Search results for: Cancer Prediction
149 Estimation of Thermal Conductivity of Nanofluids Using MD-Stochastic Simulation Based Approach
Authors: Sujoy Das, M. M. Ghosh
Abstract:
The thermal conductivity of a fluid can be significantly enhanced by dispersing nano-sized particles in it, and the resultant fluid is termed as "nanofluid". A theoretical model for estimating the thermal conductivity of a nanofluid has been proposed here. It is based on the mechanism that evenly dispersed nanoparticles within a nanofluid undergo Brownian motion in course of which the nanoparticles repeatedly collide with the heat source. During each collision a rapid heat transfer occurs owing to the solidsolid contact. Molecular dynamics (MD) simulation of the collision of nanoparticles with the heat source has shown that there is a pulselike pick up of heat by the nanoparticles within 20-100 ps, the extent of which depends not only on thermal conductivity of the nanoparticles, but also on the elastic and other physical properties of the nanoparticle. After the collision the nanoparticles undergo Brownian motion in the base fluid and release the excess heat to the surrounding base fluid within 2-10 ms. The Brownian motion and associated temperature variation of the nanoparticles have been modeled by stochastic analysis. Repeated occurrence of these events by the suspended nanoparticles significantly contributes to the characteristic thermal conductivity of the nanofluids, which has been estimated by the present model for a ethylene glycol based nanofluid containing Cu-nanoparticles of size ranging from 8 to 20 nm, with Gaussian size distribution. The prediction of the present model has shown a reasonable agreement with the experimental data available in literature.
Keywords: Brownian dynamics, Molecular dynamics, Nanofluid, Thermal conductivity.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2263148 A Model for Estimation of Efforts in Development of Software Systems
Authors: Parvinder S. Sandhu, Manisha Prashar, Pourush Bassi, Atul Bisht
Abstract:
Software effort estimation is the process of predicting the most realistic use of effort required to develop or maintain software based on incomplete, uncertain and/or noisy input. Effort estimates may be used as input to project plans, iteration plans, budgets. There are various models like Halstead, Walston-Felix, Bailey-Basili, Doty and GA Based models which have already used to estimate the software effort for projects. In this study Statistical Models, Fuzzy-GA and Neuro-Fuzzy (NF) Inference Systems are experimented to estimate the software effort for projects. The performances of the developed models were tested on NASA software project datasets and results are compared with the Halstead, Walston-Felix, Bailey-Basili, Doty and Genetic Algorithm Based models mentioned in the literature. The result shows that the NF Model has the lowest MMRE and RMSE values. The NF Model shows the best results as compared with the Fuzzy-GA based hybrid Inference System and other existing Models that are being used for the Effort Prediction with lowest MMRE and RMSE values.Keywords: Neuro-Fuzzy Model, Halstead Model, Walston-Felix Model, Bailey-Basili Model, Doty Model, GA Based Model, Genetic Algorithm.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3227147 Methodology: A Review in Modelling and Predictability of Embankment in Soft Ground
Authors: Bhim Kumar Dahal
Abstract:
Transportation network development in the developing country is in rapid pace. The majority of the network belongs to railway and expressway which passes through diverse topography, landform and geological conditions despite the avoidance principle during route selection. Construction of such networks demand many low to high embankment which required improvement in the foundation soil. This paper is mainly focused on the various advanced ground improvement techniques used to improve the soft soil, modelling approach and its predictability for embankments construction. The ground improvement techniques can be broadly classified in to three groups i.e. densification group, drainage and consolidation group and reinforcement group which are discussed with some case studies. Various methods were used in modelling of the embankments from simple 1-dimensional to complex 3-dimensional model using variety of constitutive models. However, the reliability of the predictions is not found systematically improved with the level of sophistication. And sometimes the predictions are deviated more than 60% to the monitored value besides using same level of erudition. This deviation is found mainly due to the selection of constitutive model, assumptions made during different stages, deviation in the selection of model parameters and simplification during physical modelling of the ground condition. This deviation can be reduced by using optimization process, optimization tools and sensitivity analysis of the model parameters which will guide to select the appropriate model parameters.
Keywords: Embankment, ground improvement, modelling, model prediction.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 952146 Traffic Forecasting for Open Radio Access Networks Virtualized Network Functions in 5G Networks
Authors: Khalid Ali, Manar Jammal
Abstract:
In order to meet the stringent latency and reliability requirements of the upcoming 5G networks, Open Radio Access Networks (O-RAN) have been proposed. The virtualization of O-RAN has allowed it to be treated as a Network Function Virtualization (NFV) architecture, while its components are considered Virtualized Network Functions (VNFs). Hence, intelligent Machine Learning (ML) based solutions can be utilized to apply different resource management and allocation techniques on O-RAN. However, intelligently allocating resources for O-RAN VNFs can prove challenging due to the dynamicity of traffic in mobile networks. Network providers need to dynamically scale the allocated resources in response to the incoming traffic. Elastically allocating resources can provide a higher level of flexibility in the network in addition to reducing the OPerational EXpenditure (OPEX) and increasing the resources utilization. Most of the existing elastic solutions are reactive in nature, despite the fact that proactive approaches are more agile since they scale instances ahead of time by predicting the incoming traffic. In this work, we propose and evaluate traffic forecasting models based on the ML algorithm. The algorithms aim at predicting future O-RAN traffic by using previous traffic data. Detailed analysis of the traffic data was carried out to validate the quality and applicability of the traffic dataset. Hence, two ML models were proposed and evaluated based on their prediction capabilities.
Keywords: O-RAN, traffic forecasting, NFV, ARIMA, LSTM, elasticity.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 540145 Expectation-Confirmation Model of Information System Continuance: A Meta-Analysis
Authors: Hui-Min Lai, Chin-Pin Chen, Yung-Fu Chang
Abstract:
The expectation-confirmation model (ECM) is one of the most widely used models for evaluating information system continuance, and this model has been extended to other study backgrounds, or expanded with other theoretical perspectives. However, combining ECM with other theories or investigating the background problem may produce some disparities, thus generating inaccurate conclusions. Habit is considered to be an important factor that influences the user’s continuance behavior. This paper thus critically examines seven pairs of relationships from the original ECM and the habit variable. A meta-analysis was used to tackle the development of ECM research over the last 10 years from a range of journals and conference papers published in 2005–2014. Forty-six journal articles and 19 conference papers were selected for analysis. The results confirm our prediction that a high effect size for the seven pairs of relationships was obtained (ranging from r=0.386 to r=0.588). Furthermore, a meta-analytic structural equation modeling was performed to simultaneously test all relationships. The results show that habit had a significant positive effect on continuance intention at p<=0.05 and that the six other pairs of relationships were significant at p<0.10. Based on the findings, we refined our original research model and an alternative model was proposed for understanding and predicting information system continuance. Some theoretical implications are also discussed.Keywords: Expectation-confirmation theory, expectation- confirmation model, meta-analysis, meta-analytic structural equation modeling.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2730144 Motion Prediction and Motion Vector Cost Reduction during Fast Block Motion Estimation in MCTF
Authors: Karunakar A K, Manohara Pai M M
Abstract:
In 3D-wavelet video coding framework temporal filtering is done along the trajectory of motion using Motion Compensated Temporal Filtering (MCTF). Hence computationally efficient motion estimation technique is the need of MCTF. In this paper a predictive technique is proposed in order to reduce the computational complexity of the MCTF framework, by exploiting the high correlation among the frames in a Group Of Picture (GOP). The proposed technique applies coarse and fine searches of any fast block based motion estimation, only to the first pair of frames in a GOP. The generated motion vectors are supplied to the next consecutive frames, even to subsequent temporal levels and only fine search is carried out around those predicted motion vectors. Hence coarse search is skipped for all the motion estimation in a GOP except for the first pair of frames. The technique has been tested for different fast block based motion estimation algorithms over different standard test sequences using MC-EZBC, a state-of-the-art scalable video coder. The simulation result reveals substantial reduction (i.e. 20.75% to 38.24%) in the number of search points during motion estimation, without compromising the quality of the reconstructed video compared to non-predictive techniques. Since the motion vectors of all the pair of frames in a GOP except the first pair will have value ±1 around the motion vectors of the previous pair of frames, the number of bits required for motion vectors is also reduced by 50%.Keywords: Motion Compensated Temporal Filtering, predictivemotion estimation, lifted wavelet transform, motion vector
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1619143 Assessment of Analytical Equations for the Derivation of Young’s Modulus of Bonded Rubber Materials
Authors: Z. N. Haji, S. O. Oyadiji, H. Samami, O. Farrell
Abstract:
The prediction of the vibration response of rubber products by analytical or numerical method depends mainly on the predefined intrinsic material properties such as Young’s modulus, damping factor and Poisson’s ratio. Such intrinsic properties are determined experimentally by subjecting a bonded rubber sample to compression tests. The compression tests on such a sample yield an apparent Young’s modulus which is greater in magnitude than the intrinsic Young’s modulus of the rubber. As a result, many analytical equations have been developed to determine Young’s modulus from an apparent Young’s modulus of bonded rubber materials. In this work, the applicability of some of these analytical equations is assessed via experimental testing. The assessment is based on testing of vulcanized nitrile butadiene rubber (NBR70) samples using tensile test and compression test methods. The analytical equations are used to determine the intrinsic Young’s modulus from the apparent modulus that is derived from the compression test data of the bonded rubber samples. Then, these Young’s moduli are compared with the actual Young’s modulus that is derived from the tensile test data. The results show significant discrepancy between the Young’s modulus derived using the analytical equations and the actual Young’s modulus.
Keywords: Bonded rubber, quasi-static test, shape factor, apparent Young’s modulus.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 748142 Design Criteria for Achieving Acceptable Indoor Radon Concentration
Authors: T. Valdbjørn Rasmussen
Abstract:
Design criteria for achieving an acceptable indoor radon concentration are presented in this paper. The paper suggests three design criteria. These criteria have to be considered at the early stage of the building design phase to meet the latest recommendations from the World Health Organization in most countries. The three design criteria are; first, establishing a radon barrier facing the ground; second, lowering the air pressure in the lower zone of the slab on ground facing downwards; third, diluting the indoor air with outdoor air. The first two criteria can prevent radon from infiltrating from the ground, and the third criteria can dilute the indoor air. By combining these three criteria, the indoor radon concentration can be lowered achieving an acceptable level. In addition, a cheap and reliable method for measuring the radon concentration in the indoor air is described. The provision on radon in the Danish Building Regulations complies with the latest recommendations from the World Health Organization. Radon can cause lung cancer and it is not known whether there is a lower limit for when it is not harmful to human beings. Therefore, it is important to reduce the radon concentration as much as possible in buildings. Airtightness is an important factor when dealing with buildings. It is important to avoid air leakages in the building envelope both facing the atmosphere, e.g. in compliance with energy requirements, but also facing the ground, to meet the requirements to ensure and control the indoor environment. Infiltration of air from the ground underneath a building is the main providing source of radon to the indoor air.Keywords: Radon, natural radiation, barrier, pressure lowering, ventilation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1190141 Detecting Earnings Management via Statistical and Neural Network Techniques
Authors: Mohammad Namazi, Mohammad Sadeghzadeh Maharluie
Abstract:
Predicting earnings management is vital for the capital market participants, financial analysts and managers. The aim of this research is attempting to respond to this query: Is there a significant difference between the regression model and neural networks’ models in predicting earnings management, and which one leads to a superior prediction of it? In approaching this question, a Linear Regression (LR) model was compared with two neural networks including Multi-Layer Perceptron (MLP), and Generalized Regression Neural Network (GRNN). The population of this study includes 94 listed companies in Tehran Stock Exchange (TSE) market from 2003 to 2011. After the results of all models were acquired, ANOVA was exerted to test the hypotheses. In general, the summary of statistical results showed that the precision of GRNN did not exhibit a significant difference in comparison with MLP. In addition, the mean square error of the MLP and GRNN showed a significant difference with the multi variable LR model. These findings support the notion of nonlinear behavior of the earnings management. Therefore, it is more appropriate for capital market participants to analyze earnings management based upon neural networks techniques, and not to adopt linear regression models.Keywords: Earnings management, generalized regression neural networks, linear regression, multi-layer perceptron, Tehran stock exchange.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2104140 Deep Reinforcement Learning Approach for Trading Automation in the Stock Market
Authors: Taylan Kabbani, Ekrem Duman
Abstract:
Deep Reinforcement Learning (DRL) algorithms can scale to previously intractable problems. The automation of profit generation in the stock market is possible using DRL, by combining the financial assets price ”prediction” step and the ”allocation” step of the portfolio in one unified process to produce fully autonomous systems capable of interacting with its environment to make optimal decisions through trial and error. This work represents a DRL model to generate profitable trades in the stock market, effectively overcoming the limitations of supervised learning approaches. We formulate the trading problem as a Partially observed Markov Decision Process (POMDP) model, considering the constraints imposed by the stock market, such as liquidity and transaction costs. We then solved the formulated POMDP problem using the Twin Delayed Deep Deterministic Policy Gradient (TD3) algorithm and achieved a 2.68 Sharpe ratio on the test dataset. From the point of view of stock market forecasting and the intelligent decision-making mechanism, this paper demonstrates the superiority of DRL in financial markets over other types of machine learning and proves its credibility and advantages of strategic decision-making.
Keywords: Autonomous agent, deep reinforcement learning, MDP, sentiment analysis, stock market, technical indicators, twin delayed deep deterministic policy gradient.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 524139 Estimation of the Minimum Floor Length Downstream Regulators under Different Flow Scenarios
Authors: Bakhiet, Shenouda, Gamal Abouzeid Abdel-Rahim, Norihiro Izumi
Abstract:
The correct design of the regulators structure requires complete prediction of the ultimate dimensions of the scour hole profile formed downstream the solid apron. The study of scour downstream regulator is studied either on solid aprons by means of velocity distribution or on movable bed by studying the topography of the scour hole formed in the downstream. In this paper, a new technique was developed to study the scour hole downstream regulators on movable beds. The study was divided into two categories; the first is to find out the sum of the lengths of rigid apron behind the gates in addition to the length of scour hole formed downstream, while the second is to find the minimum length of rigid apron behind the gates to prevent erosion downstream it. The study covers free and submerged hydraulic jump conditions in both symmetrical and asymmetrical under-gated regulations. From the comparison between the studied categories, we found that the minimum length of rigid apron to prevent scour (Ls) is greater than the sum of the lengths of rigid apron and that of scour hole formed behind it (L+Xs). On the other hand, the scour hole dimensions in case of submerged hydraulic jump is always greater than free one, also the scour hole dimensions in asymmetrical operation is greater than symmetrical one.
Keywords: Movable bed, Regulators, Scour, Symmetrical and asymmetrical operation
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1780138 Three Steps of One-way Nested Grid for Energy Balance Equations by Wave Model
Authors: Worachat Wannawong, Usa W. Humphries, Prungchan Wongwises, Suphat Vongvisessomjai
Abstract:
The three steps of the standard one-way nested grid for a regional scale of the third generation WAve Model Cycle 4 (WAMC4) is scrutinized. The model application is enabled to solve the energy balance equation on a coarse resolution grid in order to produce boundary conditions for a smaller area by the nested grid technique. In the present study, the model takes a full advantage of the fine resolution of wind fields in space and time produced by the available U.S. Navy Global Atmospheric Prediction System (NOGAPS) model with 1 degree resolution. The nested grid application of the model is developed in order to gradually increase the resolution from the open ocean towards the South China Sea (SCS) and the Gulf of Thailand (GoT) respectively. The model results were compared with buoy observations at Ko Chang, Rayong and Huahin locations which were obtained from the Seawatch project. In addition, the results were also compared with Satun based weather station which was provided from Department of Meteorology, Thailand. The data collected from this station presented the significant wave height (Hs) reached 12.85 m. The results indicated that the tendency of the Hs from the model in the spherical coordinate propagation with deep water condition in the fine grid domain agreed well with the Hs from the observations.Keywords: energy balance equation, Gulf of Thailand, nested gridapplication, South China Sea, wave model.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1596137 Optimum Surface Roughness Prediction in Face Milling of High Silicon Stainless Steel
Authors: M. Farahnakian, M.R. Razfar, S. Elhami-Joosheghan
Abstract:
This paper presents an approach for the determination of the optimal cutting parameters (spindle speed, feed rate, depth of cut and engagement) leading to minimum surface roughness in face milling of high silicon stainless steel by coupling neural network (NN) and Electromagnetism-like Algorithm (EM). In this regard, the advantages of statistical experimental design technique, experimental measurements, artificial neural network, and Electromagnetism-like optimization method are exploited in an integrated manner. To this end, numerous experiments on this stainless steel were conducted to obtain surface roughness values. A predictive model for surface roughness is created by using a back propogation neural network, then the optimization problem was solved by using EM optimization. Additional experiments were performed to validate optimum surface roughness value predicted by EM algorithm. It is clearly seen that a good agreement is observed between the predicted values by EM coupled with feed forward neural network and experimental measurements. The obtained results show that the EM algorithm coupled with back propogation neural network is an efficient and accurate method in approaching the global minimum of surface roughness in face milling.
Keywords: cutting parameters, face milling, surface roughness, artificial neural network, Electromagnetism-like algorithm,
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2586136 Gaze Patterns of Skilled and Unskilled Sight Readers Focusing on the Cognitive Processes Involved in Reading Key and Time Signatures
Authors: J. F. Viljoen, Catherine Foxcroft
Abstract:
Expert sight readers rely on their ability to recognize patterns in scores, their inner hearing and prediction skills in order to perform complex sight reading exercises. They also have the ability to observe deviations from expected patterns in musical scores. This increases the “Eye-hand span” (reading ahead of the point of playing) in order to process the elements in the score. The study aims to investigate the gaze patterns of expert and non-expert sight readers focusing on key and time signatures. 20 musicians were tasked with playing 12 sight reading examples composed for one hand and five examples composed for two hands to be performed on a piano keyboard. These examples were composed in different keys and time signatures and included accidentals and changes of time signature to test this theory. Results showed that the experts fixate more and for longer on key and time signatures as well as deviations in examples for two hands than the non-expert group. The inverse was true for the examples for one hand, where expert sight readers showed fewer and shorter fixations on key and time signatures as well as deviations. This seems to suggest that experts focus more on the key and time signatures as well as deviations in complex scores to facilitate sight reading. The examples written for one appeared to be too easy for the expert sight readers, compromising gaze patterns.
Keywords: Cognition, eye tracking, musical notation, sight reading.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 608135 An Evaluation of Digital Elevation Models to Short-Term Monitoring of a High Energy Barrier Island, Northeast Brazil
Authors: Venerando E. Amaro, Francisco Gabriel F. de Lima, Marcelo S.T. Santos
Abstract:
The morphological short-term evolution of Ponta do Tubarão Island (PTI) was investigated through high accurate surveys based on post-processed kinematic (PPK) relative positioning on Global Navigation Satellite Systems (GNSS). PTI is part of a barrier island system on a high energy northeast Brazilian coastal environment and also an area of high environmental sensitivity. Surveys were carried out quarterly over a two years period from May 2010 to May 2012. This paper assesses statically the performance of digital elevation models (DEM) derived from different interpolation methods to represent morphologic features and to quantify volumetric changes and TIN models shown the best results to that purposes. The MDE allowed quantifying surfaces and volumes in detail as well as identifying the most vulnerable segments of the PTI to erosion and/or accumulation of sediments and relate the alterations to climate conditions. The coastal setting and geometry of PTI protects a significant mangrove ecosystem and some oil and gas facilities installed in the vicinities from damaging effects of strong oceanwaves and currents. Thus, the maintenance of PTI is extremely required but the prediction of its longevity is uncertain because results indicate an irregularity of sedimentary balance and a substantial decline in sediment supply to this coastal area.
Keywords: DEM, GNSS, short-term monitoring, Brazil.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2628134 A Multiple Linear Regression Model to Predict the Price of Cement in Nigeria
Authors: Kenneth M. Oba
Abstract:
This study investigated factors affecting the price of cement in Nigeria, and developed a mathematical model that can predict future cement prices. Cement is key in the Nigerian construction industry. The changes in price caused by certain factors could affect economic and infrastructural development; hence there is need for proper proactive planning. Secondary data were collected from published information on cement between 2014 and 2019. In addition, questionnaires were sent to some domestic cement retailers in Port Harcourt in Nigeria, to obtain the actual prices of cement between the same periods. The study revealed that the most critical factors affecting the price of cement in Nigeria are inflation rate, population growth rate, and Gross Domestic Product (GDP) growth rate. With the use of data from United Nations, International Monetary Fund, and Central Bank of Nigeria databases, amongst others, a Multiple Linear Regression model was formulated. The model was used to predict the price of cement for 2020-2025. The model was then tested with 95% confidence level, using a two-tailed t-test and an F-test, resulting in an R2 of 0.8428 and R2 (adj.) of 0.6069. The results of the tests and the correlation factors confirm the model to be fit and adequate. This study will equip researchers and stakeholders in the construction industry with information for planning, monitoring, and management of present and future construction projects that involve the use of cement.
Keywords: Cement price, multiple linear regression model, Nigerian Construction Industry, price prediction.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 791133 Influence of the Granular Mixture Properties on the Rheological Properties of Concrete: Yield Stress Determination Using Modified Chateau et al. Model
Authors: Rachid Zentar, Mokrane Bala, Pascal Boustingorry
Abstract:
The prediction of the rheological behavior of concrete is at the center of current concerns of the concrete industry for different reasons. The shortage of good quality standard materials combined with variable properties of available materials imposes to improve existing models to take into account these variations at the design stage of concrete. The main reasons for improving the predictive models are, of course, saving time and cost at the design stage as well as to optimize concrete performances. In this study, we will highlight the different properties of the granular mixtures that affect the rheological properties of concrete. Our objective is to identify the intrinsic parameters of the aggregates which make it possible to predict the yield stress of concrete. The work was done using two typologies of grains: crushed and rolled aggregates. The experimental results have shown that the rheology of concrete is improved by increasing the packing density of the granular mixture using rolled aggregates. The experimental program realized allowed to model the yield stress of concrete by a modified model of Chateau et al. through a dimensionless parameter following Krieger-Dougherty law. The modelling confirms that the yield stress of concrete depends not only on the properties of cement paste but also on the packing density of the granular skeleton and the shape of grains.
Keywords: Crushed aggregates, intrinsic viscosity, packing density, rolled aggregates, slump, yield stress of concrete.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 595132 A Detailed Experimental Study of the Springback Anisotropy of Three Metals using the Stretching-Bending Process
Authors: A. Soualem
Abstract:
Springback is a significant problem in the sheet metal forming process. When the tools are released after the stage of forming, the product springs out, because of the action of the internal stresses. In many cases the deviation of form is too large and the compensation of the springback is necessary. The precise prediction of the springback of product is increasingly significant for the design of the tools and for compensation because of the higher ratio of the yield stress to the elastic modulus. The main object in this paper was to study the effect of the anisotropy on the springback for three directions of rolling: 0°, 45° and 90°. At the same time, we highlighted the influence of three different metallic materials: Aluminum, Steel and Galvanized steel. The original of our purpose consist on tests which are ensured by adapting a U-type stretching-bending device on a tensile testing machine, where we studied and quantified the variation of the springback according to the direction of rolling. We also showed the role of lubrication in the reduction of the springback. Moreover, in this work, we have studied important characteristics in deep drawing process which is a springback. We have presented defaults that are showed in this process and many parameters influenced a springback. Finally, our results works lead us to understand the influence of grains orientation with different metallic materials on the springback and drawing some conclusions how to concept deep drawing tools. In addition, the conducted work represents a fundamental contribution in the discussion the industry application.Keywords: Deep-Drawing, Grains orientation, Laminate Tool, Springback.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2089131 Designing Social Care Policies in the Long Term: A Study Using Regression, Clustering and Backpropagation Neural Nets
Authors: Sotirios Raptis
Abstract:
Linking social needs to social classes using different criteria may lead to social services misuse. The paper discusses using ML and Neural Networks (NNs) in linking public services in Scotland in the long term and advocates, this can result in a reduction of the services cost connecting resources needed in groups for similar services. The paper combines typical regression models with clustering and cross-correlation as complementary constituents to predict the demand. Insurance companies and public policymakers can pack linked services such as those offered to the elderly or to low-income people in the longer term. The work is based on public data from 22 services offered by Public Health Services (PHS) Scotland and from the Scottish Government (SG) from 1981 to 2019 that are broken into 110 years series called factors and uses Linear Regression (LR), Autoregression (ARMA) and 3 types of back-propagation (BP) Neural Networks (BPNN) to link them under specific conditions. Relationships found were between smoking related healthcare provision, mental health-related health services, and epidemiological weight in Primary 1(Education) Body Mass Index (BMI) in children. Primary component analysis (PCA) found 11 significant factors while C-Means (CM) clustering gave 5 major factors clusters.
Keywords: Probability, cohorts, data frames, services, prediction.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 460130 Hydrological Characterization of a Watershed for Streamflow Prediction
Authors: Oseni Taiwo Amoo, Bloodless Dzwairo
Abstract:
In this paper, we extend the versatility and usefulness of GIS as a methodology for any river basin hydrologic characteristics analysis (HCA). The Gurara River basin located in North-Central Nigeria is presented in this study. It is an on-going research using spatial Digital Elevation Model (DEM) and Arc-Hydro tools to take inventory of the basin characteristics in order to predict water abstraction quantification on streamflow regime. One of the main concerns of hydrological modelling is the quantification of runoff from rainstorm events. In practice, the soil conservation service curve (SCS) method and the Conventional procedure called rational technique are still generally used these traditional hydrological lumped models convert statistical properties of rainfall in river basin to observed runoff and hydrograph. However, the models give little or no information about spatially dispersed information on rainfall and basin physical characteristics. Therefore, this paper synthesizes morphometric parameters in generating runoff. The expected results of the basin characteristics such as size, area, shape, slope of the watershed and stream distribution network analysis could be useful in estimating streamflow discharge. Water resources managers and irrigation farmers could utilize the tool for determining net return from available scarce water resources, where past data records are sparse for the aspect of land and climate.
Keywords: Hydrological characteristic, land and climate, runoff discharge, streamflow.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1462129 Describing the Fine Electronic Structure and Predicting Properties of Materials with ATOMIC MATTERS Computation System
Authors: Rafal Michalski, Jakub Zygadlo
Abstract:
We present the concept and scientific methods and algorithms of our computation system called ATOMIC MATTERS. This is the first presentation of the new computer package, that allows its user to describe physical properties of atomic localized electron systems subject to electromagnetic interactions. Our solution applies to situations where an unclosed electron 2p/3p/3d/4d/5d/4f/5f subshell interacts with an electrostatic potential of definable symmetry and external magnetic field. Our methods are based on Crystal Electric Field (CEF) approach, which takes into consideration the electrostatic ligands field as well as the magnetic Zeeman effect. The application allowed us to predict macroscopic properties of materials such as: Magnetic, spectral and calorimetric as a result of physical properties of their fine electronic structure. We emphasize the importance of symmetry of charge surroundings of atom/ion, spin-orbit interactions (spin-orbit coupling) and the use of complex number matrices in the definition of the Hamiltonian. Calculation methods, algorithms and convention recalculation tools collected in ATOMIC MATTERS were chosen to permit the prediction of magnetic and spectral properties of materials in isostructural series.Keywords: Atomic matters, crystal electric field, spin-orbit coupling, localized states, electron subshell, fine electronic structure.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1208128 Conformation Prediction of Human Plasmin and Docking on Gold Nanoparticle
Authors: Wen-Shyong Tzou, Chih-Ching Huang, Chin-Hwa Hu, Ying-Tsang Lo, Tun-Wen Pai, Chia-Yin Chiang, Chung-Hao Li, Hong-Jyuan Jian
Abstract:
Plasmin plays an important role in the human circulatory system owing to its catalytic ability of fibrinolysis. The immediate injection of plasmin in patients of strokes has intrigued many scientists to design vectors that can transport plasmin to the desired location in human body. Here we predict the structure of human plasmin and investigate the interaction of plasmin with the gold-nanoparticle. Because the crystal structure of plasminogen has been solved, we deleted N-terminal domain (Pan-apple domain) of plasminogen and generate a mimic of the active form of this enzyme (plasmin). We conducted a simulated annealing process on plasmin and discovered a very large conformation occurs. Kringle domains 1, 4 and 5 had been observed to leave its original location relative to the main body of the enzyme and the original doughnut shape of this enzyme has been transformed to a V-shaped by opening its two arms. This observation of conformational change is consistent with the experimental results of neutron scattering and centrifugation. We subsequently docked the plasmin on the simulated gold surface to predict their interaction. The V-shaped plasmin could utilize its Kringle domain and catalytic domain to contact the gold surface. Our findings not only reveal the flexibility of plasmin structure but also provide a guide for the design of a plasmin-gold nanoparticle.Keywords: Docking, gold nanoparticle, molecular simulation, plasmin.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2432127 Neuron Efficiency in Fluid Dynamics and Prediction of Groundwater Reservoirs'' Properties Using Pattern Recognition
Authors: J. K. Adedeji, S. T. Ijatuyi
Abstract:
The application of neural network using pattern recognition to study the fluid dynamics and predict the groundwater reservoirs properties has been used in this research. The essential of geophysical survey using the manual methods has failed in basement environment, hence the need for an intelligent computing such as predicted from neural network is inevitable. A non-linear neural network with an XOR (exclusive OR) output of 8-bits configuration has been used in this research to predict the nature of groundwater reservoirs and fluid dynamics of a typical basement crystalline rock. The control variables are the apparent resistivity of weathered layer (p1), fractured layer (p2), and the depth (h), while the dependent variable is the flow parameter (F=λ). The algorithm that was used in training the neural network is the back-propagation coded in C++ language with 300 epoch runs. The neural network was very intelligent to map out the flow channels and detect how they behave to form viable storage within the strata. The neural network model showed that an important variable gr (gravitational resistance) can be deduced from the elevation and apparent resistivity pa. The model results from SPSS showed that the coefficients, a, b and c are statistically significant with reduced standard error at 5%.
Keywords: Neural network, gravitational resistance, pattern recognition, non-linear.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 801126 Performance Prediction of a 5MW Wind Turbine Blade Considering Aeroelastic Effect
Authors: Dong-Hyun Kim, Yoo-Han Kim
Abstract:
In this study, aeroelastic response and performance analyses have been conducted for a 5MW-Class composite wind turbine blade model. Advanced coupled numerical method based on computational fluid dynamics (CFD) and computational flexible multi-body dynamics (CFMBD) has been developed in order to investigate aeroelastic responses and performance characteristics of the rotating composite blade. Reynolds-Averaged Navier-Stokes (RANS) equations with k-ω SST turbulence model were solved for unsteady flow problems on the rotating turbine blade model. Also, structural analyses considering rotating effect have been conducted using the general nonlinear finite element method. A fully implicit time marching scheme based on the Newmark direct integration method is applied to solve the coupled aeroelastic governing equations of the 3D turbine blade for fluid-structure interaction (FSI) problems. Detailed dynamic responses and instantaneous velocity contour on the blade surfaces which considering flow-separation effects were presented to show the multi-physical phenomenon of the huge rotating wind- turbine blade model.Keywords: Computational Fluid Dynamics (CFD), Computational Multi-Body Dynamics (CMBD), Reynolds-averageNavier-Stokes (RANS), Fluid Structure Interaction (FSI), FiniteElement Method (FEM)
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2920125 Deep Learning Application for Object Image Recognition and Robot Automatic Grasping
Authors: Shiuh-Jer Huang, Chen-Zon Yan, C. K. Huang, Chun-Chien Ting
Abstract:
Since the vision system application in industrial environment for autonomous purposes is required intensely, the image recognition technique becomes an important research topic. Here, deep learning algorithm is employed in image system to recognize the industrial object and integrate with a 7A6 Series Manipulator for object automatic gripping task. PC and Graphic Processing Unit (GPU) are chosen to construct the 3D Vision Recognition System. Depth Camera (Intel RealSense SR300) is employed to extract the image for object recognition and coordinate derivation. The YOLOv2 scheme is adopted in Convolution neural network (CNN) structure for object classification and center point prediction. Additionally, image processing strategy is used to find the object contour for calculating the object orientation angle. Then, the specified object location and orientation information are sent to robotic controller. Finally, a six-axis manipulator can grasp the specific object in a random environment based on the user command and the extracted image information. The experimental results show that YOLOv2 has been successfully employed to detect the object location and category with confidence near 0.9 and 3D position error less than 0.4 mm. It is useful for future intelligent robotic application in industrial 4.0 environment.
Keywords: Deep learning, image processing, convolution neural network, YOLOv2, 7A6 series manipulator.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1094124 A Detailed Experimental Study and Evaluation of Springback under Stretch Bending Process
Authors: A. Soualem
Abstract:
The design of multi stage deep drawing processes requires the evaluation of many process parameters such as the intermediate die geometry, the blank shape, the sheet thickness, the blank holder force, friction, lubrication etc..These process parameters have to be determined for the optimum forming conditions before the process design. In general sheet metal forming may involve stretching drawing or various combinations of these basic modes of deformation. It is important to determine the influence of the process variables in the design of sheet metal working process. Especially, the punch and die corner for deep drawing will affect the formability. At the same time the prediction of sheet metals springback after deep drawing is an important issue to solve for the control of manufacturing processes. Nowadays, the importance of this problem increases because of the use of steel sheeting with high stress and also aluminum alloys.
The aim of this paper is to give a better understanding of the springback and its effect in various sheet metals forming process such as expansion and restreint deep drawing in the cup drawing process, by varying radius die, lubricant for two commercially available materials e.g. galvanized steel and Aluminum sheet. To achieve these goals experiments were carried out and compared with other results. The original of our purpose consist on tests which are ensured by adapting a U-type stretching-bending device on a tensile testing machine, where we studied and quantified the variation of the springback.
Keywords: Deep drawing, Expansion, Restreint deep drawing, Springback.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2528123 Identifying Quality Islamic Content in Community Question Answering Sites
Authors: Rabia Bibi, Muhammad Shahzad Faisal, Khalid Iqbal, Atif Inayat
Abstract:
Internet is growing rapidly and new community-based content is added by people every second. With this fast-growing community-based content, if a user requires answers of particular questions, then reviews are required from experts or community. However, it is difficult to get quality answers. The Muslim community all over the world is seeking help to get their questions and issues discussed to get answers. Online web portals of religious schools and community-based question answering sites are two big platforms to solve the issues of users. In the case of religious schools, there are experts and qualified religious scholars (mufti) who can give the expert opinion. However, the quality of community-based content cannot be guaranteed as it may not be an answer that satisfies the question of a user. Users on CQA sites may include spammers or individual criticizing the questioner instead of providing useful answers. In this paper, we research strategies to naturally distinguish the right content. As an experiment, we concentrate on Yahoo! Answers, and Quora, popular online QA sites, where questions are asked, answered, edited, and organized by a large community of users. We present the classification of data to categorize both relevant and irrelevant answers. Specifically, we demonstrate that the proposed framework can isolate quality answers from the rest with an exactness near that of people.
Keywords: Community-based question and answering, evaluation and prediction of quality answer, answer classification, Islamic content, answer ranking.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 80122 Finite Volume Method for Flow Prediction Using Unstructured Meshes
Authors: Juhee Lee, Yongjun Lee
Abstract:
In designing a low-energy-consuming buildings, the heat transfer through a large glass or wall becomes critical. Multiple layers of the window glasses and walls are employed for the high insulation. The gravity driven air flow between window glasses or wall layers is a natural heat convection phenomenon being a key of the heat transfer. For the first step of the natural heat transfer analysis, in this study the development and application of a finite volume method for the numerical computation of viscous incompressible flows is presented. It will become a part of the natural convection analysis with high-order scheme, multi-grid method, and dual-time step in the future. A finite volume method based on a fully-implicit second-order is used to discretize and solve the fluid flow on unstructured grids composed of arbitrary-shaped cells. The integrations of the governing equation are discretised in the finite volume manner using a collocated arrangement of variables. The convergence of the SIMPLE segregated algorithm for the solution of the coupled nonlinear algebraic equations is accelerated by using a sparse matrix solver such as BiCGSTAB. The method used in the present study is verified by applying it to some flows for which either the numerical solution is known or the solution can be obtained using another numerical technique available in the other researches. The accuracy of the method is assessed through the grid refinement.
Keywords: Finite volume method, fluid flow, laminar flow, unstructured grid.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1845121 Dynamic Features Selection for Heart Disease Classification
Authors: Walid MOUDANI
Abstract:
The healthcare environment is generally perceived as being information rich yet knowledge poor. However, there is a lack of effective analysis tools to discover hidden relationships and trends in data. In fact, valuable knowledge can be discovered from application of data mining techniques in healthcare system. In this study, a proficient methodology for the extraction of significant patterns from the Coronary Heart Disease warehouses for heart attack prediction, which unfortunately continues to be a leading cause of mortality in the whole world, has been presented. For this purpose, we propose to enumerate dynamically the optimal subsets of the reduced features of high interest by using rough sets technique associated to dynamic programming. Therefore, we propose to validate the classification using Random Forest (RF) decision tree to identify the risky heart disease cases. This work is based on a large amount of data collected from several clinical institutions based on the medical profile of patient. Moreover, the experts- knowledge in this field has been taken into consideration in order to define the disease, its risk factors, and to establish significant knowledge relationships among the medical factors. A computer-aided system is developed for this purpose based on a population of 525 adults. The performance of the proposed model is analyzed and evaluated based on set of benchmark techniques applied in this classification problem.Keywords: Multi-Classifier Decisions Tree, Features Reduction, Dynamic Programming, Rough Sets.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2532120 The Use of Artificial Neural Network in Option Pricing: The Case of S and P 100 Index Options
Authors: Zeynep İltüzer Samur, Gül Tekin Temur
Abstract:
Due to the increasing and varying risks that economic units face with, derivative instruments gain substantial importance, and trading volumes of derivatives have reached very significant level. Parallel with these high trading volumes, researchers have developed many different models. Some are parametric, some are nonparametric. In this study, the aim is to analyse the success of artificial neural network in pricing of options with S&P 100 index options data. Generally, the previous studies cover the data of European type call options. This study includes not only European call option but also American call and put options and European put options. Three data sets are used to perform three different ANN models. One only includes data that are directly observed from the economic environment, i.e. strike price, spot price, interest rate, maturity, type of the contract. The others include an extra input that is not an observable data but a parameter, i.e. volatility. With these detail data, the performance of ANN in put/call dimension, American/European dimension, moneyness dimension is analyzed and whether the contribution of the volatility in neural network analysis make improvement in prediction performance or not is examined. The most striking results revealed by the study is that ANN shows better performance when pricing call options compared to put options; and the use of volatility parameter as an input does not improve the performance.
Keywords: Option Pricing, Neural Network, S&P 100 Index, American/European options
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3084