Search results for: Industrial ores classification
1006 A Predictive Rehabilitation Software for Cerebral Palsy Patients
Authors: J. Bouchard, B. Prosperi, G. Bavre, M. Daudé, E. Jeandupeux
Abstract:
Young patients suffering from Cerebral Palsy are facing difficult choices concerning heavy surgeries. Diagnosis settled by surgeons can be complex and on the other hand decision for patient about getting or not such a surgery involves important reflection effort. Proposed software combining prediction for surgeries and post surgery kinematic values, and from 3D model representing the patient is an innovative tool helpful for both patients and medicine professionals. Beginning with analysis and classification of kinematics values from Data Base extracted from gait analysis in 3 separated clusters, it is possible to determine close similarity between patients. Prediction surgery best adapted to improve a patient gait is then determined by operating a suitable preconditioned neural network. Finally, patient 3D modeling based on kinematic values analysis, is animated thanks to post surgery kinematic vectors characterizing the closest patient selected from patients clustering.
Keywords: Cerebral Palsy, Clustering, Crouch Gait, 3-D Modeling.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 20071005 Automated Detection of Alzheimer Disease Using Region Growing technique and Artificial Neural Network
Authors: B. Al-Naami, N. Gharaibeh, A. AlRazzaq Kheshman
Abstract:
Alzheimer is known as the loss of mental functions such as thinking, memory, and reasoning that is severe enough to interfere with a person's daily functioning. The appearance of Alzheimer Disease symptoms (AD) are resulted based on which part of the brain has a variety of infection or damage. In this case, the MRI is the best biomedical instrumentation can be ever used to discover the AD existence. Therefore, this paper proposed a fusion method to distinguish between the normal and (AD) MRIs. In this combined method around 27 MRIs collected from Jordanian Hospitals are analyzed based on the use of Low pass -morphological filters to get the extracted statistical outputs through intensity histogram to be employed by the descriptive box plot. Also, the artificial neural network (ANN) is applied to test the performance of this approach. Finally, the obtained result of t-test with confidence accuracy (95%) has compared with classification accuracy of ANN (100 %). The robust of the developed method can be considered effectively to diagnose and determine the type of AD image.Keywords: Alzheimer disease, Brain MRI analysis, Morphological filter, Box plot, Intensity histogram, ANN.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 31411004 Methods for Distinction of Cattle Using Supervised Learning
Authors: Radoslav Židek, Veronika Šidlová, Radovan Kasarda, Birgit Fuerst-Waltl
Abstract:
Machine learning represents a set of topics dealing with the creation and evaluation of algorithms that facilitate pattern recognition, classification, and prediction, based on models derived from existing data. The data can present identification patterns which are used to classify into groups. The result of the analysis is the pattern which can be used for identification of data set without the need to obtain input data used for creation of this pattern. An important requirement in this process is careful data preparation validation of model used and its suitable interpretation. For breeders, it is important to know the origin of animals from the point of the genetic diversity. In case of missing pedigree information, other methods can be used for traceability of animal´s origin. Genetic diversity written in genetic data is holding relatively useful information to identify animals originated from individual countries. We can conclude that the application of data mining for molecular genetic data using supervised learning is an appropriate tool for hypothesis testing and identifying an individual.
Keywords: Genetic data, Pinzgau cattle, supervised learning.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 23181003 Statistical Approach to Identify Stress and Biases Impairing Decision-Making in High-Risk Industry
Authors: Ph. Fauquet-Alekhine
Abstract:
Decision-making occurs several times an hour when working in high risk industry and an erroneous choice might have undesirable outcomes for people and the environment surrounding the industrial plant. Industrial decisions are very often made in a context of acute stress. Time pressure is a crucial stressor leading decision makers sometimes to boost up the decision-making process and if it is not possible then shift to the simplest strategy. We thus found it interesting to update the characterization of the stress factors impairing decision-making at Chinon Nuclear Power Plant (France) in order to optimize decision making contexts and/or associated processes. The investigation was based on the analysis of reports addressing safety events over the last 3 years. Among 93 reports, those explicitly addressing decision-making issues were identified. Characterization of each event was undertaken in terms of three criteria: stressors, biases impairing decision making and weaknesses of the decision-making process. The statistical analysis showed that biases were distributed over 10 possibilities among which the hypothesis confirmation bias was clearly salient. No significant correlation was found between criteria. The analysis indicated that the main stressor was time pressure and highlights an unexpected form of stressor: the trust asymmetry principle of the expert. The analysis led to the conclusion that this stressor impaired decision-making from a psychological angle rather than from a physiological angle: it induces defensive bias of self-esteem, self-protection associated with a bias of confirmation. This leads to the hypothesis that this stressor can intervene in some cases without being detected, and to the hypothesis that other stressors of the same kind might occur without being detected too. Further investigations addressing these hypotheses are considered. The analysis also led to the conclusion that dealing with these issues implied i) decision-making methods being well known to the workers and automated and ii) the decision-making tools being well known and strictly applied. Training was thus adjusted.
Keywords: Bias, expert, high risk industry, stress.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 6671002 Optimization of the Co-Precipitation of Industrial Waste Metals in a Continuous Reactor System
Authors: Thomas S. Abia II, Citlali Garcia-Saucedo
Abstract:
A continuous copper precipitation treatment (CCPT) system was conceived at Intel Chandler Site to serve as a first-of-kind (FOK) facility-scale waste copper (Cu), nickel (Ni), and manganese (Mn) co-precipitation facility. The process was designed to treat highly variable wastewater discharged from a substrate packaging research factory. The paper discusses metals co-precipitation induced by internal changes for manufacturing facilities that lack the capacity for hardware expansion due to real estate restrictions, aggressive schedules, or budgetary constraints. Herein, operating parameters such as pH and oxidation reduction potential (ORP) were examined to analyze the ability of the CCPT System to immobilize various waste metals. Additionally, influential factors such as influent concentrations and retention times were investigated to quantify the environmental variability against system performance. A total of 2,027 samples were analyzed and statistically evaluated to measure the performance of CCPT that was internally retrofitted for Mn abatement to meet environmental regulations. In order to enhance the consistency of the influent, a separate holding tank was cannibalized from another system to collect and slow-feed the segregated Mn wastewater from the factory into CCPT. As a result, the baseline influent Mn decreased from 17.2+18.7 mg1L-1 at pre-pilot to 5.15+8.11 mg1L-1 post-pilot (70.1% reduction). Likewise, the pre-trial and post-trial average influent Cu values to CCPT were 52.0+54.6 mg1L-1 and 33.9+12.7 mg1L-1, respectively (34.8% reduction). However, the raw Ni content of 0.97+0.39 mg1L-1 at pre-pilot increased to 1.06+0.17 mg1L-1 at post-pilot. The average Mn output declined from 10.9+11.7 mg1L-1 at pre-pilot to 0.44+1.33 mg1L-1 at post-pilot (96.0% reduction) as a result of the pH and ORP operating setpoint changes. In similar fashion, the output Cu quality improved from 1.60+5.38 mg1L-1 to 0.55+1.02 mg1L-1 (65.6% reduction) while the Ni output sustained a 50% enhancement during the pilot study (0.22+0.19 mg1L-1 reduced to 0.11+0.06 mg1L-1). pH and ORP were shown to be significantly instrumental to the precipitative versatility of the CCPT System.
Keywords: Copper, co-precipitation, industrial wastewater treatment, manganese, optimization, pilot study.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 9831001 Glass Bottle Inspector Based on Machine Vision
Authors: Huanjun Liu, Yaonan Wang, Feng Duan
Abstract:
This text studies glass bottle intelligent inspector based machine vision instead of manual inspection. The system structure is illustrated in detail in this paper. The text presents the method based on watershed transform methods to segment the possible defective regions and extract features of bottle wall by rules. Then wavelet transform are used to exact features of bottle finish from images. After extracting features, the fuzzy support vector machine ensemble is putted forward as classifier. For ensuring that the fuzzy support vector machines have good classification ability, the GA based ensemble method is used to combining the several fuzzy support vector machines. The experiments demonstrate that using this inspector to inspect glass bottles, the accuracy rate may reach above 97.5%.Keywords: Intelligent Inspection, Support Vector Machines, Ensemble Methods, watershed transform, Wavelet Transform
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 38951000 Emotional Analysis for Text Search Queries on Internet
Authors: Gemma García López
Abstract:
The goal of this study is to analyze if search queries carried out in search engines such as Google, can offer emotional information about the user that performs them. Knowing the emotional state in which the Internet user is located can be a key to achieve the maximum personalization of content and the detection of worrying behaviors. For this, two studies were carried out using tools with advanced natural language processing techniques. The first study determines if a query can be classified as positive, negative or neutral, while the second study extracts emotional content from words and applies the categorical and dimensional models for the representation of emotions. In addition, we use search queries in Spanish and English to establish similarities and differences between two languages. The results revealed that text search queries performed by users on the Internet can be classified emotionally. This allows us to better understand the emotional state of the user at the time of the search, which could involve adapting the technology and personalizing the responses to different emotional states.Keywords: Emotion classification, text search queries, emotional analysis, sentiment analysis in text, natural language processing.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 713999 Posture Recognition using Combined Statistical and Geometrical Feature Vectors based on SVM
Authors: Omer Rashid, Ayoub Al-Hamadi, Axel Panning, Bernd Michaelis
Abstract:
It is hard to percept the interaction process with machines when visual information is not available. In this paper, we have addressed this issue to provide interaction through visual techniques. Posture recognition is done for American Sign Language to recognize static alphabets and numbers. 3D information is exploited to obtain segmentation of hands and face using normal Gaussian distribution and depth information. Features for posture recognition are computed using statistical and geometrical properties which are translation, rotation and scale invariant. Hu-Moment as statistical features and; circularity and rectangularity as geometrical features are incorporated to build the feature vectors. These feature vectors are used to train SVM for classification that recognizes static alphabets and numbers. For the alphabets, curvature analysis is carried out to reduce the misclassifications. The experimental results show that proposed system recognizes posture symbols by achieving recognition rate of 98.65% and 98.6% for ASL alphabets and numbers respectively.Keywords: Feature Extraction, Posture Recognition, Pattern Recognition, Application.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1520998 Self-Supervised Pretraining on Paired Sequences of fMRI Data for Transfer Learning to Brain Decoding Tasks
Authors: Sean Paulsen, Michael Casey
Abstract:
In this work, we present a self-supervised pretraining framework for transformers on functional Magnetic Resonance Imaging (fMRI) data. First, we pretrain our architecture on two self-supervised tasks simultaneously to teach the model a general understanding of the temporal and spatial dynamics of human auditory cortex during music listening. Our pretraining results are the first to suggest a synergistic effect of multitask training on fMRI data. Second, we finetune the pretrained models and train additional fresh models on a supervised fMRI classification task. We observe significantly improved accuracy on held-out runs with the finetuned models, which demonstrates the ability of our pretraining tasks to facilitate transfer learning. This work contributes to the growing body of literature on transformer architectures for pretraining and transfer learning with fMRI data, and serves as a proof of concept for our pretraining tasks and multitask pretraining on fMRI data.
Keywords: Transfer learning, fMRI, self-supervised, brain decoding, transformer, multitask training.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 151997 A Hybrid System of Hidden Markov Models and Recurrent Neural Networks for Learning Deterministic Finite State Automata
Authors: Pavan K. Rallabandi, Kailash C. Patidar
Abstract:
In this paper, we present an optimization technique or a learning algorithm using the hybrid architecture by combining the most popular sequence recognition models such as Recurrent Neural Networks (RNNs) and Hidden Markov models (HMMs). In order to improve the sequence/pattern recognition/classification performance by applying a hybrid/neural symbolic approach, a gradient descent learning algorithm is developed using the Real Time Recurrent Learning of Recurrent Neural Network for processing the knowledge represented in trained Hidden Markov Models. The developed hybrid algorithm is implemented on automata theory as a sample test beds and the performance of the designed algorithm is demonstrated and evaluated on learning the deterministic finite state automata.Keywords: Hybrid systems, Hidden Markov Models, Recurrent neural networks, Deterministic finite state automata.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2884996 On Speeding Up Support Vector Machines: Proximity Graphs Versus Random Sampling for Pre-Selection Condensation
Authors: Xiaohua Liu, Juan F. Beltran, Nishant Mohanchandra, Godfried T. Toussaint
Abstract:
Support vector machines (SVMs) are considered to be the best machine learning algorithms for minimizing the predictive probability of misclassification. However, their drawback is that for large data sets the computation of the optimal decision boundary is a time consuming function of the size of the training set. Hence several methods have been proposed to speed up the SVM algorithm. Here three methods used to speed up the computation of the SVM classifiers are compared experimentally using a musical genre classification problem. The simplest method pre-selects a random sample of the data before the application of the SVM algorithm. Two additional methods use proximity graphs to pre-select data that are near the decision boundary. One uses k-Nearest Neighbor graphs and the other Relative Neighborhood Graphs to accomplish the task.Keywords: Machine learning, data mining, support vector machines, proximity graphs, relative-neighborhood graphs, k-nearestneighbor graphs, random sampling, training data condensation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1919995 Examining Effects of Electronic Market Functions on Decrease in Product Unit Cost and Response Time to Customer
Authors: Maziyar Nouraee
Abstract:
Electronic markets in recent decades contribute remarkably in business transactions. Many organizations consider traditional ways of trade non-economical and therefore they do trade only through electronic markets. There are different categorizations of electronic markets functions. In one classification, functions of electronic markets are categorized into classes as information, transactions, and value added. In the present paper, effects of the three classes on the two major elements of the supply chain management are measured. The two elements are decrease in the product unit cost and reduction in response time to the customer. The results of the current research show that among nine minor elements related to the three classes of electronic markets functions, six factors and three factors influence on reduction of the product unit cost and reduction of response time to the customer, respectively.
Keywords: Electronic Commerce, Electronic Market, B2B Trade, Supply Chain Management.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2009994 A Neural-Network-Based Fault Diagnosis Approach for Analog Circuits by Using Wavelet Transformation and Fractal Dimension as a Preprocessor
Abstract:
This paper presents a new method of analog fault diagnosis based on back-propagation neural networks (BPNNs) using wavelet decomposition and fractal dimension as preprocessors. The proposed method has the capability to detect and identify faulty components in an analog electronic circuit with tolerance by analyzing its impulse response. Using wavelet decomposition to preprocess the impulse response drastically de-noises the inputs to the neural network. The second preprocessing by fractal dimension can extract unique features, which are the fed to a neural network as inputs for further classification. A comparison of our work with [1] and [6], which also employs back-propagation (BP) neural networks, reveals that our system requires a much smaller network and performs significantly better in fault diagnosis of analog circuits due to our proposed preprocessing techniques.
Keywords: Analog circuits, fault diagnosis, tolerance, wavelettransform, fractal dimension, box dimension.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2200993 Image Retrieval Based on Multi-Feature Fusion for Heterogeneous Image Databases
Authors: N. W. U. D. Chathurani, Shlomo Geva, Vinod Chandran, Proboda Rajapaksha
Abstract:
Selecting an appropriate image representation is the most important factor in implementing an effective Content-Based Image Retrieval (CBIR) system. This paper presents a multi-feature fusion approach for efficient CBIR, based on the distance distribution of features and relative feature weights at the time of query processing. It is a simple yet effective approach, which is free from the effect of features' dimensions, ranges, internal feature normalization and the distance measure. This approach can easily be adopted in any feature combination to improve retrieval quality. The proposed approach is empirically evaluated using two benchmark datasets for image classification (a subset of the Corel dataset and Oliva and Torralba) and compared with existing approaches. The performance of the proposed approach is confirmed with the significantly improved performance in comparison with the independently evaluated baseline of the previously proposed feature fusion approaches.
Keywords: Feature fusion, image retrieval, membership function, normalization.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1345992 Artificial Neural Network Model for a Low Cost Failure Sensor: Performance Assessment in Pipeline Distribution
Authors: Asar Khan, Peter D. Widdop, Andrew J. Day, Aliaster S. Wood, Steve, R. Mounce, John Machell
Abstract:
This paper describes an automated event detection and location system for water distribution pipelines which is based upon low-cost sensor technology and signature analysis by an Artificial Neural Network (ANN). The development of a low cost failure sensor which measures the opacity or cloudiness of the local water flow has been designed, developed and validated, and an ANN based system is then described which uses time series data produced by sensors to construct an empirical model for time series prediction and classification of events. These two components have been installed, tested and verified in an experimental site in a UK water distribution system. Verification of the system has been achieved from a series of simulated burst trials which have provided real data sets. It is concluded that the system has potential in water distribution network management.Keywords: Detection, leakage, neural networks, sensors, water distribution networks
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1745991 Comparative Analysis of Machine Learning Tools: A Review
Authors: S. Sarumathi, M. Vaishnavi, S. Geetha, P. Ranjetha
Abstract:
Machine learning is a new and exciting area of artificial intelligence nowadays. Machine learning is the most valuable, time, supervised, and cost-effective approach. It is not a narrow learning approach; it also includes a wide range of methods and techniques that can be applied to a wide range of complex realworld problems and time domains. Biological image classification, adaptive testing, computer vision, natural language processing, object detection, cancer detection, face recognition, handwriting recognition, speech recognition, and many other applications of machine learning are widely used in research, industry, and government. Every day, more data are generated, and conventional machine learning techniques are becoming obsolete as users move to distributed and real-time operations. By providing fundamental knowledge of machine learning tools and research opportunities in the field, the aim of this article is to serve as both a comprehensive overview and a guide. A diverse set of machine learning resources is demonstrated and contrasted with the key features in this survey.Keywords: Artificial intelligence, machine learning, deep learning, machine learning algorithms, machine learning tools.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1848990 Classification of Precipitation Types Detected in Malaysia
Authors: K. Badron, A. F. Ismail, A. L. Asnawi, N. F. A. Malik, S. Z. Abidin, S. Dzulkifly
Abstract:
The occurrences of precipitation, also commonly referred as rain, in the form of "convective" and "stratiform" have been identified to exist worldwide. In this study, the radar return echoes or known as reflectivity values acquired from radar scans have been exploited in the process of classifying the type of rain endured. The investigation use radar data from Malaysian Meteorology Department (MMD). It is possible to discriminate the types of rain experienced in tropical region by observing the vertical characteristics of the rain structure. .Heavy rain in tropical region profoundly affects radiowave signals, causing transmission interference and signal fading. Required wireless system fade margin depends on the type of rain. Information relating to the two mentioned types of rain is critical for the system engineers and researchers in their endeavour to improve the reliability of communication links. This paper highlights the quantification of percentage occurrences over one year period in 2009.Keywords: Stratiform, convective, tropical region, attenuation radar reflectivity.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1444989 Basic Business-Forces behind the Surviving and Sustainable Organizations: The Case of Medium Scale Contractors in South Africa
Authors: Iruka C. Anugwo, Winston M. Shakantu
Abstract:
The objective of this study is to uncover the basic business-forces that necessitated the survival and sustainable performance of the medium scale contractors in the South African construction market. This study is essential as it set to contribute towards long-term strategic solutions for combating the incessant failure of start-ups construction organizations within South African. The study used a qualitative research methodology; as the most appropriate approach to elicit and understand, and uncover the phenomena that are basic business-forces for the active contractors in the market. The study also adopted a phenomenological study approach; and in-depth interviews were conducted with 20 medium scale contractors in Port Elizabeth, South Africa, between months of August to October 2015. This allowed for an in-depth understanding of the critical and basic business-forces that influenced their survival and performance beyond the first five years of business operation. Findings of the study showed that for potential contractors (startups), to survival in the competitive business environment such as construction industry, they must possess the basic business-forces. These forces are educational knowledge in construction and business management related disciplines, adequate industrial experiences, competencies and capabilities to delivery excellent services and products as well as embracing the spirit of entrepreneurship. Convincingly, it can be concluded that the strategic approach to minimize the endless failure of startups construction businesses; the potential construction contractors must endeavoring to access and acquire the basic educationally knowledge, training and qualification; need to acquire industrial experiences in collaboration with required competencies, capabilities and entrepreneurship acumen. Without these basic business-forces as been discovered in this study, the majority of the contractors gaining entrance in the market will find it difficult to develop and grow a competitive and sustainable construction organization in South Africa.Keywords: Basic business-forces, medium scale contractors, South Africa, sustainable organisations.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1551988 Determination of Water Pollution and Water Quality with Decision Trees
Authors: Çiğdem Bakır, Mecit Yüzkat
Abstract:
With the increasing emphasis on water quality worldwide, the search for and expanding the market for new and intelligent monitoring systems has increased. The current method is the laboratory process, where samples are taken from bodies of water, and tests are carried out in laboratories. This method is time-consuming, a waste of manpower and uneconomical. To solve this problem, we used machine learning methods to detect water pollution in our study. We created decision trees with the Orange3 software used in the study and tried to determine all the factors that cause water pollution. An automatic prediction model based on water quality was developed by taking many model inputs such as water temperature, pH, transparency, conductivity, dissolved oxygen, and ammonia nitrogen with machine learning methods. The proposed approach consists of three stages: Preprocessing of the data used, feature detection and classification. We tried to determine the success of our study with different accuracy metrics and the results were presented comparatively. In addition, we achieved approximately 98% success with the decision tree.
Keywords: Decision tree, water quality, water pollution, machine learning.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 260987 Effective Density for the Classification of Transport Activity Centers
Authors: Dubbale Daniel A., Tsutsumi J.
Abstract:
This research work takes a different approach in the discussion of urban form impacts on transport planning and auto dependency. Concentrated density represented by effective density explains auto dependency better than the conventional density and it is proved to be a realistic density representative for the urban transportation analysis. Model analysis reveals that effective density is influenced by the shopping accessibility index as well as job density factor. It is also combined with the job access variable to classify four levels of Transport Activity Centers (TACs) in Okinawa, Japan. Trip attraction capacity and levels of the newly classified TACs was found agreeable with the amount of daily trips attracted to each center. The trip attraction data set was drawn from a 2007 Okinawa personal trip survey. This research suggests a planning methodology which guides logical transport supply routes and concentrated local development schemes.Keywords: Effective density, urban form, auto-dependency, transport activity centers
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1515986 Measuring Text-Based Semantics Relatedness Using WordNet
Authors: Madiha Khan, Sidrah Ramzan, Seemab Khan, Shahzad Hassan, Kamran Saeed
Abstract:
Measuring semantic similarity between texts is calculating semantic relatedness between texts using various techniques. Our web application (Measuring Relatedness of Concepts-MRC) allows user to input two text corpuses and get semantic similarity percentage between both using WordNet. Our application goes through five stages for the computation of semantic relatedness. Those stages are: Preprocessing (extracts keywords from content), Feature Extraction (classification of words into Parts-of-Speech), Synonyms Extraction (retrieves synonyms against each keyword), Measuring Similarity (using keywords and synonyms, similarity is measured) and Visualization (graphical representation of similarity measure). Hence the user can measure similarity on basis of features as well. The end result is a percentage score and the word(s) which form the basis of similarity between both texts with use of different tools on same platform. In future work we look forward for a Web as a live corpus application that provides a simpler and user friendly tool to compare documents and extract useful information.
Keywords: GraphViz representation, semantic relatedness, similarity measurement, WordNet similarity.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 836985 Arterial Stiffness Detection Depending on Neural Network Classification of the Multi- Input Parameters
Authors: Firas Salih, Luban Hameed, Afaf Kamil, Armin Bolz
Abstract:
Diagnostic and detection of the arterial stiffness is very important; which gives indication of the associated increased risk of cardiovascular diseases. To make a cheap and easy method for general screening technique to avoid the future cardiovascular complexes , due to the rising of the arterial stiffness ; a proposed algorithm depending on photoplethysmogram to be used. The photoplethysmograph signals would be processed in MATLAB. The signal will be filtered, baseline wandering removed, peaks and valleys detected and normalization of the signals should be achieved .The area under the catacrotic phase of the photoplethysmogram pulse curve is calculated using trapezoidal algorithm ; then will used in cooperation with other parameters such as age, height, blood pressure in neural network for arterial stiffness detection. The Neural network were implemented with sensitivity of 80%, accuracy 85% and specificity of 90% were got from the patients data. It is concluded that neural network can detect the arterial STIFFNESS depending on risk factor parameters.Keywords: Arterial stiffness, area under the catacrotic phase of the photoplethysmograph pulse, neural network
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1652984 Knowledge Based Wear Particle Analysis
Authors: Mohammad S. Laghari, Qurban A. Memon, Gulzar A. Khuwaja
Abstract:
The paper describes a knowledge based system for analysis of microscopic wear particles. Wear particles contained in lubricating oil carry important information concerning machine condition, in particular the state of wear. Experts (Tribologists) in the field extract this information to monitor the operation of the machine and ensure safety, efficiency, quality, productivity, and economy of operation. This procedure is not always objective and it can also be expensive. The aim is to classify these particles according to their morphological attributes of size, shape, edge detail, thickness ratio, color, and texture, and by using this classification thereby predict wear failure modes in engines and other machinery. The attribute knowledge links human expertise to the devised Knowledge Based Wear Particle Analysis System (KBWPAS). The system provides an automated and systematic approach to wear particle identification which is linked directly to wear processes and modes that occur in machinery. This brings consistency in wear judgment prediction which leads to standardization and also less dependence on Tribologists.Keywords: Computer vision, knowledge based systems, morphology, wear particles.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1744983 Electronics Thermal Management Driven Design of an IP65-Rated Motor Inverter
Authors: Sachin Kamble, Raghothama Anekal, Shivakumar Bhavi
Abstract:
Thermal management of electronic components packaged inside an IP65 rated enclosure is of prime importance in industrial applications. Electrical enclosure protects the multiple board configurations such as inverter, power, controller board components, busbars, and various power dissipating components from harsh environments. Industrial environments often experience relatively warm ambient conditions, and the electronic components housed in the enclosure dissipate heat, due to which the enclosures and the components require thermal management as well as reduction of internal ambient temperatures. Design of Experiments based thermal simulation approach with MOSFET arrangement, Heat sink design, Enclosure Volume, Copper and Aluminum Spreader, Power density, and Printed Circuit Board (PCB) type were considered to optimize air temperature inside the IP65 enclosure to ensure conducive operating temperature for controller board and electronic components through the different modes of heat transfer viz. conduction, natural convection and radiation using Ansys ICEPAK. MOSFET’s with the parallel arrangement, IP65 enclosure molded heat sink with rectangular fins on both enclosures, specific enclosure volume to satisfy the power density, Copper spreader to conduct heat to the enclosure, optimized power density value and selecting Aluminum clad PCB which improves the heat transfer were the contributors towards achieving a conducive operating temperature inside the IP-65 rated Motor Inverter enclosure. A reduction of 52 ℃ was achieved in internal ambient temperature inside the IP65 enclosure between baseline and final design parameters, which met the operative temperature requirements of the electronic components inside the IP-65 rated Motor Inverter.
Keywords: Ansys ICEPAK, Aluminum Clad PCB, IP 65 enclosure, motor inverter, thermal simulation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 665982 Stock Market Prediction by Regression Model with Social Moods
Authors: Masahiro Ohmura, Koh Kakusho, Takeshi Okadome
Abstract:
This paper presents a regression model with autocorrelated errors in which the inputs are social moods obtained by analyzing the adjectives in Twitter posts using a document topic model, where document topics are extracted using LDA. The regression model predicts Dow Jones Industrial Average (DJIA) more precisely than autoregressive moving-average models.
Keywords: Regression model, social mood, stock market prediction, Twitter.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2434981 Identifying Relationships between Technology-based Services and ICTs: A Patent Analysis Approach
Authors: Chulhyun Kim, Seungkyum Kim, Moon-soo Kim
Abstract:
A variety of new technology-based services have emerged with the development of Information and Communication Technologies (ICTs). Since technology-based services have technology-driven characteristics, the identification of relationships between technology-based services and ICTs would give meaningful implications. Thus, this paper proposes an approach for identifying the relationships between technology-based services and ICTs by analyzing patent documents. First, business model (BM) patents are classified into relevant service categories. Second, patent citation analysis is conducted to investigate the technological linkage and impacts between technology-based services and ICTs at macro level. Third, as a micro level analysis, patent co-classification analysis is employed to identify the technological linkage and coverage. The proposed approach could guide and help managers and designers of technology-based services to discover the opportunity of the development of new technology-based services in emerging service sectors.Keywords: Technology-based Services, Information and Communication Technology (ICT), Business Model (BM) Patent, Patent Analysis, Technological Relationship
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1990980 Semantic Indexing Approach of a Corpora Based On Ontology
Authors: Mohammed Erritali
Abstract:
The growth in the volume of text data such as books and articles in libraries for centuries has imposed to establish effective mechanisms to locate them. Early techniques such as abstraction, indexing and the use of classification categories have marked the birth of a new field of research called "Information Retrieval". Information Retrieval (IR) can be defined as the task of defining models and systems whose purpose is to facilitate access to a set of documents in electronic form (corpus) to allow a user to find the relevant ones for him, that is to say, the contents which matches with the information needs of the user. This paper presents a new semantic indexing approach of a documentary corpus. The indexing process starts first by a term weighting phase to determine the importance of these terms in the documents. Then the use of a thesaurus like Wordnet allows moving to the conceptual level. Each candidate concept is evaluated by determining its level of representation of the document, that is to say, the importance of the concept in relation to other concepts of the document. Finally, the semantic index is constructed by attaching to each concept of the ontology, the documents of the corpus in which these concepts are found.Keywords: Semantic, indexing, corpora, WordNet, ontology.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1368979 Biodegradation of PCP by the Rhizobacteria Isolated from Pentachlorophenol-tolerant Crop Species
Authors: Avita K. Marihal, K.S. Jagadeesh, Sarita Sinha
Abstract:
Pentachlorophenol (PCP) is a polychlorinated aromatic compound that is widespread in industrial effluents and is considered to be a serious pollutant. Among the variety of industrial effluents encountered, effluents from tanning industry are very important and have a serious pollution potential. PCP is also formed unintentionally in effluents of paper and pulp industries. It is highly persistent in soils and is lethal to a wide variety of beneficial microorganisms and insects, human beings and animals. The natural processes that breakdown toxic chemicals in the environment have become the focus of much attention to develop safe and environmentfriendly deactivation technologies. Microbes and plants are among the most important biological agents that remove and degrade waste materials to enable their recycling in the environment. The present investigation was carried out with the aim of developing a microbial system for bioremediation of PCP polluted soils. A number of plant species were evaluated for their ability to tolerate different concentrations of pentachlorophenol (PCP) in the soil. The experiment was conducted for 30 days under pot culture conditions. The toxic effect of PCP on plants was studied by monitoring seed germination, plant growth and biomass. As the concentration of PCP was increased to 50 ppm, the inhibition of seed germination, plant growth and biomass was also increased. Although PCP had a negative effect on all plant species tested, maize and groundnut showed the maximum tolerance to PCP. Other tolerating crops included wheat, safflower, sunflower, and soybean. From the rhizosphere soil of the tolerant seedlings, as many as twenty seven PCP tolerant bacteria were isolated. From soybean, 8; sunflower, 3; safflower 8; maize 2; groundnut and wheat, 3 each isolates were made. They were screened for their PCP degradation potentials. HPLC analyses of PCP degradation revealed that the isolate MAZ-2 degraded PCP completely. The isolate MAZ-1 was the next best isolate with 90 per cent PCP degradation. These strains hold promise to be used in the bioremediation of PCP polluted soils.Keywords: Biodegradation, pentachlorophenol, rhizobacteria.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2015978 Decision Tree-based Feature Ranking using Manhattan Hierarchical Cluster Criterion
Authors: Yasmin Mohd Yacob, Harsa A. Mat Sakim, Nor Ashidi Mat Isa
Abstract:
Feature selection study is gaining importance due to its contribution to save classification cost in terms of time and computation load. In search of essential features, one of the methods to search the features is via the decision tree. Decision tree act as an intermediate feature space inducer in order to choose essential features. In decision tree-based feature selection, some studies used decision tree as a feature ranker with a direct threshold measure, while others remain the decision tree but utilized pruning condition that act as a threshold mechanism to choose features. This paper proposed threshold measure using Manhattan Hierarchical Cluster distance to be utilized in feature ranking in order to choose relevant features as part of the feature selection process. The result is promising, and this method can be improved in the future by including test cases of a higher number of attributes.
Keywords: Feature ranking, decision tree, hierarchical cluster, Manhattan distance.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1968977 Towards an Integrated Proposal for Performance Measurement Indicators (Financial and Operational) in Advanced Production Practices
Authors: José A. D. Machuca, Bernabé Escobar-Pérez, Pedro Garrido Vega, Darkys E. Lujan García
Abstract:
Starting with an analysis of the financial and operational indicators that can be found in the specialised literature, this study aims to contribute to improvements in the performance measurement systems used when the unit of analysis is the manufacturing plant. For this a search was done in the highest impact Journals of Production and Operations Management and Management Accounting , with the aim of determining the financial and operational indicators used to evaluate performance when Advanced Production Practices have been implemented, more specifically when the practices implemented are Total Quality Management, JIT/Lean Manufacturing and Total Productive Maintenance. This has enabled us to obtain a classification of the two types of indicators based on how much each is used. For the financial indicators we have also prepared a proposal that can be adapted to manufacturing plants- accounting features. In the near future we will propose a model that links practices implementation with financial and operational indicators and these two last with each other. We aim to will test this model empirically with the data obtained in the High Performance Manufacturing Project.Keywords: Advanced Production Practices, Financial Indicators, Non-Financial Indicators
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1507