the net group velocity dispersion is quite anomalous. The EDFL starts to generate a bright pulse train with degenerated dark pulse at the mode-locking threshold pump power of 35.09 mW by manipulating the polarization states of the laser oscillation modes using a polarization controller (PC). A split bright–dark pulse is generated when further increasing the pump power up to 37.95 mW. Stable bright pulses with no obvious evidence of a dark pulse can also be generated when further adjusting PC and increasing the pump power up to 52.19 mW. At higher pump power of 54.96 mW, a new form of bright-dark pulse emission was successfully identified with the repetition rate of 29 kHz. The bright and dark pulses have a duration of 795.5 ns and 640 ns, respectively.

Keywords: Erbium-doped fiber laser, Nonlinear polarization rotation, bright-dark pulse.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2434
2950 A Literature Survey of Neural Network Applications for Shunt Active Power Filters

Authors: S. Janpong, K-L. Areerak, K-N. Areerak

Abstract:

This paper aims to present the reviews of the application of neural network in shunt active power filter (SAPF). From the review, three out of four components of SAPF structure, which are harmonic detection component, compensating current control, and DC bus voltage control, have been adopted some of neural network architecture as part of its component or even substitution. The objectives of most papers in using neural network in SAPF are to increase the efficiency, stability, accuracy, robustness, tracking ability of the systems of each component. Moreover, minimizing unneeded signal due to the distortion is the ultimate goal in applying neural network to the SAPF. The most famous architecture of neural network in SAPF applications are ADALINE and Backpropagation (BP).

Keywords: Active power filter, neural network, harmonic distortion, harmonic detection and compensation, non-linear load.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3028
2949 Molecular Dynamics Simulation of Lubricant Adsorption and Thermal Depletion Instability

Authors: Bei Li, Qiu B. Chen, Chee H. Wong

Abstract:

In this work, we incorporated a quartic bond potential into a coarse-grained bead-spring model to study lubricant adsorption on a solid surface as well as depletion instability. The surface tension density and the number density profiles were examined to verify the solid-liquid and liquid-vapor interfaces during heat treatment. It was found that both the liquid-vapor interfacial thickness and the solid-vapor separation increase with the temperatureT* when T*is below the phase transition temperature Tc *. At high temperatures (T*>Tc *), the solid-vapor separation decreases gradually as the temperature increases. In addition, we evaluated the lubricant weight and bond loss profiles at different temperatures. It was observed that the lubricant desorption is favored over decomposition and is the main cause of the lubricant failure at the head disk interface in our simulations.

Keywords: Depletion instability, Lubricant film, Thermal adsorption, Molecular dynamics (MD).

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1732
2948 Increasing Power Transfer Capacity of Distribution Networks Using Direct Current Feeders

Authors: Akim Borbuev, Francisco de León

Abstract:

Economic and population growth in densely-populated urban areas introduce major challenges to distribution system operators, planers, and designers. To supply added loads, utilities are frequently forced to invest in new distribution feeders. However, this is becoming increasingly more challenging due to space limitations and rising installation costs in urban settings. This paper proposes the conversion of critical alternating current (ac) distribution feeders into direct current (dc) feeders to increase the power transfer capacity by a factor as high as four. Current trends suggest that the return of dc transmission, distribution, and utilization are inevitable. Since a total system-level transformation to dc operation is not possible in a short period of time due to the needed huge investments and utility unreadiness, this paper recommends that feeders that are expected to exceed their limits in near future are converted to dc. The increase in power transfer capacity is achieved through several key differences between ac and dc power transmission systems. First, it is shown that underground cables can be operated at higher dc voltage than the ac voltage for the same dielectric stress in the insulation. Second, cable sheath losses, due to induced voltages yielding circulation currents, that can be as high as phase conductor losses under ac operation, are not present under dc. Finally, skin and proximity effects in conductors and sheaths do not exist in dc cables. The paper demonstrates that in addition to the increased power transfer capacity utilities substituting ac feeders by dc feeders could benefit from significant lower costs and reduced losses. Installing dc feeders is less expensive than installing new ac feeders even when new trenches are not needed. Case studies using the IEEE 342-Node Low Voltage Networked Test System quantify the technical and economic benefits of dc feeders.

Keywords: Dc power systems, distribution feeders, distribution networks, energy efficiency, power transfer capacity.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1022
2947 Prediction Modeling of Compression Properties of a Knitted Sportswear Fabric Using Response Surface Method

Authors: Jawairia Umar, Tanveer Hussain, Zulfiqar Ali, Muhammad Maqsood

Abstract:

Different knitted structures and knitted parameters play a vital role in the stretch and recovery management of compression sportswear in addition to the materials use to generate this stretch and recovery behavior of the fabric. The present work was planned to predict the different performance indicators of a compression sportswear fabric with some ground parameters i.e. base yarn stitch length (polyester as base yarn and spandex as plating yarn involve to make a compression fabric) and linear density of the spandex which is a key material of any sportswear fabric. The prediction models were generated by response surface method for performance indicators such as stretch & recovery percentage, compression generated by the garment on body, total elongation on application of high power force and load generated on certain percentage extension in fabric. Certain physical properties of the fabric were also modeled using these two parameters.

Keywords: Compression, sportswear, stretch and recovery, statistical model, kikuhime.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2007
2946 Generalized d-q Model of n-Phase Induction Motor Drive

Authors: G. Renukadevi, K. Rajambal

Abstract:

This paper presents a generalized d-q model of n- phase induction motor drive. Multi -phase (n-phase) induction motor (more than three phases) drives possess several advantages over conventional three-phase drives, such as reduced current/phase without increasing voltage/phase, lower torque pulsation, higher torque density, fault tolerance, stability, high efficiency and lower current ripple. When the number of phases increases, it is also possible to increase the power in the same frame. In this paper, a generalized dq-axis model is developed in Matlab/Simulink for an n-phase induction motor. The simulation results are presented for 5, 6, 7, 9 and 12 phase induction motor under varying load conditions. Transient response of the multi-phase induction motors are given for different number of phases. Fault tolerant feature is also analyzed for 5-phase induction motor drive.

Keywords: d-q model, dynamic Response, fault tolerant feature, Matlab/Simulink, multi-phase induction motor, transient response.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 10501
2945 New Multisensor Data Fusion Method Based on Probabilistic Grids Representation

Authors: Zhichao Zhao, Yi Liu, Shunping Xiao

Abstract:

A new data fusion method called joint probability density matrix (JPDM) is proposed, which can associate and fuse measurements from spatially distributed heterogeneous sensors to identify the real target in a surveillance region. Using the probabilistic grids representation, we numerically combine the uncertainty regions of all the measurements in a general framework. The NP-hard multisensor data fusion problem has been converted to a peak picking problem in the grids map. Unlike most of the existing data fusion method, the JPDM method dose not need association processing, and will not lead to combinatorial explosion. Its convergence to the CRLB with a diminishing grid size has been proved. Simulation results are presented to illustrate the effectiveness of the proposed technique.

Keywords: Cramer-Rao lower bound (CRLB), data fusion, probabilistic grids, joint probability density matrix, localization, sensor network.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1766
2944 Selection of Photovoltaic Solar Power Plant Investment Projects - An ANP Approach

Authors: P. Aragonés-Beltrán, F. Chaparro-González, J. P. Pastor Ferrando, M. García-Melón

Abstract:

In this paper the Analytic Network Process (ANP) is applied to the selection of photovoltaic (PV) solar power projects. These projects follow a long management and execution process from plant site selection to plant start-up. As a consequence, there are many risks of time delays and even of project stoppage. In the case study presented in this paper a top manager of an important Spanish company that operates in the power market has to decide on the best PV project (from four alternative projects) to invest based on risk minimization. The manager identified 50 project execution delay and/or stoppage risks. The influences among elements of the network (groups of risks and alternatives) were identified and analyzed using the ANP multicriteria decision analysis method. After analyzing the results the main conclusion is that the network model can manage all the information of the real-world problem and thus it is a decision analysis model recommended by the authors. The strengths and weaknesses ANP as a multicriteria decision analysis tool are also described in the paper.

Keywords: Multicriteria decision analysis, Analytic Network Process, Photovoltaic solar power projects.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2100
2943 Effect of Natural Fibres Inclusion in Clay Bricks: Physico-Mechanical Properties

Authors: Chee-Ming Chan

Abstract:

In spite of the advent of new materials, clay bricks remain, arguably, the most popular construction materials today. Nevertheless the low cost and versatility of clay bricks cannot always be associated with high environmental and sustainable values, especially in terms of raw material sources and manufacturing processes. At the same time, the worldwide agricultural footprint is fast growing, with vast agricultural land cultivation and active expansion of the agro-based industry. The resulting large quantities of agricultural wastes, unfortunately, are not always well managed or utilised. These wastes can be recycled, such as by retrieving fibres from disposed leaves and fruit bunches, and then incorporated in brick-making. This way the clay bricks are made a 'greener' building material and the discarded natural wastes can be reutilised, avoiding otherwise wasteful landfill and harmful open incineration. This study examined the physical and mechanical properties of clay bricks made by adding two natural fibres to a clay-water mixture, with baked and non-baked conditions. The fibres were sourced from pineapple leaves (PF) and oil palm fruit bunch (OF), and added within the range of 0.25-0.75 %. Cement was added as a binder to the mixture at 5-15 %. Although the two fibres had different effects on the bricks produced, cement appeared to dominate the compressive strength. The non-baked bricks disintegrated when submerged in water, while the baked ones displayed cement-dependent characteristics in water-absorption and density changes. Interestingly, further increase in fibre content did not cause significant density decrease in both the baked and non-baked bricks.

Keywords: natural fibres, clay bricks, strength, water absorption, density.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 4607
2942 Experimental Investigation and Constitutive Modeling of Volume Strain under Uniaxial Strain Rate Jump Test in HDPE

Authors: Rida B. Arieby, Hameed N. Hameed

Abstract:

In this work, tensile tests on high density polyethylene have been carried out under various constant strain rate and strain rate jump tests. The dependency of the true stress and specially the variation of volume strain have been investigated, the volume strain due to the phenomena of damage was determined in real time during the tests by an optical extensometer called Videotraction. A modified constitutive equations, including strain rate and damage effects, are proposed, such a model is based on a non-equilibrium thermodynamic approach called (DNLR). The ability of the model to predict the complex nonlinear response of this polymer is examined by comparing the model simulation with the available experimental data, which demonstrate that this model can represent the deformation behavior of the polymer reasonably well.

Keywords: Strain rate jump tests, Volume Strain, High Density Polyethylene, Large strain, Thermodynamics approach.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2054
2941 Optimal Supplementary Damping Controller Design for TCSC Employing RCGA

Authors: S. Panda, S. C. Swain, A. K. Baliarsingh, C. Ardil

Abstract:

Optimal supplementary damping controller design for Thyristor Controlled Series Compensator (TCSC) is presented in this paper. For the proposed controller design, a multi-objective fitness function consisting of both damping factors and real part of system electromachanical eigenvalue is used and Real- Coded Genetic Algorithm (RCGA) is employed for the optimal supplementary controller parameters. The performance of the designed supplementary TCSC-based damping controller is tested on a weakly connected power system with different disturbances and loading conditions with parameter variations. Simulation results are presented and compared with a conventional power system stabilizer and also with the TCSC-based supplementary controller when the controller parameters are not optimized to show the effectiveness and robustness of the proposed approach over a wide range of loading conditions and disturbances.

Keywords: Power System Oscillations, Real-Coded Genetic Algorithm (RCGA), Thyristor Controlled Series Compensator (TCSC), Damping Controller, Power System Stabilizer.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2184
2940 Turbine Speed Variation Study in Gas Power Plant for an Active Generator

Authors: R. Kazemzadeh, J. M. Kauffmann

Abstract:

This research deals with investigations on the “Active Generator" under rotor speed variations and output frequency control. It runs at turbine speed and it is connected to a three phase electrical power grid which has its own frequency different from turbine frequency. In this regard the set composed of a four phase synchronous generator and a natural commutated matrix converter (NCMC) made with thyristors, is called active generator. It replaces a classical mechanical gearbox which introduces many drawbacks. The main idea in this article is the presentation of frequency control at grid side when turbine runs at variable speed. Frequency control has been done by linear and step variations of the turbine speed. Relation between turbine speed (frequency) and main grid zero sequence voltage frequency is presented.

Keywords: Power Generation, Energy Conversion, FrequencyControl, Matrix Converter.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1857
2939 Bridgeless Boost Power Factor Correction Rectifier with Hold-Up Time Extension Circuit

Authors: Chih-Chiang Hua, Yi-Hsiung Fang, Yuan-Jhen Siao

Abstract:

A bridgeless boost (BLB) power factor correction (PFC) rectifier with hold-up time extension circuit is proposed in this paper. A full bridge rectifier is widely used in the front end of the ac/dc converter. Since the shortcomings of the full bridge rectifier, the bridgeless rectifier is developed. A BLB rectifier topology is utilized with the hold-up time extension circuit. Unlike the traditional hold-up time extension circuit, the proposed extension scheme uses fewer active switches to achieve a longer hold-up time. Simulation results are presented to verify the converter performance.

Keywords: Bridgeless boost, boost converter, power factor correction, hold-up time.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1472
2938 An Unified Approach to Thermodynamics of Power Yield in Thermal, Chemical and Electrochemical Systems

Authors: S. Sieniutycz

Abstract:

This paper unifies power optimization approaches in various energy converters, such as: thermal, solar, chemical, and electrochemical engines, in particular fuel cells. Thermodynamics leads to converter-s efficiency and limiting power. Efficiency equations serve to solve problems of upgrading and downgrading of resources. While optimization of steady systems applies the differential calculus and Lagrange multipliers, dynamic optimization involves variational calculus and dynamic programming. In reacting systems chemical affinity constitutes a prevailing component of an overall efficiency, thus the power is analyzed in terms of an active part of chemical affinity. The main novelty of the present paper in the energy yield context consists in showing that the generalized heat flux Q (involving the traditional heat flux q plus the product of temperature and the sum products of partial entropies and fluxes of species) plays in complex cases (solar, chemical and electrochemical) the same role as the traditional heat q in pure heat engines. The presented methodology is also applied to power limits in fuel cells as to systems which are electrochemical flow engines propelled by chemical reactions. The performance of fuel cells is determined by magnitudes and directions of participating streams and mechanism of electric current generation. Voltage lowering below the reversible voltage is a proper measure of cells imperfection. The voltage losses, called polarization, include the contributions of three main sources: activation, ohmic and concentration. Examples show power maxima in fuel cells and prove the relevance of the extension of the thermal machine theory to chemical and electrochemical systems. The main novelty of the present paper in the FC context consists in introducing an effective or reduced Gibbs free energy change between products p and reactants s which take into account the decrease of voltage and power caused by the incomplete conversion of the overall reaction.

Keywords: Power yield, entropy production, chemical engines, fuel cells, exergy.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1617
2937 Inverter Based Gain-Boosting Fully Differential CMOS Amplifier

Authors: Alpana Agarwal, Akhil Sharma

Abstract:

This work presents a fully differential CMOS amplifier consisting of two self-biased gain boosted inverter stages, that provides an alternative to the power hungry operational amplifier. The self-biasing avoids the use of external biasing circuitry, thus reduces the die area, design efforts, and power consumption. In the present work, regulated cascode technique has been employed for gain boosting. The Miller compensation is also applied to enhance the phase margin. The circuit has been designed and simulated in 1.8 V 0.18 µm CMOS technology. The simulation results show a high DC gain of 100.7 dB, Unity-Gain Bandwidth of 107.8 MHz, and Phase Margin of 66.7o with a power dissipation of 286 μW and makes it suitable candidate for the high resolution pipelined ADCs.

Keywords: CMOS amplifier, gain boosting, inverter-based amplifier, self-biased inverter.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2552
2936 Design of Robust Fuzzy Logic Power System Stabilizer

Authors: S. A. Taher, A. Shemshadi

Abstract:

Power system stabilizers (PSS) must be capable of providing appropriate stabilization signals over a broad range of operating conditions and disturbance. Traditional PSS rely on robust linear design method in an attempt to cover a wider range of operating condition. Expert or rule-based controllers have also been proposed. Recently fuzzy logic (FL) as a novel robust control design method has shown promising results. The emphasis in fuzzy control design center is around uncertainties in the system parameters & operating conditions. In this paper a novel Robust Fuzzy Logic Power System Stabilizer (RFLPSS) design is proposed The RFLPSS basically utilizes only one measurable Δω signal as input (generator shaft speed). The speed signal is discretized resulting in three inputs to the RFLPSS. There are six rules for the fuzzification and two rules for defuzzification. To provide robustness, additional signal namely, speed are used as inputs to RFLPSS enabling appropriate gain adjustments for the three RFLPSS inputs. Simulation studies show the superior performance of the RFLPSS compared with an optimally designed conventional PSS and discrete mode FLPSS.

Keywords: Controller design, Fuzzy Logic, PID, Power SystemStabilizer, Robust control.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2097
2935 Loss Reduction and Reliability Improvement of Industrial Distribution System through Network Reconfiguration

Authors: Ei Ei Phyu, Kyaw Myo Lin, Thin Thin Moe

Abstract:

The paper presents an approach to improve the reliability and reduce line losses of practical distribution system applying network reconfiguration. The change of the topology redirects the power flow within the distribution network to obtain better performance of the system. Practical distribution network (Pyigyitagon Industrial Zone (I)) is used as the case study network. The detailed calculations of the reliability indices are done by using analytical method and power flow calculation is performed by Newton-Rephason solver. The comparison of various network reconfiguration techniques are described with respect to power loss and reliability index levels. Finally, the optimal reconfigured network is selected among difference cases based on the two factors: the most reliable network and the least loss minimization.

Keywords: Distribution system reliability, loss reduction, network reconfiguration, reliability enhancement, reliability indices.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 850
2934 Enhancing the Error-Correcting Performance of LDPC Codes through an Efficient Use of Decoding Iterations

Authors: Insah Bhurtah, P. Clarel Catherine, K. M. Sunjiv Soyjaudah

Abstract:

The decoding of Low-Density Parity-Check (LDPC) codes is operated over a redundant structure known as the bipartite graph, meaning that the full set of bit nodes is not absolutely necessary for decoder convergence. In 2008, Soyjaudah and Catherine designed a recovery algorithm for LDPC codes based on this assumption and showed that the error-correcting performance of their codes outperformed conventional LDPC Codes. In this work, the use of the recovery algorithm is further explored to test the performance of LDPC codes while the number of iterations is progressively increased. For experiments conducted with small blocklengths of up to 800 bits and number of iterations of up to 2000, the results interestingly demonstrate that contrary to conventional wisdom, the error-correcting performance keeps increasing with increasing number of iterations.

Keywords: Error-correcting codes, information theory, low-density parity-check codes, sum-product algorithm.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1670
2933 Power Flow Analysis for Radial Distribution System Using Backward/Forward Sweep Method

Authors: J. A. Michline Rupa, S. Ganesh

Abstract:

This paper proposes a backward/forward sweep method to analyze the power flow in radial distribution systems. The distribution system has radial structure and high R/X ratios. So the newton-raphson and fast decoupled methods are failed with distribution system. The proposed method presents a load flow study using backward/forward sweep method, which is one of the most effective methods for the load-flow analysis of the radial distribution system. By using this method, power losses for each bus branch and voltage magnitudes for each bus node are determined. This method has been tested on IEEE 33-bus radial distribution system and effective results are obtained using MATLAB.

Keywords: Backward/Forward sweep method, Distribution system, Load flow analysis.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 17446
2932 Effects of Distributed Generation on Voltage Profile for Reconfiguration of Distribution Networks

Authors: Mahdi Hayatdavudi, Ali Reza Rajabi, Mohammad Hassan Raouf, Mojtaba Saeedimoghadam, Amir Habibi

Abstract:

Generally, distributed generation units refer to small-scale electric power generators that produce electricity at a site close to the customer or an electric distribution system (in parallel mode). From the customers’ point of view, a potentially lower cost, higher service reliability, high power quality, increased energy efficiency, and energy independence can be the key points of a proper DG unit. Moreover, the use of renewable types of distributed generations such as wind, photovoltaic, geothermal or hydroelectric power can also provide significant environmental benefits. Therefore, it is of crucial importance to study their impacts on the distribution networks. A marked increase in Distributed Generation (DG), associated with medium voltage distribution networks, may be expected. Nowadays, distribution networks are planned for unidirectional power flows that are peculiar to passive systems, and voltage control is carried out exclusively by varying the tap position of the HV/MV transformer. This paper will compare different DG control methods and possible network reconfiguration aimed at assessing their effect on voltage profiles.

Keywords: Distribution Feeder Reconfiguration (DFR), Distributed Generator (DG), Voltage Profile, Control.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1918
2931 A Real Time Set Up for Retrieval of Emotional States from Human Neural Responses

Authors: Rashima Mahajan, Dipali Bansal, Shweta Singh

Abstract:

Real time non-invasive Brain Computer Interfaces have a significant progressive role in restoring or maintaining a quality life for medically challenged people. This manuscript provides a comprehensive review of emerging research in the field of cognitive/affective computing in context of human neural responses. The perspectives of different emotion assessment modalities like face expressions, speech, text, gestures, and human physiological responses have also been discussed. Focus has been paid to explore the ability of EEG (Electroencephalogram) signals to portray thoughts, feelings, and unspoken words. An automated workflow-based protocol to design an EEG-based real time Brain Computer Interface system for analysis and classification of human emotions elicited by external audio/visual stimuli has been proposed. The front end hardware includes a cost effective and portable Emotiv EEG Neuroheadset unit, a personal computer and a set of external stimulators. Primary signal analysis and processing of real time acquired EEG shall be performed using MATLAB based advanced brain mapping toolbox EEGLab/BCILab. This shall be followed by the development of MATLAB based self-defined algorithm to capture and characterize temporal and spectral variations in EEG under emotional stimulations. The extracted hybrid feature set shall be used to classify emotional states using artificial intelligence tools like Artificial Neural Network. The final system would result in an inexpensive, portable and more intuitive Brain Computer Interface in real time scenario to control prosthetic devices by translating different brain states into operative control signals.

Keywords: Brain Computer Interface (BCI), Electroencephalogram (EEG), EEGLab, BCILab, Emotiv, Emotions, Interval features, Spectral features, Artificial Neural Network, Control applications.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 5265
2930 Friction Calculation and Simulation of Column Electric Power Steering System

Authors: Seyed Hamid Mirmohammad Sadeghi, Raffaella Sesana, Daniela Maffiodo

Abstract:

This study presents a procedure for friction calculation of column electric power steering (C-EPS) system which affects handling and comfort in driving. The friction losses estimation is obtained from experimental tests and mathematical calculation. Parts in C-EPS mainly involved in friction losses are bearings and worm gear. In the theoretical approach, the gear geometry and Hertz law were employed to measure the normal load and the sliding velocity and contact areas from the worm gears driving conditions. The viscous friction generated in the worm gear was obtained with a theoretical approach and the result was applied to model the friction in the steering system. Finally, by viscous friction coefficient and Coulomb friction coefficient, values of friction in worm gear were calculated. According to the Bearing Company and the characteristics of each bearing, the friction torques due to load and due to speed were calculated. A MATLAB Simulink model for calculating the friction in bearings and worm gear in C-EPS were done and the total friction value was estimated.

Keywords: Friction, worm gear, column electric power steering system, Simulink, bearing, electric power steering, EPS.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2213
2929 Taxonomy of Threats and Vulnerabilities in Smart Grid Networks

Authors: Faisal Al Yahmadi, Muhammad R. Ahmed

Abstract:

Electric power is a fundamental necessity in the 21st century. Consequently, any break in electric power is probably going to affect the general activity. To make the power supply smooth and efficient, a smart grid network is introduced which uses communication technology. In any communication network, security is essential. It has been observed from several recent incidents that adversary causes an interruption to the operation of networks. In order to resolve the issues, it is vital to understand the threats and vulnerabilities associated with the smart grid networks. In this paper, we have investigated the threats and vulnerabilities in Smart Grid Networks (SGN) and the few solutions in the literature. Proposed solutions showed developments in electricity theft countermeasures, Denial of services attacks (DoS) and malicious injection attacks detection model, as well as malicious nodes detection using watchdog like techniques and other solutions.

Keywords: Smart grid network, security, threats, vulnerabilities.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 542
2928 Impact of Node Density and Transmission Range on the Performance of OLSR and DSDV Routing Protocols in VANET City Scenarios

Authors: Yassine Meraihi, Dalila Acheli, Rabah Meraihi

Abstract:

Vehicular Ad hoc Network (VANET) is a special case of Mobile Ad hoc Network (MANET) used to establish communications and exchange information among nearby vehicles and between vehicles and nearby fixed infrastructure. VANET is seen as a promising technology used to provide safety, efficiency, assistance and comfort to the road users. Routing is an important issue in Vehicular Ad Hoc Network to find and maintain communication between vehicles due to the highly dynamic topology, frequently disconnected network and mobility constraints.

This paper evaluates the performance of two most popular proactive routing protocols OLSR and DSDV in real city traffic scenario on the basis of three metrics namely Packet delivery ratio, throughput and average end to end delay by varying vehicles density and transmission range.

Keywords: DSDV, OLSR, Quality of service, Routing protocols, VANET.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2252
2927 Power Series Solution to Sliding Velocity in Three-Dimensional Multibody Systems with Impact and Friction

Authors: Hesham A. Elkaranshawy, Amr M. Abdelrazek, Hosam M. Ezzat

Abstract:

The system of ordinary nonlinear differential equations describing sliding velocity during impact with friction for a three-dimensional rigid-multibody system is developed. No analytical solutions have been obtained before for this highly nonlinear system. Hence, a power series solution is proposed. Since the validity of this solution is limited to its convergence zone, a suitable time step is chosen and at the end of it a new series solution is constructed. For a case study, the trajectory of the sliding velocity using the proposed method is built using 6 time steps, which coincides with a Runge- Kutta solution using 38 time steps.

Keywords: Impact with friction, nonlinear ordinary differential equations, power series solutions, rough collision.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1882
2926 GenCos- Optimal Bidding Strategy Considering Market Power and Transmission Constraints: A Cournot-based Model

Authors: A. Badri

Abstract:

Restructured electricity markets may provide opportunities for producers to exercise market power maintaining prices in excess of competitive levels. In this paper an oligopolistic market is presented that all Generation Companies (GenCos) bid in a Cournot model. Genetic algorithm (GA) is applied to obtain generation scheduling of each GenCo as well as hourly market clearing prices (MCP). In order to consider network constraints a multiperiod framework is presented to simulate market clearing mechanism in which the behaviors of market participants are modelled through piecewise block curves. A mixed integer linear programming (MILP) is employed to solve the problem. Impacts of market clearing process on participants- characteristic and final market prices are presented. Consequently, a novel multi-objective model is addressed for security constrained optimal bidding strategy of GenCos. The capability of price-maker GenCos to alter MCP is evaluated through introducing an effective-supply curve. In addition, the impact of exercising market power on the variation of market characteristics as well as GenCos scheduling is studied.

Keywords: Optimal bidding strategy, Cournot equilibrium, market power, network constraints, market auction mechanism

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1609
2925 Physical Properties of Uranium Dinitride UN2 by Using Density Functional Theory (DFT and DFT+U)

Authors: T. Zergoug, S.H. Abaidia, A. Nedjar, M. Y. Mokeddem

Abstract:

Physical properties of uranium dinitride (UN2) were investigated in detail using first principle calculations based on density functional theory (DFT). To study the strong correlation effects due to 5f uranium valence electrons, the on-site coulomb interaction correction U via the Hubbard-like term (DFT+U) was employed. The UN2 structural, mechanical and thermodynamic properties were calculated within DFT and Various U of DFT+U approach. The Perdew–Burke–Ernzerhof (PBE.5.2) version of the generalized gradient approximation (GGA) is used to describe the exchange-correlation with the projector-augmented wave (PAW) pseudo potentials. A comparative study shows that results are improved by using the Hubbard formalism for a certain U value correction like the structural parameter. For some physical properties the variation versus Hubbard-U is strong like Young modulus but for others it is weakly noticeable such as bulk modulus. We noticed also that from U=7.5 eV, elastic results don’t agree with the cubic cell because of the C44 values which turn out to be negative.

Keywords: Ab initio, bulk modulus, DFT, DFT + U.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2512
2924 Phase Transition and Molecular Polarizability Studies in Liquid Crystalline Mixtures

Authors: M. Shahina, K. Fakruddin, C. M. Subhan, S. Rangappa

Abstract:

In this work, two mixtures with equal concentrations of 1) 4ꞌ-(6-(4-(pentylamino) methyl)-3-hydroxyphenoxy) hexyloxy) biphenyl-4-carbonitrile+-4-((4-(hexyloxy) benzylidene) amino) phenyl 4-butoxy benzoate and 2) 4ꞌ - (6-(4-(hexylamino) methyl)-3-hydroxyphenoxy) hexyloxy) biphenyl-4-carbonitrile+-4-((4-(octyloxy) benzylidene) amino) phenyl 4-butoxy benzoate, have been prepared. The transition temperature and optical texture are observed by using thermal microscopy. Density and birefringence studies are carried out on the above liquid crystalline mixtures. Using density and refractive indices data, the molecular polarizabilities are evaluated by using well-known Vuks and Neugebauer models. The molecular polarizability is also evaluated theoretically by Lippincott δ function model. The results reveal that the polarizability values are same in both experimental and theoretical methods.

Keywords: Liquid crystals, optical textures, transition temperature, birefringence, polarizability.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1063