Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 30382
A Study on the Relation among Primary Care Professionals Serving the Disadvantaged Community, Socioeconomic Status, and Adverse Health Outcome

Authors: Chau-Kuang Chen, Jr., Juanita Buford, Colette Davis, Raisha Allen, John Hughes, James Tyus, Dexter Samuels

Abstract:

During the post-Civil War era, the city of Nashville, Tennessee, had the highest mortality rate in the United States. The elevated death and disease rates among former slaves were attributable to lack of quality healthcare. To address the paucity of healthcare services, Meharry Medical College, an institution with the mission of educating minority professionals and serving the underserved population, was established in 1876. Purpose: The social ecological framework and partial least squares (PLS) path modeling were used to quantify the impact of socioeconomic status and adverse health outcome on primary care professionals serving the disadvantaged community. Thus, the study results could demonstrate the accomplishment of the College’s mission of training primary care professionals to serve in underserved areas. Methods: Various statistical methods were used to analyze alumni data from 1975 – 2013. K-means cluster analysis was utilized to identify individual medical and dental graduates in the cluster groups of the practice communities (Disadvantaged or Non-disadvantaged Communities). Discriminant analysis was implemented to verify the classification accuracy of cluster analysis. The independent t-test was performed to detect the significant mean differences of respective clustering and criterion variables. Chi-square test was used to test if the proportions of primary care and non-primary care specialists are consistent with those of medical and dental graduates practicing in the designated community clusters. Finally, the PLS path model was constructed to explore the construct validity of analytic model by providing the magnitude effects of socioeconomic status and adverse health outcome on primary care professionals serving the disadvantaged community. Results: Approximately 83% (3,192/3,864) of Meharry Medical College’s medical and dental graduates from 1975 to 2013 were practicing in disadvantaged communities. Independent t-test confirmed the content validity of the cluster analysis model. Also, the PLS path modeling demonstrated that alumni served as primary care professionals in communities with significantly lower socioeconomic status and higher adverse health outcome (p < .001). The PLS path modeling exhibited the meaningful interrelation between primary care professionals practicing communities and surrounding environments (socioeconomic statues and adverse health outcome), which yielded model reliability, validity, and applicability. Conclusion: This study applied social ecological theory and analytic modeling approaches to assess the attainment of Meharry Medical College’s mission of training primary care professionals to serve in underserved areas, particularly in communities with low socioeconomic status and high rates of adverse health outcomes. In summary, the majority of medical and dental graduates from Meharry Medical College provided primary care services to disadvantaged communities with low socioeconomic status and high adverse health outcome, which demonstrated that Meharry Medical College has fulfilled its mission. The high reliability, validity, and applicability of this model imply that it could be replicated for comparable universities and colleges elsewhere.

Keywords: Primary Care, disadvantaged community, PLS path modeling, K-means Cluster Analysis

Digital Object Identifier (DOI): doi.org/10.5281/zenodo.1105495

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1652

References:


[1] A. C. Epps and P. M. Hammock, An Act of Grace: The Right Side of the Story, Nashville, TN: Privately Printed, 2009.
[2] J. A. Friedman, A. Thind, P. L. Davidson, and C. Farmer-Dixon, The Pipeline Program at Meharry Medical College School of Dentistry, J Dent Educ., 2009, Feb;73(2 Suppl):S83-94; discussion S94-5.
[3] C. W. Johnson, The spirit of a place called Meharry: The strength of its past to shape the future, 2000.
[4] J. A. Youngclaus, P. A. Koeheler, L. J. Kotlikoff, and J. M. Wiecha, Can Medical Students Afford to Choose Primary Care? A Economic Analysis of Physician Education Debt Repayment, Academic Medicine, 2013, 88, 16-25.
[5] R. M. Andersen, D. C. Carreon, P. L. Davidson, T. T. Nakazono, S. Shahedi, and J. J. Gutierrez, Who will serve? Assessing Recruitment of Underrepresented, 2010.
[6] D. E. Pathman and T. R. Konrad, Growth and changes in the national health service corps (NHSC) workforce with the American recovery and reinvestment act. Journal of the American Board of Family Medicine: JABFM, 25(5), 2012, 723-733.
[7] R. A. Cooper, T. E. Getzen, H. J. McKee, and P. Laud, Economic and Demographic Trends Signal and Impending Physician Shortage, Health Affairs, 2012, 21, 140-154.
[8] Council on Graduate Medical Education (COGME), Physician Workforce Policy Guidelines for the U.S. for 2000-2020, U.S. Department of Health and Human Services, Rockville, MD. 2005.
[9] J. Hawkins, J. Mcrritt, and P. B. Miller, Will the last physician in America Please Turn off the lights? A Look at America’s Looming Doctor Shortage, Practice Support Resources, Inc., Irving, TX, 2004.
[10] C. K. Chen, Nationwide Physician Shortages Likely to Occur Beyond 2015 Based on Grey Forecasting Model, Journal of Education, Informatics, and Cybernetics, 2009, 1, 14-18.
[11] J. N. Katz, Patient Preferences and Health Disparities, Jama, 286, 2001, 1506-1509.
[12] B. D. Smedley, A. S. Butler, and L. R. Bristow, In the Nation’s Compelling Interest: Ensuring Diversity in the Health-care Workforce, The National Academies Press, Washington, DC. 2004.
[13] U.S. Department of Health & Human Services. Shortage areas, Retrieved from http://datawarehouse.hrsa.gov/topics/ shortageAreas.aspx, 2014.
[14] John Hopkins Medicine, What are disadvantaged students, Retrieved from http://www.hopkinsmedicine.org/ geneticmedicine/resideny/Disadvantaged.html, 2013.
[15] T. Kanungo, D. M. Mount, N. S. Netanyahu, C. D. Piatko, R. Silverman, and A. Y. Wu, An efficient k-means clustering algorithm: Analysis and implementation. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2002, 24(7).
[16] IBM SPSS Advanced Statistical 20, 2011.
[17] V. V. Esposito, W. W. Chin, J. Henseler, and H Wang, Handbook of Partial Least Squares: Concepts, Methods and Applications, Springer Handbooks of Computational Statistics Series, Volume II, Springer: Berlin/Heidelberg, 2010.
[18] D. Gefen, D. W. Straub, and M. Boudreau Gefen, Structural Equation Modeling Techniques and Regression: Guidelines for Research Practice by Straub, and Boudreau Communications of AIS, 2000, Volume 4, Article 73.
[19] J. Henseler, C. M. Ringle, and R. R. Sinkovics, The use of partial least squares path modeling in international marketing, in: Sinkovics, R. R. / Ghauri, P. N. (eds.), Advances in International Marketing (AIM), Vol. 20, Bingley 2009, pp. 277-320.
[20] G. Green and J. Coder, Household income trends: Retrieved from Sentier Research, LLC website: http://sentierresearch.com/index.html, issued July 2014.
[21] Bureau of Labor Statistics, Labor force statistics from the current population survey, (Data file), Retrieved from http://data.bls.gov/timeseries/ LNS14000000.20, 2014.
[22] U.S. Census Bureau, Current population survey, 1960 to 2013: Annual social and economic supplements, Retrieved from http://www.census.gov/hhes/www/poverty/data/incpovhlth/2012/figure4 .pdf, 2013.
[23] Federal Education Budget Project, 2014.
[24] P. Galewitz, 48 million Americans remain uninsured, Retrieved from uninsured-numbers-remain-nearly-unchanged.aspx, Census Bureau reports Kaiser Health News, 2013, Sept. 17.
[25] J. McCarthy, In U.S., adult obesity rate now at 27.7%: Blacks are still most likely to be obese among demographic groups, Retrieved from http://www.gallup.com/poll/170264/adult-obesity-rate.aspx, 2014.
[26] Centers for Disease Control and Prevention. National diabetes statistics report: Estimates of diabetes and its burden in the United States, 2014. Atlanta, GA: U.S. Department of Health and Human Services, 2014, http://www.cdc.gov/diabetes/pubs/statsreport14/national-diabetesreport- web.pdf.
[27] P. L. Remington, B. B. Catlin, and D. A. Kindig, Monitoring progress in population health: Trends in premature death rates, Preventing Chronic Disease, 10, 2013, E214. doi: http://dx.doi.org /10.5888/pcd10.130210.
[28] Bureau of Labor Statistics, May 2014, retrieved from http://data.bls.gov/search/query/results?cx=013738036195919377644% 3A6ih0hfrgl50&q=physicians, 2014
[29] XLSTAT, Addinsoft, Paris, France, (www.xlstat.com), 2009.
[30] W. W Chin, The partial least squares approach to structural equation modeling, In:Marcoulides GA (Ed.) Modern Methods for Business Research, Lawrence Erlbaum Associates, Mahwah, NJ, 1998, pp 295– 336.
[31] J. Henseler, PLS Path Modeling with SmartPLS, Foundations, Applications, Extensions, Advances, Inforte Seminar Jyvaskyla, 2012.
[32] C. Dolea, L. Stormont and J. M. Braichet, Evaluated strategies to increase attraction and retention of health workers in remote and rural areas, Bulletin of the World Health Organization, 2010, 88(5), 379-385.