Search results for: physical training
1205 Assessment of Groundwater Quality in Karakulam Grama Panchayath in Thiruvananthapuram, Kerala State, South India
Authors: D. S. Jaya, G. P. Deepthi
Abstract:
Groundwater is vital to the livelihoods and health of the majority of the people, since it provides almost the entire water resource for domestic, agricultural and industrial uses. Groundwater quality comprises the physical, chemical and bacteriological qualities. The present investigation was carried out to determine the physicochemical and bacteriological quality of the ground water sources in the residential areas of Karakulam Grama Panchayath in Thiruvananthapuram district, Kerala state in India. Karakulam is located in the eastern suburbs of Thiruvananthapuram city. The major drinking water source of the residents in the study area is wells. The present study aims to assess the portability and irrigational suitability of groundwater in the study area. The water samples were collected from randomly selected dug wells and bore wells in the study area during post monsoon and pre monsoon seasons of the year 2014 after a preliminary field survey. The physical, chemical and bacteriological parameters of the water samples were analyzed following standard procedures. The concentration of heavy metals (Cd, Pb and Mn) in the acid digested water samples were determined by using an Atomic Absorption Spectrophotometer. The results showed that the pH of well water samples ranged from acidic to alkaline level. In majority of well water samples (>54 %) the iron and magnesium content were found high in both the seasons studied, and the values were above the permissible limits of WHO drinking water quality standards. Bacteriological analyses showed that 63% of the wells were contaminated with total coliforms in both the seasons studied. Irrigational suitability of groundwater was assessed by determining the chemical indices like Sodium Percentage (%Na), Sodium Adsorption Ratio (SAR), Residual Sodium Carbonate (RSC), Permeability Index (PI), and the results indicate that the well water in the study area are good for irrigation purposes. Therefore, the study reveals the degradation of drinking water quality groundwater sources in Karakulam Grama Panchayath in Thiruvananthapuram District, Keralain terms of its chemical and bacteriological characteristics, and is not potable without proper treatment. In the study, more than 1/3rdof the well water samples tested were positive for total coliforms, and the bacterial contamination may pose threat to public health. The study recommends the need for periodic well water quality monitoring in the study area and to conduct awareness programs among the residents.
Keywords: Bacteriological, groundwater, irrigational suitability, physicochemical, potability.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 28851204 Backward Erosion Piping through Vertically Layered Sands
Authors: K. Vandenboer, L. Dolphen, A. Bezuijen
Abstract:
Backward erosion piping is an important failure mechanism for water-retaining structures, a phenomenon that results in the formation of shallow pipes at the interface of a sandy or silty foundation and a cohesive cover layer. This paper studies the effect of two soil types on backward erosion piping; both in case of a homogeneous sand layer, and in a vertically layered sand sample, where the pipe is forced to subsequently grow through the different layers. Two configurations with vertical sand layers are tested; they both result in wider pipes and higher critical gradients, thereby making this an interesting topic in research on measures to prevent backward erosion piping failures.Keywords: Backward erosion piping, embankments, physical modelling, sand.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 10461203 Comparative Study of Scheduling Algorithms for LTE Networks
Authors: Samia Dardouri, Ridha Bouallegue
Abstract:
Scheduling is the process of dynamically allocating physical resources to User Equipment (UE) based on scheduling algorithms implemented at the LTE base station. Various algorithms have been proposed by network researchers as the implementation of scheduling algorithm which represents an open issue in Long Term Evolution (LTE) standard. This paper makes an attempt to study and compare the performance of PF, MLWDF and EXP/PF scheduling algorithms. The evaluation is considered for a single cell with interference scenario for different flows such as Best effort, Video and VoIP in a pedestrian and vehicular environment using the LTE-Sim network simulator. The comparative study is conducted in terms of system throughput, fairness index, delay, packet loss ratio (PLR) and total cell spectral efficiency.
Keywords: LTE, Multimedia flows, Scheduling algorithms.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 48111202 Privacy of RFID Systems: Security of Personal Data for End-Users
Authors: Firoz Khan
Abstract:
Privacy of RFID systems is receiving increasing attention in the RFID community. RFID privacy is important as the RFID tags will be attached to all kinds of products and physical objects including people. The possible abuse or excessive use of RFID tracking capability by malicious users can lead to potential privacy violations. In this paper, we will discuss how the different industries use RFID and the potential privacy and security issues while RFID is implemented in these industries. Although RFID technology offers interesting services to customer and retailers, it could also endanger the privacy of end-users. Personal data can be leaked if a protection mechanism is not deployed in the RFID systems. The paper summarizes many different solutions for implementing privacy and security while deploying RFID systems.Keywords: RFID, privacy, security, encryption.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 9751201 Hierarchical PSO-Adaboost Based Classifiers for Fast and Robust Face Detection
Authors: Hong Pan, Yaping Zhu, Liang Zheng Xia
Abstract:
We propose a fast and robust hierarchical face detection system which finds and localizes face images with a cascade of classifiers. Three modules contribute to the efficiency of our detector. First, heterogeneous feature descriptors are exploited to enrich feature types and feature numbers for face representation. Second, a PSO-Adaboost algorithm is proposed to efficiently select discriminative features from a large pool of available features and reinforce them into the final ensemble classifier. Compared with the standard exhaustive Adaboost for feature selection, the new PSOAdaboost algorithm reduces the training time up to 20 times. Finally, a three-stage hierarchical classifier framework is developed for rapid background removal. In particular, candidate face regions are detected more quickly by using a large size window in the first stage. Nonlinear SVM classifiers are used instead of decision stump functions in the last stage to remove those remaining complex nonface patterns that can not be rejected in the previous two stages. Experimental results show our detector achieves superior performance on the CMU+MIT frontal face dataset.
Keywords: Adaboost, Face detection, Feature selection, PSO
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 21991200 Sensory Evaluation of Meatballs with Jerusalem Artichoke (Helianthus tuberosus L.)
Authors: I. Gedrovica, D. Karklina
Abstract:
Meat and meat products for human consumption are one of main sources of protein, amino acids, fatty acids, vitamins, and minerals. Popular variety of meat product is meatballs, which can be enriched with valuable product – Jerusalem artichoke powder, made from dried and grinded Jerusalem artichoke tubers, it is raw material with low-calorie, low fat, rich in dietary fibres, minerals, and vitamins. The results of this study indicate that that people could accept the new product - meatballs with Jerusalem artichoke powder and Jerusalem artichoke powder is suitable for meatballs preparation, in result them is possible to improve meatballs sensory and physical properties.
Keywords: Meatballs, Jerusalem artichoke powder, sensory evaluation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 28421199 Evaluation of Radiation Synthesized β-Glucan Hydrogel Wound Dressing using Rat Models
Authors: Hui J. Gwon, Youn M. Lim, Jong S. Park, Young C. Nho
Abstract:
In this study, hydrogels consisted of polyvinyl alcohol, propylene glycol and β-glucan were developed by radiation technique for wound dressing. The prepared hydrogels were characterized by examining of physical properties such as gel fraction and absorption ratio. The gel fraction and absorption ratio were dependent on the crosslinking density. On observing the wound healing of rat skin, the resulting hydrogels accelerated the wound healing comparing to cotton gauze. Therefore, the PVA/propylene glycol/β-glucan blended hydrogels can greatly accelerate the healing without causing irritation.Keywords: β-Glucan, poly(vinyl alcohol), propylene glycol, radiation, wound dressing.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 47471198 Influence of Parameters of Modeling and Data Distribution for Optimal Condition on Locally Weighted Projection Regression Method
Authors: Farhad Asadi, Mohammad Javad Mollakazemi, Aref Ghafouri
Abstract:
Recent research in neural networks science and neuroscience for modeling complex time series data and statistical learning has focused mostly on learning from high input space and signals. Local linear models are a strong choice for modeling local nonlinearity in data series. Locally weighted projection regression is a flexible and powerful algorithm for nonlinear approximation in high dimensional signal spaces. In this paper, different learning scenario of one and two dimensional data series with different distributions are investigated for simulation and further noise is inputted to data distribution for making different disordered distribution in time series data and for evaluation of algorithm in locality prediction of nonlinearity. Then, the performance of this algorithm is simulated and also when the distribution of data is high or when the number of data is less the sensitivity of this approach to data distribution and influence of important parameter of local validity in this algorithm with different data distribution is explained.
Keywords: Local nonlinear estimation, LWPR algorithm, Online training method.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16011197 Reading Literacy and Methods of Improving Reading
Authors: Iva Košek Bartošová, Andrea Jokešová, Eva Kozlová, Helena Matějová
Abstract:
The paper presents results of a research team from Faculty of Education, University of Hradec Králové in the Czech Republic. It introduces with the most reading methods used in the 1st classes of a primary school and presents results of a pilot research focused on mastering reading techniques and the quality of reading comprehension of pupils in the first half of a school year during training in teaching reading by an analytic-synthetic method and by a genetic method. These methods of practicing reading skills are the most used ones in the Czech Republic. During the school year 2015/16 there has been a measurement made of two groups of pupils of the 1st year and monitoring of quantitative and qualitative parameters of reading pupils’ outputs by several methods. Both of these methods are based on different theoretical basis and each of them has a specific educational and methodical procedure. This contribution represents results during a piloting project and draws pilot conclusions which will be verified in the subsequent broader research at the end of the school year of the first class of primary school.
Keywords: Analytic-synthetic method of reading, genetic method of reading, reading comprehension, reading literacy, reading methods, reading speed.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 10421196 An IM-COH Algorithm Neural Network Optimization with Cuckoo Search Algorithm for Time Series Samples
Authors: Wullapa Wongsinlatam
Abstract:
Back propagation algorithm (BP) is a widely used technique in artificial neural network and has been used as a tool for solving the time series problems, such as decreasing training time, maximizing the ability to fall into local minima, and optimizing sensitivity of the initial weights and bias. This paper proposes an improvement of a BP technique which is called IM-COH algorithm (IM-COH). By combining IM-COH algorithm with cuckoo search algorithm (CS), the result is cuckoo search improved control output hidden layer algorithm (CS-IM-COH). This new algorithm has a better ability in optimizing sensitivity of the initial weights and bias than the original BP algorithm. In this research, the algorithm of CS-IM-COH is compared with the original BP, the IM-COH, and the original BP with CS (CS-BP). Furthermore, the selected benchmarks, four time series samples, are shown in this research for illustration. The research shows that the CS-IM-COH algorithm give the best forecasting results compared with the selected samples.Keywords: Artificial neural networks, back propagation algorithm, time series, local minima problem, metaheuristic optimization.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 10931195 Object-Oriented Multivariate Proportional-Integral-Derivative Control of Hydraulic Systems
Authors: J. Fernandez de Canete, S. Fernandez-Calvo, I. García-Moral
Abstract:
This paper presents and discusses the application of the object-oriented modelling software SIMSCAPE to hydraulic systems, with particular reference to multivariable proportional-integral-derivative (PID) control. As a result, a particular modelling approach of a double cylinder-piston coupled system is proposed and motivated, and the SIMULINK based PID tuning tool has also been used to select the proper controller parameters. The paper demonstrates the usefulness of the object-oriented approach when both physical modelling and control are tackled.
Keywords: Object-oriented modeling, multivariable hydraulic system, multivariable PID control, computer simulation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 11061194 Anomaly Detection with ANN and SVM for Telemedicine Networks
Authors: Edward Guillén, Jeisson Sánchez, Carlos Omar Ramos
Abstract:
In recent years, a wide variety of applications are developed with Support Vector Machines -SVM- methods and Artificial Neural Networks -ANN-. In general, these methods depend on intrusion knowledge databases such as KDD99, ISCX, and CAIDA among others. New classes of detectors are generated by machine learning techniques, trained and tested over network databases. Thereafter, detectors are employed to detect anomalies in network communication scenarios according to user’s connections behavior. The first detector based on training dataset is deployed in different real-world networks with mobile and non-mobile devices to analyze the performance and accuracy over static detection. The vulnerabilities are based on previous work in telemedicine apps that were developed on the research group. This paper presents the differences on detections results between some network scenarios by applying traditional detectors deployed with artificial neural networks and support vector machines.Keywords: Anomaly detection, back-propagation neural networks, network intrusion detection systems, support vector machines.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 20091193 Data Mining Applied to the Predictive Model of Triage System in Emergency Department
Authors: Wen-Tsann Lin, Yung-Tsan Jou, Yih-Chuan Wu, Yuan-Du Hsiao
Abstract:
The Emergency Department of a medical center in Taiwan cooperated to conduct the research. A predictive model of triage system is contracted from the contract procedure, selection of parameters to sample screening. 2,000 pieces of data needed for the patients is chosen randomly by the computer. After three categorizations of data mining (Multi-group Discriminant Analysis, Multinomial Logistic Regression, Back-propagation Neural Networks), it is found that Back-propagation Neural Networks can best distinguish the patients- extent of emergency, and the accuracy rate can reach to as high as 95.1%. The Back-propagation Neural Networks that has the highest accuracy rate is simulated into the triage acuity expert system in this research. Data mining applied to the predictive model of the triage acuity expert system can be updated regularly for both the improvement of the system and for education training, and will not be affected by subjective factors.Keywords: Back-propagation Neural Networks, Data Mining, Emergency Department, Triage System.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 23091192 A Study on the Relation among Primary Care Professionals Serving the Disadvantaged Community, Socioeconomic Status, and Adverse Health Outcome
Authors: Chau-Kuang Chen, Juanita Buford, Colette Davis, Raisha Allen, John Hughes, Jr., James Tyus, Dexter Samuels
Abstract:
During the post-Civil War era, the city of Nashville, Tennessee, had the highest mortality rate in the United States. The elevated death and disease rates among former slaves were attributable to lack of quality healthcare. To address the paucity of healthcare services, Meharry Medical College, an institution with the mission of educating minority professionals and serving the underserved population, was established in 1876. Purpose: The social ecological framework and partial least squares (PLS) path modeling were used to quantify the impact of socioeconomic status and adverse health outcome on primary care professionals serving the disadvantaged community. Thus, the study results could demonstrate the accomplishment of the College’s mission of training primary care professionals to serve in underserved areas. Methods: Various statistical methods were used to analyze alumni data from 1975 – 2013. K-means cluster analysis was utilized to identify individual medical and dental graduates in the cluster groups of the practice communities (Disadvantaged or Non-disadvantaged Communities). Discriminant analysis was implemented to verify the classification accuracy of cluster analysis. The independent t-test was performed to detect the significant mean differences of respective clustering and criterion variables. Chi-square test was used to test if the proportions of primary care and non-primary care specialists are consistent with those of medical and dental graduates practicing in the designated community clusters. Finally, the PLS path model was constructed to explore the construct validity of analytic model by providing the magnitude effects of socioeconomic status and adverse health outcome on primary care professionals serving the disadvantaged community. Results: Approximately 83% (3,192/3,864) of Meharry Medical College’s medical and dental graduates from 1975 to 2013 were practicing in disadvantaged communities. Independent t-test confirmed the content validity of the cluster analysis model. Also, the PLS path modeling demonstrated that alumni served as primary care professionals in communities with significantly lower socioeconomic status and higher adverse health outcome (p < .001). The PLS path modeling exhibited the meaningful interrelation between primary care professionals practicing communities and surrounding environments (socioeconomic statues and adverse health outcome), which yielded model reliability, validity, and applicability. Conclusion: This study applied social ecological theory and analytic modeling approaches to assess the attainment of Meharry Medical College’s mission of training primary care professionals to serve in underserved areas, particularly in communities with low socioeconomic status and high rates of adverse health outcomes. In summary, the majority of medical and dental graduates from Meharry Medical College provided primary care services to disadvantaged communities with low socioeconomic status and high adverse health outcome, which demonstrated that Meharry Medical College has fulfilled its mission. The high reliability, validity, and applicability of this model imply that it could be replicated for comparable universities and colleges elsewhere.Keywords: Disadvantaged Community, K-means Cluster Analysis, PLS Path Modeling, Primary care.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 20361191 Assessing Stages of Exercise Behavior Change, Self Efficacy and Decisional Balance in Iranian Nursing and Midwifery Students
Authors: Mahnaz Shafakhah, Marzieh Moattari, Rahelae Sabet Sarvestani
Abstract:
Regular physical activity contributes positively to physiological and psychological health. This study aimed to identify exercise behavior changes, self efficacy and decisional balance in nursing and midwifery students. This was a cross-sectional study carried out in Iran.300undergraduate nursing and midwifery students participated in this study. Data were collected using a questionnaire including demographic information, exercise stages of change, exercise self efficacy and pros and cons exercise decisional balance. The analysis was performed using the SPSS.A p-value of less than 0.05 was considered as statistically significant.
Keywords: Exercise, Behavior, Student, Self efficacy.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 25791190 Enhancing Security and Privacy Protocols in Telehealth: A Comprehensive Approach across IoT/Fog/Cloud Environments
Authors: Yunyong Guo, Man Wang, Bryan Guo, Nathan Guo
Abstract:
This paper presents an advanced security and privacy model tailored for Telehealth systems, emphasizing end-to-end protection across IoT, Fog, and Cloud components. The proposed model integrates encryption, key management, intrusion detection, and privacy-preserving measures to safeguard patient data. A comprehensive simulation study evaluates the model's effectiveness in scenarios such as unauthorized access, physical breaches, and insider threats. Results indicate notable success in detecting and mitigating threats yet underscore areas for refinement. The study contributes insights into the intricate balance between security and usability in Telehealth environments, setting the stage for continued advancements.
Keywords: Cloud, enhancing security, Fog, IoT, telehealth.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 621189 Quebec Elementary Pre-service Teachers’ Conceptual Representations about Heat and Temperature
Authors: Abdeljalil Métioui
Abstract:
This article identifies the conceptual representations of 128 students enrolled in elementary pre-service teachers’ education in the Province of Quebec, Canada (ages 19-24). To construct their conceptual representations relatively to notions of heat and temperature, we use a qualitative research approach. For that, we distributed them a questionnaire including four questions. The result demonstrates that these students tend to view the temperature as a measure of the hotness of an object or person. They also related the sensation of cold (or warm) to the difference in temperature, and for their majority, the physical change of the matter does not require a constant temperature. These representations are inaccurate relatively to the scientific views, and we will see that they are relevant to the design of teaching strategies based on conceptual conflict.
Keywords: Conceptual representations, heat, temperature, pre-service teachers, elementary school.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 6091188 Artificial Neural Network-Based Short-Term Load Forecasting for Mymensingh Area of Bangladesh
Authors: S. M. Anowarul Haque, Md. Asiful Islam
Abstract:
Electrical load forecasting is considered to be one of the most indispensable parts of a modern-day electrical power system. To ensure a reliable and efficient supply of electric energy, special emphasis should have been put on the predictive feature of electricity supply. Artificial Neural Network-based approaches have emerged to be a significant area of interest for electric load forecasting research. This paper proposed an Artificial Neural Network model based on the particle swarm optimization algorithm for improved electric load forecasting for Mymensingh, Bangladesh. The forecasting model is developed and simulated on the MATLAB environment with a large number of training datasets. The model is trained based on eight input parameters including historical load and weather data. The predicted load data are then compared with an available dataset for validation. The proposed neural network model is proved to be more reliable in terms of day-wise load forecasting for Mymensingh, Bangladesh.Keywords: Load forecasting, artificial neural network, particle swarm optimization.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 6861187 Iraqi Short Term Electrical Load Forecasting Based On Interval Type-2 Fuzzy Logic
Authors: Firas M. Tuaimah, Huda M. Abdul Abbas
Abstract:
Accurate Short Term Load Forecasting (STLF) is essential for a variety of decision making processes. However, forecasting accuracy can drop due to the presence of uncertainty in the operation of energy systems or unexpected behavior of exogenous variables. Interval Type 2 Fuzzy Logic System (IT2 FLS), with additional degrees of freedom, gives an excellent tool for handling uncertainties and it improved the prediction accuracy. The training data used in this study covers the period from January 1, 2012 to February 1, 2012 for winter season and the period from July 1, 2012 to August 1, 2012 for summer season. The actual load forecasting period starts from January 22, till 28, 2012 for winter model and from July 22 till 28, 2012 for summer model. The real data for Iraqi power system which belongs to the Ministry of Electricity.
Keywords: Short term load forecasting, prediction interval, type 2 fuzzy logic systems.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 18881186 Comparing Abused and Normal Male Students in Tehran Guidance Schools: Emphasizing the Co-Dependency of Their Mothers
Authors: Mohamad Saleh Sangin Ostadi, Esmail Safari, Somayeh Akbari, Kaveh Qaderi Bagajan
Abstract:
The aim of this study is to compare abused and normal male students in Tehran guidance schools with emphasis on the co-dependency of their mothers. The method of this study is based on survey method and comparison (Ex-Post Facto). The method of sampling is also multi-stage cluster. Accordingly, we did sampling from secondary schools of education and training in Tehran, including 12 schools with levels of first, second and third. Each of the schools represents the three – high, medium and low- economic and social conditions. In the following, three classes from every school and 20 students from each class were randomly selected. By (CTQ) abused and normal students were separated that 670 children were recognized as normal and 50 children as abused. Then, 50 children were randomly selected from normal group and compared with abused group. Using Spanned-Fischer Co-dependency Scale, we compared mothers of abused and normal students. The results showed that mothers of the abused children have higher co- dependency average comparing to the mothers of the normal children.
Keywords: Co-dependency, child abuse, abused children, parental psychological health.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 17211185 Model-free Prediction based on Tracking Theory and Newton Form of Polynomial
Authors: Guoyuan Qi , Yskandar Hamam, Barend Jacobus van Wyk, Shengzhi Du
Abstract:
The majority of existing predictors for time series are model-dependent and therefore require some prior knowledge for the identification of complex systems, usually involving system identification, extensive training, or online adaptation in the case of time-varying systems. Additionally, since a time series is usually generated by complex processes such as the stock market or other chaotic systems, identification, modeling or the online updating of parameters can be problematic. In this paper a model-free predictor (MFP) for a time series produced by an unknown nonlinear system or process is derived using tracking theory. An identical derivation of the MFP using the property of the Newton form of the interpolating polynomial is also presented. The MFP is able to accurately predict future values of a time series, is stable, has few tuning parameters and is desirable for engineering applications due to its simplicity, fast prediction speed and extremely low computational load. The performance of the proposed MFP is demonstrated using the prediction of the Dow Jones Industrial Average stock index.Keywords: Forecast, model-free predictor, prediction, time series
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 17831184 Contributions of Natural and Human Activities to Urban Surface Runoff with Different Hydrological Scenarios (Orléans, France)
Authors: Mohammed Al-Juhaishi, Mikael Motelica-Heino, Fabrice Muller, Audrey Guirimand-Dufour, Christian Défarge
Abstract:
This study aims at improving the urban hydrological cycle of the Orléans agglomeration (France) and understanding the relationship between physical and chemical parameters of urban surface runoff and the hydrological conditions. In particular water quality parameters such as pH, conductivity, total dissolved solids, major dissolved cations and anions, and chemical and biological oxygen demands were monitored for three types of urban water discharges (wastewater treatment plant output (WWTP), storm overflow and stormwater outfall) under two hydrologic scenarios (dry and wet weather). The first results were obtained over a period of five months. Each investigated (Ormes, l’Egoutier and La Corne) outfall represents an urban runoff source that receives water from runoff roads, gutters, the irrigation of gardens and other sources of flow over the Earth’s surface that drains in its catchments and carries it to the Loire River. In wet weather conditions there is rain water runoff and an additional input from the roof gutters that have entered the stormwater system during rainfall. For the comparison the results La Chilesse is a storm overflow that was selected in our study as a potential source of waste water which is located before the (WWTP). The comparison of the physical-chemical parameters (total dissolved solids, turbidity, pH, conductivity, dissolved organic carbon (DOC), concentration of major cations and anions) together with the chemical oxygen demand (COD) and biological oxygen demand (BOD) helped to characterize sources of runoff waters in the different watersheds. It also helped to highlight the infiltration of wastewater in some stormwater systems that reject directly in the Loire River. The values of the conductivity measured in the outflow of Ormes were always higher than those measured in the other two outlets. The results showed a temporal variation for the Ormes outfall of conductivity from 1465 μS cm-1 in the dry weather flow to 650 μS cm-1 in the wet weather flow and also a spatial variation in the wet weather flow from 650 μS cm-1 in the Ormes outfall to 281 μS cm-1 in L’Egouttier outfall. The ultimate BOD (BOD28) showed a significant decrease in La Corne outfall from 181 mg L-1 in the wet weather flow to 95 mg L-1 in the dry weather flow because of the nutrient load that was transported by the runoff.Keywords: BOD, COD, the Loire River, urban hydrology, urban dry and wet weather discharges, macronutrients.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 32661183 MLOps Scaling Machine Learning Lifecycle in an Industrial Setting
Authors: Yizhen Zhao, Adam S. Z. Belloum, Gonc¸alo Maia da Costa, Zhiming Zhao
Abstract:
Machine learning has evolved from an area of academic research to a real-world applied field. This change comes with challenges, gaps and differences exist between common practices in academic environments and the ones in production environments. Following continuous integration, development and delivery practices in software engineering, similar trends have happened in machine learning (ML) systems, called MLOps. In this paper we propose a framework that helps to streamline and introduce best practices that facilitate the ML lifecycle in an industrial setting. This framework can be used as a template that can be customized to implement various machine learning experiments. The proposed framework is modular and can be recomposed to be adapted to various use cases (e.g. data versioning, remote training on Cloud). The framework inherits practices from DevOps and introduces other practices that are unique to the machine learning system (e.g.data versioning). Our MLOps practices automate the entire machine learning lifecycle, bridge the gap between development and operation.
Keywords: Cloud computing, continuous development, data versioning, DevOps, industrial setting, MLOps, machine learning.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 10741182 Two States Mapping Based Neural Network Model for Decreasing of Prediction Residual Error
Authors: Insung Jung, lockjo Koo, Gi-Nam Wang
Abstract:
The objective of this paper is to design a model of human vital sign prediction for decreasing prediction error by using two states mapping based time series neural network BP (back-propagation) model. Normally, lot of industries has been applying the neural network model by training them in a supervised manner with the error back-propagation algorithm for time series prediction systems. However, it still has a residual error between real value and prediction output. Therefore, we designed two states of neural network model for compensation of residual error which is possible to use in the prevention of sudden death and metabolic syndrome disease such as hypertension disease and obesity. We found that most of simulations cases were satisfied by the two states mapping based time series prediction model compared to normal BP. In particular, small sample size of times series were more accurate than the standard MLP model. We expect that this algorithm can be available to sudden death prevention and monitoring AGENT system in a ubiquitous homecare environment.
Keywords: Neural network, U-healthcare, prediction, timeseries, computer aided prediction.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 19821181 Sliding Mode Control Based on Backstepping Approach for an UAV Type-Quadrotor
Authors: H. Bouadi, M. Bouchoucha, M. Tadjine
Abstract:
In this paper; we are interested principally in dynamic modelling of quadrotor while taking into account the high-order nonholonomic constraints in order to develop a new control scheme as well as the various physical phenomena, which can influence the dynamics of a flying structure. These permit us to introduce a new state-space representation. After, the use of Backstepping approach for the synthesis of tracking errors and Lyapunov functions, a sliding mode controller is developed in order to ensure Lyapunov stability, the handling of all system nonlinearities and desired tracking trajectories. Finally simulation results are also provided in order to illustrate the performances of the proposed controller.
Keywords: Dynamic modeling, nonholonomic constraints, Backstepping, sliding mode.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 58801180 A Systematic Approach for Design a Low-Cost Mobility Assistive Device for Elderly People
Authors: Omar Salah, Ahmed A. Ramadan, Salvatore Sessa, Ahmed A. Abo-Ismail
Abstract:
Walking and sit to stand are activities carried out by all the people many times during the day, but physical disabilities due to age and diseases create needs of assistive devices to help elderly people during their daily life. This study aims to study the different types and mechanisms of the assistive devices. We will analyze the limitations and the challenges faced by the researchers in this field. We will introduce the Assistive Device developed at the Egypt-Japan University of Science and Technology, named E-JUST Assistive Device (EJAD). EJAD will be a low cost intelligent assistive device to help elders in walking and sit-to-stand activities.Keywords: Active walker, Assistive robotics, Standing Assistance, Walking Assistance
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 29091179 Conversion of Sugarcane Shoots to Reducing Sugars
Authors: Sathida Phonoy, Bongotrut Pitiyont, Vichien kitpreechavanich
Abstract:
Sugarcane Shoots is an abundantly available residual resources consisting of lignocelluloses which take it into the benefit. The present study was focused on utilizing of sugarcane shoot for reducing sugar production as a substrate in ethanol production. Physical and chemical pretreatments of sugarcane shoot were investigated. Results showed that the size of sugarcane shoot influenced the cellulose content. The maximum cellulose yield (60 %) can be obtained from alkaline pretreated sugarcane shoot with 1.0 M NaOH at 30 oC for 90 min. The cellulose yield reached up to 93.9% (w/w). Enzymatically hydrolyzed of cellulosic residual in 0.04 citrate buffer (pH 5) with celluclast 1.5L (0.7 FPU/ml) resulted in the highest amount of reducing sugar at a rate of 32.1 g/l after 4 h incubation at 50°C, and 100 oC for 5 min . Cellulose conversion was 55.5%.Keywords: Conversion, Sugarcane Shoots, Reducing Sugars.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16631178 One Hour Ahead Load Forecasting Using Artificial Neural Network for the Western Area of Saudi Arabia
Authors: A. J. Al-Shareef, E. A. Mohamed, E. Al-Judaibi
Abstract:
Load forecasting has become in recent years one of the major areas of research in electrical engineering. Most traditional forecasting models and artificial intelligence neural network techniques have been tried out in this task. Artificial neural networks (ANN) have lately received much attention, and a great number of papers have reported successful experiments and practical tests. This article presents the development of an ANN-based short-term load forecasting model with improved generalization technique for the Regional Power Control Center of Saudi Electricity Company, Western Operation Area (SEC-WOA). The proposed ANN is trained with weather-related data and historical electric load-related data using the data from the calendar years 2001, 2002, 2003, and 2004 for training. The model tested for one week at five different seasons, typically, winter, spring, summer, Ramadan and fall seasons, and the mean absolute average error for one hour-ahead load forecasting found 1.12%.
Keywords: Artificial neural networks, short-term load forecasting, back propagation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 21121177 Grid-Connected Inverter Experimental Simulation and Droop Control Implementation
Authors: Nur Aisyah Jalalludin, Arwindra Rizqiawan, Goro Fujita
Abstract:
In this study, we aim to demonstrate a microgrid system experimental simulation for an easy understanding of a large-scale microgrid system. This model is required for industrial training and learning environments. However, in order to create an exact representation of a microgrid system, the laboratory-scale system must fulfill the requirements of a grid-connected inverter, in which power values are assigned to the system to cope with the intermittent output from renewable energy sources. Aside from that, during fluctuations in load capacity, the grid-connected system must be able to supply power from the utility grid side and microgrid side in a balanced manner. Therefore, droop control is installed in the inverter’s control board to maintain a balanced power sharing in both sides. This power control in a stand-alone condition and droop control in a grid-connected condition must be implemented in order to maintain a stabilized system. Based on the experimental results, power control and droop control can both be applied in the system by comparing the experimental and reference values.
Keywords: Droop control, droop characteristic, grid-connected inverter, microgrid, power control.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 30751176 Research and Development of Lightweight Repair Mortars with Focus on Their Resistance to High Temperatures
Authors: Tomáš Melichar, Jiří Bydžovský, Vít Černý
Abstract:
In this article our research focused on study of basic physical and mechanical parameters of polymer-cement repair materials is presented. Namely the influence of applied aggregates in combination with active admixture is specially considered. New formulas which were exposed in ambient with temperature even to 1000°C were suggested. Subsequently densities and strength characteristics including their changes were evaluated. Selected samples were analyzed using electron microscope. The positive influence of porous aggregates based on sintered ash was definitely demonstrated. Further it was found than in terms of thermal resistance the effective micro silica amount represents 5% to 7.5% of cement weight.
Keywords: Aggregate, ash, high, lightweight, microsilica, mortar, polymer-cement, repair, temperature.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1990