Search results for: Wireless Network
1964 NDENet: End-to-End Nighttime Dehazing and Enhancement
Authors: H. Baskar, A. S. Chakravarthy, P. Garg, D. Goel, A. S. Raj, K. Kumar, Lakshya, R. Parvatham, V. Sushant, B. Kumar Rout
Abstract:
In this paper, we present a computer vision task called nighttime dehaze-enhancement. This task aims to jointly perform dehazing and lightness enhancement. Our task fundamentally differs from nighttime dehazing – our goal is to jointly dehaze and enhance scenes, while nighttime dehazing aims to dehaze scenes under a nighttime setting. In order to facilitate further research on this task, we release a benchmark dataset called Reside-β Night dataset, consisting of 4122 nighttime hazed images from 2061 scenes and 2061 ground truth images. Moreover, we also propose a network called NDENet (Nighttime Dehaze-Enhancement Network), which jointly performs dehazing and low-light enhancement in an end-to-end manner. We evaluate our method on the proposed benchmark and achieve Structural Index Similarity (SSIM) of 0.8962 and Peak Signal to Noise Ratio (PSNR) of 26.25. We also compare our network with other baseline networks on our benchmark to demonstrate the effectiveness of our approach. We believe that nighttime dehaze-enhancement is an essential task particularly for autonomous navigation applications, and hope that our work will open up new frontiers in research. The code for our network is made publicly available.
Keywords: Dehazing, image enhancement, nighttime, computer vision.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 6861963 Understanding Health Behavior Using Social Network Analysis
Authors: Namrata Mishra
Abstract:
Health of a person plays a vital role in the collective health of his community and hence the well-being of the society as a whole. But, in today’s fast paced technology driven world, health issues are increasingly being associated with human behaviors – their lifestyle. Social networks have tremendous impact on the health behavior of individuals. Many researchers have used social network analysis to understand human behavior that implicates their social and economic environments. It would be interesting to use a similar analysis to understand human behaviors that have health implications. This paper focuses on concepts of those behavioural analyses that have health implications using social networks analysis and provides possible algorithmic approaches. The results of these approaches can be used by the governing authorities for rolling out health plans, benefits and take preventive measures, while the pharmaceutical companies can target specific markets, helping health insurance companies to better model their insurance plans.Keywords: Health behaviors, social network analysis, directed graph, breadth first search.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 19091962 Time and Wavelength Division Multiplexing Passive Optical Network Comparative Analysis: Modulation Formats and Channel Spacings
Authors: A. Fayad, Q. Alqhazaly, T. Cinkler
Abstract:
In light of the substantial increase in end-user requirements and the incessant need of network operators to upgrade the capabilities of access networks, in this paper, the performance of the different modulation formats on eight-channels Time and Wavelength Division Multiplexing Passive Optical Network (TWDM-PON) transmission system has been examined and compared. Limitations and features of modulation formats have been determined to outline the most suitable design to enhance the data rate and transmission reach to obtain the best performance of the network. The considered modulation formats are On-Off Keying Non-Return-to-Zero (NRZ-OOK), Carrier Suppressed Return to Zero (CSRZ), Duo Binary (DB), Modified Duo Binary (MODB), Quadrature Phase Shift Keying (QPSK), and Differential Quadrature Phase Shift Keying (DQPSK). The performance has been analyzed by varying transmission distances and bit rates under different channel spacing. Furthermore, the system is evaluated in terms of minimum Bit Error Rate (BER) and Quality factor (Qf) without applying any dispersion compensation technique, or any optical amplifier. Optisystem software was used for simulation purposes.
Keywords: Bit Error Rate, BER, Carrier Suppressed Return to Zero, CSRZ, Duo Binary, DB, Differential Quadrature Phase Shift Keying, DQPSK, Modified Duo Binary, MODB, On-Off Keying Non-Return-to-Zero, NRZ-OOK, Quality factor, Qf, Time and Wavelength Division Multiplexing Passive Optical Network, TWDM-PON.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 10431961 Bayes Net Classifiers for Prediction of Renal Graft Status and Survival Period
Authors: Jiakai Li, Gursel Serpen, Steven Selman, Matt Franchetti, Mike Riesen, Cynthia Schneider
Abstract:
This paper presents the development of a Bayesian belief network classifier for prediction of graft status and survival period in renal transplantation using the patient profile information prior to the transplantation. The objective was to explore feasibility of developing a decision making tool for identifying the most suitable recipient among the candidate pool members. The dataset was compiled from the University of Toledo Medical Center Hospital patients as reported to the United Network Organ Sharing, and had 1228 patient records for the period covering 1987 through 2009. The Bayes net classifiers were developed using the Weka machine learning software workbench. Two separate classifiers were induced from the data set, one to predict the status of the graft as either failed or living, and a second classifier to predict the graft survival period. The classifier for graft status prediction performed very well with a prediction accuracy of 97.8% and true positive values of 0.967 and 0.988 for the living and failed classes, respectively. The second classifier to predict the graft survival period yielded a prediction accuracy of 68.2% and a true positive rate of 0.85 for the class representing those instances with kidneys failing during the first year following transplantation. Simulation results indicated that it is feasible to develop a successful Bayesian belief network classifier for prediction of graft status, but not the graft survival period, using the information in UNOS database.Keywords: Bayesian network classifier, renal transplantation, graft survival period, United Network for Organ Sharing
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 21141960 Fuzzy Rules Emulated Network Adaptive Controller with Unfixed Learning Rate for a Class of Unknown Discrete-time Nonlinear Systems
Authors: Chidentree Treesatayapun
Abstract:
A direct adaptive controller for a class of unknown nonlinear discrete-time systems is presented in this article. The proposed controller is constructed by fuzzy rules emulated network (FREN). With its simple structure, the human knowledge about the plant is transferred to be if-then rules for setting the network. These adjustable parameters inside FREN are tuned by the learning mechanism with time varying step size or learning rate. The variation of learning rate is introduced by main theorem to improve the system performance and stabilization. Furthermore, the boundary of adjustable parameters is guaranteed through the on-line learning and membership functions properties. The validation of the theoretical findings is represented by some illustrated examples.
Keywords: Neuro-Fuzzy, learning algorithm, nonlinear discrete time.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 14281959 Distributed Coordination of Connected and Automated Vehicles at Multiple Interconnected Intersections
Authors: Zhiyuan Du, Baisravan Hom Chaudhuri, Pierluigi Pisu
Abstract:
In connected vehicle systems where wireless communication is available among the involved vehicles and intersection controllers, it is possible to design an intersection coordination strategy that leads the connected and automated vehicles (CAVs) travel through the road intersections without the conventional traffic light control. In this paper, we present a distributed coordination strategy for the CAVs at multiple interconnected intersections that aims at improving system fuel efficiency and system mobility. We present a distributed control solution where in the higher level, the intersection controllers calculate the road desired average velocity and optimally assign reference velocities of each vehicle. In the lower level, every vehicle is considered to use model predictive control (MPC) to track their reference velocity obtained from the higher level controller. The proposed method has been implemented on a simulation-based case with two-interconnected intersection network. Additionally, the effects of mixed vehicle types on the coordination strategy has been explored. Simulation results indicate the improvement on vehicle fuel efficiency and traffic mobility of the proposed method.
Keywords: Connected vehicles, automated vehicles, intersection coordination systems, multiple interconnected intersections, model predictive control.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 18531958 Load Forecasting Using Neural Network Integrated with Economic Dispatch Problem
Authors: Mariyam Arif, Ye Liu, Israr Ul Haq, Ahsan Ashfaq
Abstract:
High cost of fossil fuels and intensifying installations of alternate energy generation sources are intimidating main challenges in power systems. Making accurate load forecasting an important and challenging task for optimal energy planning and management at both distribution and generation side. There are many techniques to forecast load but each technique comes with its own limitation and requires data to accurately predict the forecast load. Artificial Neural Network (ANN) is one such technique to efficiently forecast the load. Comparison between two different ranges of input datasets has been applied to dynamic ANN technique using MATLAB Neural Network Toolbox. It has been observed that selection of input data on training of a network has significant effects on forecasted results. Day-wise input data forecasted the load accurately as compared to year-wise input data. The forecasted load is then distributed among the six generators by using the linear programming to get the optimal point of generation. The algorithm is then verified by comparing the results of each generator with their respective generation limits.
Keywords: Artificial neural networks, demand-side management, economic dispatch, linear programming, power generation dispatch.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 9171957 A Method to Predict Hemorrhage Disease of Grass Carp Tends
Authors: Zhongxu Chen, Jun Yang, Heyue Mao, Xiaoyu Zheng
Abstract:
Hemorrhage Disease of Grass Carp (HDGC) is a kind of commonly occurring illnesses in summer, and the extremely high death rate result in colossal losses to aquaculture. As the complex connections among each factor which influences aquiculture diseases, there-s no quit reasonable mathematical model to solve the problem at present.A BP neural network which with excellent nonlinear mapping coherence was adopted to establish mathematical model; Environmental factor, which can easily detected, such as breeding density, water temperature, pH and light intensity was set as the main analyzing object. 25 groups of experimental data were used for training and test, and the accuracy of using the model to predict the trend of HDGC was above 80%. It is demonstrated that BP neural network for predicating diseases in HDGC has a particularly objectivity and practicality, thus it can be spread to other aquiculture disease.Keywords: Aquaculture, Hemorrhage Disease of Grass Carp, BP Neural Network
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 19201956 A Comparative Analysis of Performance and QoS Issues in MANETs
Authors: Javed Parvez, Mushtaq Ahmad Peer
Abstract:
Mobile Ad hoc networks (MANETs) are collections of wireless mobile nodes dynamically reconfiguring and collectively forming a temporary network. These types of networks assume existence of no fixed infrastructure and are often useful in battle-field tactical operations or emergency search-and-rescue type of operations where fixed infrastructure is neither feasible nor practical. They also find use in ad hoc conferences, campus networks and commercial recreational applications carrying multimedia traffic. All of the above applications of MANETs require guaranteed levels of performance as experienced by the end-user. This paper focuses on key challenges in provisioning predetermined levels of such Quality of Service (QoS). It also identifies functional areas where QoS models are currently defined and used. Evolving functional areas where performance and QoS provisioning may be applied are also identified and some suggestions are provided for further research in this area. Although each of the above functional areas have been discussed separately in recent research studies, since these QoS functional areas are highly correlated and interdependent, a comprehensive and comparative analysis of these areas and their interrelationships is desired. In this paper we have attempted to provide such an overview.Keywords: Bandwidth Reservation, Congestion, DynamicNetwork Topology, End-to-End Delay, Flexible QoS Model forMANET(FQMM), Hidden Terminal, Mobile AdhocNetwork(MANET), Packet Jitter, Queuing, Quality-of-Service(QoS), Relative Bandwidth Service Differentiation(RBSD), Resource ReSerVation Protocol (RSVP).
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 21491955 A Prediction Model for Dynamic Responses of Building from Earthquake Based on Evolutionary Learning
Authors: Kyu Jin Kim, Byung Kwan Oh, Hyo Seon Park
Abstract:
The seismic responses-based structural health monitoring system has been performed to prevent seismic damage. Structural seismic damage of building is caused by the instantaneous stress concentration which is related with dynamic characteristic of earthquake. Meanwhile, seismic response analysis to estimate the dynamic responses of building demands significantly high computational cost. To prevent the failure of structural members from the characteristic of the earthquake and the significantly high computational cost for seismic response analysis, this paper presents an artificial neural network (ANN) based prediction model for dynamic responses of building considering specific time length. Through the measured dynamic responses, input and output node of the ANN are formed by the length of specific time, and adopted for the training. In the model, evolutionary radial basis function neural network (ERBFNN), that radial basis function network (RBFN) is integrated with evolutionary optimization algorithm to find variables in RBF, is implemented. The effectiveness of the proposed model is verified through an analytical study applying responses from dynamic analysis for multi-degree of freedom system to training data in ERBFNN.
Keywords: Structural health monitoring, dynamic response, artificial neural network, radial basis function network, genetic algorithm.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 4231954 Mix Proportioning and Strength Prediction of High Performance Concrete Including Waste Using Artificial Neural Network
Authors: D. G. Badagha, C. D. Modhera, S. A. Vasanwala
Abstract:
There is a great challenge for civil engineering field to contribute in environment prevention by finding out alternatives of cement and natural aggregates. There is a problem of global warming due to cement utilization in concrete, so it is necessary to give sustainable solution to produce concrete containing waste. It is very difficult to produce designated grade of concrete containing different ingredient and water cement ratio including waste to achieve desired fresh and harden properties of concrete as per requirement and specifications. To achieve the desired grade of concrete, a number of trials have to be taken, and then after evaluating the different parameters at long time performance, the concrete can be finalized to use for different purposes. This research work is carried out to solve the problem of time, cost and serviceability in the field of construction. In this research work, artificial neural network introduced to fix proportion of concrete ingredient with 50% waste replacement for M20, M25, M30, M35, M40, M45, M50, M55 and M60 grades of concrete. By using the neural network, mix design of high performance concrete was finalized, and the main basic mechanical properties were predicted at 3 days, 7 days and 28 days. The predicted strength was compared with the actual experimental mix design and concrete cube strength after 3 days, 7 days and 28 days. This experimentally and neural network based mix design can be used practically in field to give cost effective, time saving, feasible and sustainable high performance concrete for different types of structures.
Keywords: Artificial neural network, ANN, high performance concrete, rebound hammer, strength prediction.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 12111953 Gasifier System Identification for Biomass Power Plants using Neural Network
Authors: Jittarat Satonsaowapak, Thanatchai. Kulworawanichpong., Ratchadaporn Oonsivilai, Anant Oonsivilai
Abstract:
The use of renewable energy sources becomes more necessary and interesting. As wider applications of renewable energy devices at domestic, commercial and industrial levels has not only resulted in greater awareness, but also significantly installed capacities. In addition, biomass principally is in the form of woods, which is a form of energy by humans for a long time. Gasification is a process of conversion of solid carbonaceous fuel into combustible gas by partial combustion. Many gasifier models have various operating conditions; the parameters kept in each model are different. This study applied experimental data, which has three inputs, which are; biomass consumption, temperature at combustion zone and ash discharge rate. One output is gas flow rate. For this paper, neural network was used to identify the gasifier system suitable for the experimental data. In the result,neural networkis usable to attain the answer.Keywords: Gasifier System, Identification, Neural Network
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 14461952 Intelligent Home: SMS Based Home Security System with Immediate Feedback
Authors: Sheikh I. Azid, Bibhya Sharma
Abstract:
A low cost Short Message System (SMS) based Home security system equipped with motion, smoke, temperature, humidity and light sensors has been studied and tested. The sensors are controlled by a microprocessor PIC 18F4520 through the SMS having password protection code for the secure operation. The user is able to switch light and the appliances and get instant feedback. Also in cases of emergencies such as fire or robbery the system will send alert message to occupant and relevant civil authorities. The operation of the home security has been tested on Vodafone- Fiji network and Digicel Fiji Network for emergency and feedback responses for 25 samples. The experiment showed that it takes about 8-10s for the security system to respond in case of emergency. It takes about 18-22s for the occupant to switch and monitor lights and appliances and then get feedback depending upon the network traffic.
Keywords: Smart Home, SMS, Sensors, Microprocessor.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 19601951 Inferring the Dynamics of “Hidden“ Neurons from Electrophysiological Recordings
Authors: Valeri A. Makarov, Nazareth P. Castellanos
Abstract:
Statistical analysis of electrophysiological recordings obtained under, e.g. tactile, stimulation frequently suggests participation in the network dynamics of experimentally unobserved “hidden" neurons. Such interneurons making synapses to experimentally recorded neurons may strongly alter their dynamical responses to the stimuli. We propose a mathematical method that formalizes this possibility and provides an algorithm for inferring on the presence and dynamics of hidden neurons based on fitting of the experimental data to spike trains generated by the network model. The model makes use of Integrate and Fire neurons “chemically" coupled through exponentially decaying synaptic currents. We test the method on simulated data and also provide an example of its application to the experimental recording from the Dorsal Column Nuclei neurons of the rat under tactile stimulation of a hind limb.Keywords: Integrate and fire neuron, neural network models, spike trains.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 13461950 Performance Analysis of Parallel Client-Server Model Versus Parallel Mobile Agent Model
Authors: K. B. Manwade, G. A. Patil
Abstract:
Mobile agent has motivated the creation of a new methodology for parallel computing. We introduce a methodology for the creation of parallel applications on the network. The proposed Mobile-Agent parallel processing framework uses multiple Javamobile Agents. Each mobile agent can travel to the specified machine in the network to perform its tasks. We also introduce the concept of master agent, which is Java object capable of implementing a particular task of the target application. Master agent is dynamically assigns the task to mobile agents. We have developed and tested a prototype application: Mobile Agent Based Parallel Computing. Boosted by the inherited benefits of using Java and Mobile Agents, our proposed methodology breaks the barriers between the environments, and could potentially exploit in a parallel manner all the available computational resources on the network. This paper elaborates performance issues of a mobile agent for parallel computing.Keywords: Parallel Computing, Mobile Agent.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16601949 Survey Based Data Security Evaluation in Pakistan Financial Institutions against Malicious Attacks
Authors: Naveed Ghani, Samreen Javed
Abstract:
In today’s heterogeneous network environment, there is a growing demand for distrust clients to jointly execute secure network to prevent from malicious attacks as the defining task of propagating malicious code is to locate new targets to attack. Residual risk is always there no matter what solutions are implemented or whet so ever security methodology or standards being adapted. Security is the first and crucial phase in the field of Computer Science. The main aim of the Computer Security is gathering of information with secure network. No one need wonder what all that malware is trying to do: It's trying to steal money through data theft, bank transfers, stolen passwords, or swiped identities. From there, with the help of our survey we learn about the importance of white listing, antimalware programs, security patches, log files, honey pots, and more used in banks for financial data protection but there’s also a need of implementing the IPV6 tunneling with Crypto data transformation according to the requirements of new technology to prevent the organization from new Malware attacks and crafting of its own messages and sending them to the target. In this paper the writer has given the idea of implementing IPV6 Tunneling Secessions on private data transmission from financial organizations whose secrecy needed to be safeguarded.
Keywords: Network worms, malware infection propagating malicious code, virus, security, VPN.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 28141948 Modelling Indoor Air Carbon Dioxide (CO2)Concentration using Neural Network
Authors: J-P. Skön, M. Johansson, M. Raatikainen, K. Leiviskä, M. Kolehmainen
Abstract:
The use of neural networks is popular in various building applications such as prediction of heating load, ventilation rate and indoor temperature. Significant is, that only few papers deal with indoor carbon dioxide (CO2) prediction which is a very good indicator of indoor air quality (IAQ). In this study, a data-driven modelling method based on multilayer perceptron network for indoor air carbon dioxide in an apartment building is developed. Temperature and humidity measurements are used as input variables to the network. Motivation for this study derives from the following issues. First, measuring carbon dioxide is expensive and sensors power consumptions is high and secondly, this leads to short operating times of battery-powered sensors. The results show that predicting CO2 concentration based on relative humidity and temperature measurements, is difficult. Therefore, more additional information is needed.Keywords: Indoor air quality, Modelling, Neural networks
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 18941947 The Use of Local Knowledge and its Transferfor Community Self-Protection Development in Flood Prone Residential Area
Authors: Siyanee Hirunsalee, Hidehiko Kanegae
Abstract:
This paper aims to study at the use of local knowledge to develop community self-protection in flood prone residential area, Ayutthaya Island has been chosen as a case study. This study tries to examine the strength of local knowledge which is able to develop community self-protection and cope with flood disaster. In-depth, this paper focuses on the influence of social network on knowledge transfer. After conducted the research, authors reviewed the strength of local knowledge and also mentioned the obstacles of community to use and also transfer local knowledge. Moreover, the result of the study revealed that local knowledge is not always transferred by the strongest-tie social network (family or kinship) as we used to believe. Surprisingly, local knowledge could be also transferred by the weaker-tie social network (teacher/ monk) with the better effectiveness in some knowledge.Keywords: Community Self-Protection Development, FloodRisk Reduction, Knowledge Transfer, Local Knowledge
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 17051946 A Mobile Multihop Relay Dynamic TDD Scheme for Cellular Networks
Authors: Jong-Moon Chung, Hyung-Weon Cho, Ki-Yong Jin, Min-Hee Cho
Abstract:
In this paper, we present an analytical framework for the evaluation of the uplink performance of multihop cellular networks based on dynamic time division duplex (TDD). New wireless broadband protocols, such as WiMAX, WiBro, and 3G-LTE apply TDD, and mobile communication protocols under standardization (e.g., IEEE802.16j) are investigating mobile multihop relay (MMR) as a future technology. In this paper a novel MMR TDD scheme is presented, where the dynamic range of the frame is shared to traffic resources of asymmetric nature and multihop relaying. The mobile communication channel interference model comprises of inner and co-channel interference (CCI). The performance analysis focuses on the uplink due to the fact that the effects of dynamic resource allocation show significant performance degradation only in the uplink compared to time division multiple access (TDMA) schemes due to CCI [1-3], where the downlink results to be the same or better.The analysis was based on the signal to interference power ratio (SIR) outage probability of dynamic TDD (D-TDD) and TDMA systems,which are the most widespread mobile communication multi-user control techniques. This paper presents the uplink SIR outage probability with multihop results and shows that the dynamic TDD scheme applying MMR can provide a performance improvement compared to single hop applications if executed properly.
Keywords: Co-Channel Interference, Dynamic TDD, MobileMultihop Reply, Cellular Network, Time Division Multiple Access.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 23471945 An Efficient and Optimized Multi Constrained Path Computation for Real Time Interactive Applications in Packet Switched Networks
Authors: P.S. Prakash, S. Selvan
Abstract:
Quality of Service (QoS) Routing aims to find path between source and destination satisfying the QoS requirements which efficiently using the network resources and underlying routing algorithm and to fmd low-cost paths that satisfy given QoS constraints. One of the key issues in providing end-to-end QoS guarantees in packet networks is determining feasible path that satisfies a number of QoS constraints. We present a Optimized Multi- Constrained Routing (OMCR) algorithm for the computation of constrained paths for QoS routing in computer networks. OMCR applies distance vector to construct a shortest path for each destination with reference to a given optimization metric, from which a set of feasible paths are derived at each node. OMCR is able to fmd feasible paths as well as optimize the utilization of network resources. OMCR operates with the hop-by-hop, connectionless routing model in IP Internet and does not create any loops while fmding the feasible paths. Nodes running OMCR not necessarily maintaining global view of network state such as topology, resource information and routing updates are sent only to neighboring nodes whereas its counterpart link-state routing method depend on complete network state for constrained path computation and that incurs excessive communication overhead.
Keywords: QoS Routing, Optimization, feasible path, multiple constraints.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 11281944 Abnormal IP Packets on 3G Mobile Data Networks
Authors: Joo-Hyung Oh, Dongwan Kang, JunHyung Cho, Chaetae Im
Abstract:
As the mobile Internet has become widespread in recent years, communication based on mobile networks is increasing. As a result, security threats have been posed with regard to the abnormal traffic of mobile networks, but mobile security has been handled with focus on threats posed by mobile malicious codes, and researches on security threats to the mobile network itself have not attracted much attention. In mobile networks, the IP address of the data packet is a very important factor for billing purposes. If one mobile terminal use an incorrect IP address that either does not exist or could be assigned to another mobile terminal, billing policy will cause problems. We monitor and analyze 3G mobile data networks traffics for a period of time and finds some abnormal IP packets. In this paper, we analyze the reason for abnormal IP packets on 3G Mobile Data Networks. And we also propose an algorithm based on IP address table that contains addresses currently in use within the mobile data network to detect abnormal IP packets.
Keywords: WCDMA, 3G, Abnormal IP address, Mobile Data Network Attack
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 23391943 Context Aware Lightweight Energy Efficient Framework
Authors: D. Sathan, A. Meetoo, R. K. Subramaniam
Abstract:
Context awareness is a capability whereby mobile computing devices can sense their physical environment and adapt their behavior accordingly. The term context-awareness, in ubiquitous computing, was introduced by Schilit in 1994 and has become one of the most exciting concepts in early 21st-century computing, fueled by recent developments in pervasive computing (i.e. mobile and ubiquitous computing). These include computing devices worn by users, embedded devices, smart appliances, sensors surrounding users and a variety of wireless networking technologies. Context-aware applications use context information to adapt interfaces, tailor the set of application-relevant data, increase the precision of information retrieval, discover services, make the user interaction implicit, or build smart environments. For example: A context aware mobile phone will know that the user is currently in a meeting room, and reject any unimportant calls. One of the major challenges in providing users with context-aware services lies in continuously monitoring their contexts based on numerous sensors connected to the context aware system through wireless communication. A number of context aware frameworks based on sensors have been proposed, but many of them have neglected the fact that monitoring with sensors imposes heavy workloads on ubiquitous devices with limited computing power and battery. In this paper, we present CALEEF, a lightweight and energy efficient context aware framework for resource limited ubiquitous devices.Keywords: Context-Aware, Energy-Efficient, Lightweight, Ubiquitous Devices.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 19511942 An Adversarial Construction of Instability Bounds in LIS Networks
Authors: Dimitrios Koukopoulos
Abstract:
In this work, we study the impact of dynamically changing link slowdowns on the stability properties of packetswitched networks under the Adversarial Queueing Theory framework. Especially, we consider the Adversarial, Quasi-Static Slowdown Queueing Theory model, where each link slowdown may take on values in the two-valued set of integers {1, D} with D > 1 which remain fixed for a long time, under a (w, ¤ü)-adversary. In this framework, we present an innovative systematic construction for the estimation of adversarial injection rate lower bounds, which, if exceeded, cause instability in networks that use the LIS (Longest-in- System) protocol for contention-resolution. In addition, we show that a network that uses the LIS protocol for contention-resolution may result in dropping its instability bound at injection rates ¤ü > 0 when the network size and the high slowdown D take large values. This is the best ever known instability lower bound for LIS networks.Keywords: Network stability, quality of service, adversarial queueing theory, greedy scheduling protocols.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 12311941 Effects of Variations in Generator Inputs for Small Signal Stability Studies of a Three Machine Nine Bus Network
Authors: Hemalan Nambier a/l Vijiyan, Agileswari K. Ramasamy, Au Mau Teng, Syed Khaleel Ahmed
Abstract:
Small signal stability causes small perturbations in the generator that can cause instability in the power network. It is generally known that small signal stability are directly related to the generator and load properties. This paper examines the effects of generator input variations on power system oscillations for a small signal stability study. Eigenvaules and eigenvectors are used to examine the stability of the power system. The dynamic power system's mathematical model is constructed and thus calculated using load flow and small signal stability toolbox on MATLAB. The power system model is based on a 3-machine 9-bus system that was modified to suit this study. In this paper, Participation Factors are a means to gauge the effects of variation in generation with other parameters on the network are also incorporated.Keywords: Eigen-analysis, generation modeling, participationfactor, small signal stability.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 24551940 Region-Based Image Fusion with Artificial Neural Network
Authors: Shuo-Li Hsu, Peng-Wei Gau, I-Lin Wu, Jyh-Horng Jeng
Abstract:
For most image fusion algorithms separate relationship by pixels in the image and treat them more or less independently. In addition, they have to be adjusted different parameters in different time or weather. In this paper, we propose a region–based image fusion which combines aspects of feature and pixel-level fusion method to replace only by pixel. The basic idea is to segment far infrared image only and to add information of each region from segmented image to visual image respectively. Then we determine different fused parameters according different region. At last, we adopt artificial neural network to deal with the problems of different time or weather, because the relationship between fused parameters and image features are nonlinear. It render the fused parameters can be produce automatically according different states. The experimental results present the method we proposed indeed have good adaptive capacity with automatic determined fused parameters. And the architecture can be used for lots of applications.Keywords: Image fusion, Region-based fusion, Segmentation, Neural network, Multi-sensor.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 22611939 Social Network Analysis & Information Disclosure: A Case Study
Authors: Shilpi Sharma, J. S. Sodhi
Abstract:
The advent of social networking technologies has been met with mixed reactions in academic and corporate circles around the world. This study explored the influence of social network in current era, the relation being maintained between the Social networking site and its user by the extent of use, benefits and latest technologies. The study followed a descriptive research design wherein a questionnaire was used as the main research tool. The data collected was analyzed using SPSS 16. Data was gathered from 1205 users and analyzed in accordance with the objectives of the study. The analysis of the results seem to suggest that the majority of users were mainly using Facebook, despite of concerns raised about the disclosure of personal information on social network sites, users continue to disclose huge quantity of personal information, they find that reading privacy policy is time consuming and changes made can result into improper settings.
Keywords: Social Networking Sites, Privacy Policy, Disclosure of Personal Information.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 20641938 Transient Analysis and Mitigation of Capacitor Bank Switching on a Standalone Wind Farm
Authors: Ajibola O. Akinrinde, Andrew Swanson, Remy Tiako
Abstract:
There exist significant losses on transmission lines due to distance, as power generating stations could be located far from some isolated settlements. Standalone wind farms could be a good choice of alternative power generation for such settlements that are far from the grid due to factors of long distance or socio-economic problems. However, uncompensated wind farms consume reactive power since wind turbines are induction generators. Therefore, capacitor banks are used to compensate reactive power, which in turn improves the voltage profile of the network. Although capacitor banks help improving voltage profile, they also undergo switching actions due to its compensating response to the variation of various types of load at the consumer’s end. These switching activities could cause transient overvoltage on the network, jeopardizing the end-life of other equipment on the system. In this paper, the overvoltage caused by these switching activities is investigated using the IEEE bus 14-network to represent a standalone wind farm, and the simulation is done using ATP/EMTP software. Scenarios involving the use of pre-insertion resistor and pre-insertion inductor, as well as controlled switching was also carried out in order to decide the best mitigation option to reduce the overvoltage.
Keywords: Capacitor banks, IEEE bus 14-network, Pre-insertion resistor, Standalone wind farm.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 22971937 A New Solution for Natural Convection of Darcian Fluid about a Vertical Full Cone Embedded in Porous Media Prescribed Wall Temperature by using a Hybrid Neural Network-Particle Swarm Optimization Method
Authors: M.A.Behrang, M. Ghalambaz, E. Assareh, A.R. Noghrehabadi
Abstract:
Fluid flow and heat transfer of vertical full cone embedded in porous media is studied in this paper. Nonlinear differential equation arising from similarity solution of inverted cone (subjected to wall temperature boundary conditions) embedded in porous medium is solved using a hybrid neural network- particle swarm optimization method. To aim this purpose, a trial solution of the differential equation is defined as sum of two parts. The first part satisfies the initial/ boundary conditions and does contain an adjustable parameter and the second part which is constructed so as not to affect the initial/boundary conditions and involves adjustable parameters (the weights and biases) for a multi-layer perceptron neural network. Particle swarm optimization (PSO) is applied to find adjustable parameters of trial solution (in first and second part). The obtained solution in comparison with the numerical ones represents a remarkable accuracy.Keywords: Porous Media, Ordinary Differential Equations (ODE), Particle Swarm Optimization (PSO), Neural Network (NN).
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 17331936 New Approach for Load Modeling
Authors: S. Chokri
Abstract:
Load modeling is one of the central functions in power systems operations. Electricity cannot be stored, which means that for electric utility, the estimate of the future demand is necessary in managing the production and purchasing in an economically reasonable way. A majority of the recently reported approaches are based on neural network. The attraction of the methods lies in the assumption that neural networks are able to learn properties of the load. However, the development of the methods is not finished, and the lack of comparative results on different model variations is a problem. This paper presents a new approach in order to predict the Tunisia daily peak load. The proposed method employs a computational intelligence scheme based on the Fuzzy neural network (FNN) and support vector regression (SVR). Experimental results obtained indicate that our proposed FNN-SVR technique gives significantly good prediction accuracy compared to some classical techniques.
Keywords: Neural network, Load Forecasting, Fuzzy inference, Machine learning, Fuzzy modeling and rule extraction, Support Vector Regression.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 22001935 A Systems Approach to Gene Ranking from DNA Microarray Data of Cervical Cancer
Authors: Frank Emmert Streib, Matthias Dehmer, Jing Liu, Max Mühlhauser
Abstract:
In this paper we present a method for gene ranking from DNA microarray data. More precisely, we calculate the correlation networks, which are unweighted and undirected graphs, from microarray data of cervical cancer whereas each network represents a tissue of a certain tumor stage and each node in the network represents a gene. From these networks we extract one tree for each gene by a local decomposition of the correlation network. The interpretation of a tree is that it represents the n-nearest neighbor genes on the n-th level of a tree, measured by the Dijkstra distance, and, hence, gives the local embedding of a gene within the correlation network. For the obtained trees we measure the pairwise similarity between trees rooted by the same gene from normal to cancerous tissues. This evaluates the modification of the tree topology due to progression of the tumor. Finally, we rank the obtained similarity values from all tissue comparisons and select the top ranked genes. For these genes the local neighborhood in the correlation networks changes most between normal and cancerous tissues. As a result we find that the top ranked genes are candidates suspected to be involved in tumor growth and, hence, indicates that our method captures essential information from the underlying DNA microarray data of cervical cancer.Keywords: Graph similarity, DNA microarray data, cancer.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1759