Search results for: learning object
1520 Stability of Electrical Motor Supplied by a Five Level Inverter
Authors: Kelaiaia Mounia Samira, Labar Hocine, Bounaya Kamel, Kelaiaia Samia
Abstract:
The development of the power electronics has allowed increasing the precision and reliability of the electrical trainings, thanks to the adjustable inverters, as the Pulse Wide Modulation (PWM) five level inverters, which is the object of study in this article.The authors treat the relation between the law order adopted for a given system and the oscillations of the electrical and mechanical parameters of which the tolerance depends on the process with which they are integrated (paper factory, lifting of the heavy loads, etc.).Thus the best choice of the regulation indexes allows us to achieve stability and safety training without investment (management of existing equipment).Keywords: multi level inverter, PWM, Harmonics, oscillation, control
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16581519 Enhancement Approaches for Supporting Default Hierarchies Formation for Robot Behaviors
Authors: Saeed Mohammed Baneamoon, Rosalina Abdul Salam
Abstract:
Robotic system is an important area in artificial intelligence that aims at developing the performance techniques of the robot and making it more efficient and more effective in choosing its correct behavior. In this paper the distributed learning classifier system is used for designing a simulated control system for robot to perform complex behaviors. A set of enhanced approaches that support default hierarchies formation is suggested and compared with each other in order to make the simulated robot more effective in mapping the input to the correct output behavior.
Keywords: Learning Classifier System, Default Hierarchies, Robot Behaviors.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 14251518 Adopting Artificial Intelligence and Deep Learning Techniques in Cloud Computing for Operational Efficiency
Authors: Sandesh Achar
Abstract:
Artificial intelligence (AI) is being increasingly incorporated into many applications across various sectors such as health, education, security, and agriculture. Recently, there has been rapid development in cloud computing technology, resulting in AI’s implementation into cloud computing to enhance and optimize the technology service rendered. The deployment of AI in cloud-based applications has brought about autonomous computing, whereby systems achieve stated results without human intervention. Despite the amount of research into autonomous computing, work incorporating AI/ML into cloud computing to enhance its performance and resource allocation remains a fundamental challenge. This paper highlights different manifestations, roles, trends, and challenges related to AI-based cloud computing models. This work reviews and highlights investigations and progress in the domain. Future directions are suggested for leveraging AI/ML in next-generation computing for emerging computing paradigms such as cloud environments. Adopting AI-based algorithms and techniques to increase operational efficiency, cost savings, automation, reducing energy consumption and solving complex cloud computing issues are the major findings outlined in this paper.
Keywords: Artificial intelligence, AI, cloud computing, deep learning, machine learning, ML, internet of things, IoT.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 6281517 Pruning Method of Belief Decision Trees
Authors: Salsabil Trabelsi, Zied Elouedi, Khaled Mellouli
Abstract:
The belief decision tree (BDT) approach is a decision tree in an uncertain environment where the uncertainty is represented through the Transferable Belief Model (TBM), one interpretation of the belief function theory. The uncertainty can appear either in the actual class of training objects or attribute values of objects to classify. In this paper, we develop a post-pruning method of belief decision trees in order to reduce size and improve classification accuracy on unseen cases. The pruning of decision tree has a considerable intention in the areas of machine learning.Keywords: machine learning, uncertainty, belief function theory, belief decision tree, pruning.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 19101516 A Completed Adaptive De-mixing Algorithm on Stiefel Manifold for ICA
Authors: Jianwei Wu
Abstract:
Based on the one-bit-matching principle and by turning the de-mixing matrix into an orthogonal matrix via certain normalization, Ma et al proposed a one-bit-matching learning algorithm on the Stiefel manifold for independent component analysis [8]. But this algorithm is not adaptive. In this paper, an algorithm which can extract kurtosis and its sign of each independent source component directly from observation data is firstly introduced.With the algorithm , the one-bit-matching learning algorithm is revised, so that it can make the blind separation on the Stiefel manifold implemented completely in the adaptive mode in the framework of natural gradient.
Keywords: Independent component analysis, kurtosis, Stiefel manifold, super-gaussians or sub-gaussians.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15041515 Modeling Approaches for Large-Scale Reconfigurable Engineering Systems
Authors: Kwa-Sur Tam
Abstract:
This paper reviews various approaches that have been used for the modeling and simulation of large-scale engineering systems and determines their appropriateness in the development of a RICS modeling and simulation tool. Bond graphs, linear graphs, block diagrams, differential and difference equations, modeling languages, cellular automata and agents are reviewed. This tool should be based on linear graph representation and supports symbolic programming, functional programming, the development of noncausal models and the incorporation of decentralized approaches.Keywords: Interdisciplinary, dynamic, functional programming, object-oriented.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 14941514 Double Aperture Camera for High Resolution Measurement
Authors: Venkatesh Bagaria, Nagesh AS, Varun AV
Abstract:
In the domain of machine vision, the measurement of length is done using cameras where the accuracy is directly proportional to the resolution of the camera and inversely to the size of the object. Since most of the pixels are wasted imaging the entire body as opposed to just imaging the edges in a conventional system, a double aperture system is constructed to focus on the edges to measure at higher resolution. The paper discusses the complexities and how they are mitigated to realize a practical machine vision system.Keywords: Machine Vision, double aperture camera, accurate length measurement
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15681513 Human Verification in a Video Surveillance System Using Statistical Features
Authors: Sanpachai Huvanandana
Abstract:
A human verification system is presented in this paper. The system consists of several steps: background subtraction, thresholding, line connection, region growing, morphlogy, star skelatonization, feature extraction, feature matching, and decision making. The proposed system combines an advantage of star skeletonization and simple statistic features. A correlation matching and probability voting have been used for verification, followed by a logical operation in a decision making stage. The proposed system uses small number of features and the system reliability is convincing.Keywords: Human verification, object recognition, videounderstanding, segmentation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15061512 Consumer Load Profile Determination with Entropy-Based K-Means Algorithm
Authors: Ioannis P. Panapakidis, Marios N. Moschakis
Abstract:
With the continuous increment of smart meter installations across the globe, the need for processing of the load data is evident. Clustering-based load profiling is built upon the utilization of unsupervised machine learning tools for the purpose of formulating the typical load curves or load profiles. The most commonly used algorithm in the load profiling literature is the K-means. While the algorithm has been successfully tested in a variety of applications, its drawback is the strong dependence in the initialization phase. This paper proposes a novel modified form of the K-means that addresses the aforementioned problem. Simulation results indicate the superiority of the proposed algorithm compared to the K-means.
Keywords: Clustering, load profiling, load modeling, machine learning, energy efficiency and quality.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 12111511 Hardware Centric Machine Vision for High Precision Center of Gravity Calculation
Authors: Xin Cheng, Benny Thörnberg, Abdul Waheed Malik, Najeem Lawal
Abstract:
We present a hardware oriented method for real-time measurements of object-s position in video. The targeted application area is light spots used as references for robotic navigation. Different algorithms for dynamic thresholding are explored in combination with component labeling and Center Of Gravity (COG) for highest possible precision versus Signal-to-Noise Ratio (SNR). This method was developed with a low hardware cost in focus having only one convolution operation required for preprocessing of data.Keywords: Dynamic thresholding, segmentation, position measurement, sub-pixel precision, center of gravity.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 23531510 Miller’s Model for Developing Critical Thinking Skill of Pre-Service Teachers at Suan Sunandha Rajabhat University
Authors: Suttipong Boonphadung, Thassanant Unnanantn
Abstract:
This research focused on comparing the critical thinking of the teacher students before and after using Miller’s Model learning activities and investigating their opinions. The sampling groups were (1) fourth year 33 student teachers majoring in Early Childhood Education and enrolling in semester 1 of academic year 2013 (2) third year 28 student teachers majoring in English and enrolling in semester 2 of academic year 2013 and (3) third year 22 student teachers majoring in Thai and enrolling in semester 2 of academic year 2013. The research instruments were (1) lesson plans where the learning activities were settled based on Miller’s Model (2) critical thinking assessment criteria and (3) a questionnaire on opinions towards Miller’s Model based learning activities. The statistical treatment was mean, deviation, different scores and T-test. The result unfolded that (1) the critical thinking of the students after the assigned activities was better than before and (2) the students’ opinions towards the critical thinking improvement activities based on Miller’s Model ranged from the level of high to highest.
Keywords: Critical thinking, Miller’s model, Opinions.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 20711509 Comprehensive Analysis of Data Mining Tools
Authors: S. Sarumathi, N. Shanthi
Abstract:
Due to the fast and flawless technological innovation there is a tremendous amount of data dumping all over the world in every domain such as Pattern Recognition, Machine Learning, Spatial Data Mining, Image Analysis, Fraudulent Analysis, World Wide Web etc., This issue turns to be more essential for developing several tools for data mining functionalities. The major aim of this paper is to analyze various tools which are used to build a resourceful analytical or descriptive model for handling large amount of information more efficiently and user friendly. In this survey the diverse tools are illustrated with their extensive technical paradigm, outstanding graphical interface and inbuilt multipath algorithms in which it is very useful for handling significant amount of data more indeed.
Keywords: Classification, Clustering, Data Mining, Machine learning, Visualization.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 24391508 System of Programs for Rapid Development and Execution of Palm OS Applications
Authors: Mihai Ciocarlie, Marcela-Simona Atanasoae, Horia Ciocarlie
Abstract:
We present the development of a system of programs designed for the compilation and execution of applications for handheld computers. In introduction we describe the purpose of the project and its components. The next two paragraphs present the first two components of the project (the scanner and parser generators). Then we describe the Object Pascal compiler and the virtual machines for Windows and Palm OS. In conclusion we emphasize the ways in which the project can be extended.
Keywords: Compiler design, Palm OS applications, rapid application development, virtual machine.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 17471507 Correlational Analysis between Brain Dominances and Multiple Intelligences
Authors: Lakshmi Dhandabani, Rajeev Sukumaran
Abstract:
Aim of this research study is to investigate and establish the characteristics of brain dominances (BD) and multiple intelligences (MI). This experimentation has been conducted for the sample size of 552 undergraduate computer-engineering students. In addition, mathematical formulation has been established to exhibit the relation between thinking and intelligence, and its correlation has been analyzed. Correlation analysis has been statistically measured using Pearson’s coefficient. Analysis of the results proves that there is a strong relational existence between thinking and intelligence. This research is carried to improve the didactic methods in engineering learning and also to improve e-learning strategies.Keywords: Thinking style assessment, correlational analysis, mathematical model, data analysis, dynamic equilibrium.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 18761506 Some Considerations on UML Class Diagram Formalisation Approaches
Authors: Abdullah A. H. Alzahrani, Majd Zohri Yafi, Fawaz K. Alarfaj
Abstract:
Unified Modelling Language (UML) is a software modelling language that is widely used and accepted. One significant drawback, of which, is that the language lacks formality. This makes carrying out any type of rigorous analysis difficult process. Many researchers attempt to introduce their approaches to formalise UML diagrams. However, it is always hard to decide what language and/or approach to use. Therefore, in this paper, we highlight some of the advantages and disadvantages of number of those approaches. We also try to compare different counterpart approaches. In addition, we draw some guidelines to help in choosing the suitable approach. Special concern is given to the formalisation of the static aspects of UML shown is class diagrams.
Keywords: UML formalisation, Object Constraints Language (OCL), Description Logic (DL), Z language.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 20971505 Meditation Based Brain Painting Promoting Foreign Language Memory through Establishing a Brain-Computer Interface
Authors: Zhepeng Rui, Zhenyu Gu, Caitilin de Bérigny
Abstract:
In the current study, we designed an interactive meditation and brain painting application to cultivate users’ creativity, promote meditation, reduce stress, and improve cognition while attempting to learn a foreign language. User tests and data analyses were conducted on 42 male and 42 female participants to better understand sex-associated psychological and aesthetic differences. Our method utilized brain-computer interfaces to import meditation and attention data to create artwork in meditation-based applications. Female participants showed statistically significantly different language learning outcomes following three meditation paradigms. The art style of brain painting helped females with language memory. Our results suggest that the most ideal methods for promoting memory attention were meditation methods and brain painting exercises contributing to language learning, memory concentration promotion, and foreign word memorization. We conclude that a short period of meditation practice can help in learning a foreign language. These findings provide insights into meditation, creative language education, brain-computer interface, and human-computer interactions.
Keywords: Brain-computer interface, creative thinking, meditation, mental health.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 5861504 Land Suitability Prediction Modelling for Agricultural Crops Using Machine Learning Approach: A Case Study of Khuzestan Province, Iran
Authors: Saba Gachpaz, Hamid Reza Heidari
Abstract:
The sharp increase in population growth leads to more pressure on agricultural areas to satisfy the food supply. This necessitates increased resource consumption and underscores the importance of addressing sustainable agriculture development along with other environmental considerations. Land-use management is a crucial factor in obtaining optimum productivity. Machine learning is a widely used technique in the agricultural sector, from yield prediction to customer behavior. This method focuses on learning and provides patterns and correlations from our data set. In this study, nine physical control factors, namely, soil classification, electrical conductivity, normalized difference water index (NDWI), groundwater level, elevation, annual precipitation, pH of water, annual mean temperature, and slope in the alluvial plain in Khuzestan (an agricultural hotspot in Iran) are used to decide the best agricultural land use for both rainfed and irrigated agriculture for 10 different crops. For this purpose, each variable was imported into Arc GIS, and a raster layer was obtained. In the next level, by using training samples, all layers were imported into the python environment. A random forest model was applied, and the weight of each variable was specified. In the final step, results were visualized using a digital elevation model, and the importance of all factors for each one of the crops was obtained. Our results show that despite 62% of the study area being allocated to agricultural purposes, only 42.9% of these areas can be defined as a suitable class for cultivation purposes.
Keywords: Land suitability, machine learning, random forest, sustainable agriculture.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2831503 The Cloud Systems Used in Education: Properties and Overview
Authors: Agah Tuğrul Korucu, Handan Atun
Abstract:
Diversity and usefulness of information that used in education are have increased due to development of technology. Web technologies have made enormous contributions to the distance learning system especially. Mobile systems, one of the most widely used technology in distance education, made much easier to access web technologies. Not bounding by space and time, individuals have had the opportunity to access the information on web. In addition to this, the storage of educational information and resources and accessing these information and resources is crucial for both students and teachers. Because of this importance, development and dissemination of web technologies supply ease of access to information and resources are provided by web technologies. Dynamic web technologies introduced as new technologies that enable sharing and reuse of information, resource or applications via the Internet and bring websites into expandable platforms are commonly known as Web 2.0 technologies. Cloud systems are one of the dynamic web technologies that defined as a model provides approaching the demanded information independent from time and space in appropriate circumstances and developed by NIST. One of the most important advantages of cloud systems is meeting the requirements of users directly on the web regardless of hardware, software, and dealing with install. Hence, this study aims at using cloud services in education and investigating the services provided by the cloud computing. Survey method has been used as research method. In the findings of this research the fact that cloud systems are used such studies as resource sharing, collaborative work, assignment submission and feedback, developing project in the field of education, and also, it is revealed that cloud systems have plenty of significant advantages in terms of facilitating teaching activities and the interaction between teacher, student and environment.
Keywords: Cloud systems, cloud systems in education, distance learning, e-learning, integration of information technologies, online learning environment.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 10181502 An iTunes U App for Development of Metacognition Skills Delivered in the Enrichment Program Offered to Gifted Students at the Secondary Level
Authors: Maha Awad M. Almuttairi
Abstract:
This research aimed to measure the impact of the use of a mobile learning (iTunes U) app for the development of metacognition skills delivered in the enrichment program offered to gifted students at the secondary level in Jeddah. The author targeted a group of students on an experimental scale to evaluate the achievement. The research sample consisted of a group of 38 gifted female students. The scale of evaluation of the metacognition skills used to measure the performance of students in the enrichment program was as follows: Satisfaction scale for the assessment of the technique used and the final product form after completion of the program. Appropriate statistical treatment used includes Paired Samples T-Test Cronbach’s alpha formula and eta squared formula. It was concluded in the results the difference of α≤ 0.05, which means the performance of students in the skills of metacognition in favor of using iTunes U. In light of the conclusion of the experiment, a number of recommendations and suggestions were present; the most important benefit of mobile learning applications is to provide enrichment programs for gifted students in the Kingdom of Saudi Arabia, as well as conducting further research on mobile learning and gifted student teaching.
Keywords: Enrichment program, gifted students, metacognition skills.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 7171501 An Investigation into the Role of School Social Workers and Psychologists with Children Experiencing Special Educational Needs in Libya
Authors: Abdelbasit Gadour
Abstract:
This study explores the function of schools’ psychosocial services within Libyan mainstream schools in relation to children’s special educational needs (SEN). This is with the aim to examine the role of school social workers and psychologists in the assessment procedure of children with SEN. A semi-structured interview was used in this study, with 21 professionals working in the schools’ psychosocial services, of whom 13 were school social workers (SSWs) and eight were school psychologists (SPs). The results of the interviews with SSWs and SPs provided insights into how SEN children are identified, assessed, and dealt with by school professionals. It appears from the results that what constitutes a problem has not changed significantly, and the link between learning difficulties and behavioural difficulties is also evident from this study. Children with behaviour difficulties are more likely to be referred to school psychosocial services than children with learning difficulties. Yet, it is not clear from the interviews with SSWs and SPs whether children are excluded merely because of their behaviour problems. Instead, they would surely be expelled from the school if they failed academically. Furthermore, the interviews with SSWs and SPs yield a rather unusual source accountable for children’s SEN; school-related difficulties were a major factor in which almost all participants attributed children’s learning and behaviour problems to teachers’ deficiencies, followed by school lack of resources.
Keywords: Special education, school, social workers, psychologist.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 6901500 Prospective English Language Teachers’ Views on Translation Use in Foreign Language Teaching
Authors: Ozlem Bozok, Yusuf Bozok
Abstract:
The importance of using mother tongue and translation in foreign language classrooms cannot be ignored and translation can be utilized as a method in English Language Teaching courses. There exist researches advocating or objecting to the use of translation in foreign language learning but they all have a point in common: Translation should be used as an aid to teaching, not an end in itself. In this research, prospective English language teachers’ opinions about translation use and use of mother tongue in foreign language teaching are investigated and according to the findings, some explanations and recommendations are made.
Keywords: Exposure to foreign language, translation, foreign language learning, prospective teachers’ opinions, use of L1.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 24661499 Application of Granular Computing Paradigm in Knowledge Induction
Authors: Iftikhar U. Sikder
Abstract:
This paper illustrates an application of granular computing approach, namely rough set theory in data mining. The paper outlines the formalism of granular computing and elucidates the mathematical underpinning of rough set theory, which has been widely used by the data mining and the machine learning community. A real-world application is illustrated, and the classification performance is compared with other contending machine learning algorithms. The predictive performance of the rough set rule induction model shows comparative success with respect to other contending algorithms.
Keywords: Concept approximation, granular computing, reducts, rough set theory, rule induction.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 8341498 A Middleware System between WEB and Database Servers
Authors: Mohammad H. Abu-Arqoub, Ihab S. Serhed, Waheeb A. Abu-Dawwas, Rashid M. Al-Azzeh
Abstract:
This paper aims at improving web server performance by establishing a middleware layer between web and database servers, which minimizes the overload on the database server. A middleware system has been developed as a service mainly to improve the performance. This system manages connection accesses in a way that would result in reducing the overload on the database server. In addition to the connection management, this system acts as an object-oriented model for best utilization of operating system resources. A web developer can use this Service Broker to improve web server performance.Keywords: Database server, Improve performance, Middleware, Web server.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 24081497 A Deep-Learning Based Prediction of Pancreatic Adenocarcinoma with Electronic Health Records from the State of Maine
Authors: Xiaodong Li, Peng Gao, Chao-Jung Huang, Shiying Hao, Xuefeng B. Ling, Yongxia Han, Yaqi Zhang, Le Zheng, Chengyin Ye, Modi Liu, Minjie Xia, Changlin Fu, Bo Jin, Karl G. Sylvester, Eric Widen
Abstract:
Predicting the risk of Pancreatic Adenocarcinoma (PA) in advance can benefit the quality of care and potentially reduce population mortality and morbidity. The aim of this study was to develop and prospectively validate a risk prediction model to identify patients at risk of new incident PA as early as 3 months before the onset of PA in a statewide, general population in Maine. The PA prediction model was developed using Deep Neural Networks, a deep learning algorithm, with a 2-year electronic-health-record (EHR) cohort. Prospective results showed that our model identified 54.35% of all inpatient episodes of PA, and 91.20% of all PA that required subsequent chemoradiotherapy, with a lead-time of up to 3 months and a true alert of 67.62%. The risk assessment tool has attained an improved discriminative ability. It can be immediately deployed to the health system to provide automatic early warnings to adults at risk of PA. It has potential to identify personalized risk factors to facilitate customized PA interventions.
Keywords: Cancer prediction, deep learning, electronic health records, pancreatic adenocarcinoma.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 8471496 Neural Network Learning Based on Chaos
Authors: Truong Quang Dang Khoa, Masahiro Nakagawa
Abstract:
Chaos and fractals are novel fields of physics and mathematics showing up a new way of universe viewpoint and creating many ideas to solve several present problems. In this paper, a novel algorithm based on the chaotic sequence generator with the highest ability to adapt and reach the global optima is proposed. The adaptive ability of proposal algorithm is flexible in 2 steps. The first one is a breadth-first search and the second one is a depth-first search. The proposal algorithm is examined by 2 functions, the Camel function and the Schaffer function. Furthermore, the proposal algorithm is applied to optimize training Multilayer Neural Networks.
Keywords: learning and evolutionary computing, Chaos Optimization Algorithm, Artificial Neural Networks, nonlinear optimization, intelligent computational technologies.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 17801495 Efficient Web-Learning Collision Detection Tool on Five-Axis Machine
Authors: Chia-Jung Chen, Rong-Shine Lin, Rong-Guey Chang
Abstract:
As networking has become popular, Web-learning tends to be a trend while designing a tool. Moreover, five-axis machining has been widely used in industry recently; however, it has potential axial table colliding problems. Thus this paper aims at proposing an efficient web-learning collision detection tool on five-axis machining. However, collision detection consumes heavy resource that few devices can support, thus this research uses a systematic approach based on web knowledge to detect collision. The methodologies include the kinematics analyses for five-axis motions, separating axis method for collision detection, and computer simulation for verification. The machine structure is modeled as STL format in CAD software. The input to the detection system is the g-code part program, which describes the tool motions to produce the part surface. This research produced a simulation program with C programming language and demonstrated a five-axis machining example with collision detection on web site. The system simulates the five-axis CNC motion for tool trajectory and detects for any collisions according to the input g-codes and also supports high-performance web service benefiting from C. The result shows that our method improves 4.5 time of computational efficiency, comparing to the conventional detection method.
Keywords: Collision detection, Five-axis machining, Separating axis.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 21801494 The Impact Behavior of the Predecessor and Successor on the Transmission of Family Businesses in Tunisia
Authors: B. Kettana
Abstract:
Nowadays, financial and economic crises are growing more and reach more countries and sectors. These events have, as a result, a considerable impact on the activities of the firms which think unstable and in danger. But besides this heavy uncertainty which weighs on the different firms, the family firm, object of our research, is not only confronted with these external difficulties but also with an internal challenge and of size: that of transmission. Indeed, the transmission of an organization from one generation to another can succeed as it can fail; leaving considerable damage. Our research registers as part of these problems since we tried to understand relation between the behavior of two main actors of the process of succession, predecessor and successor; and the success of transmission.Keywords: Family business, transmission, success, predecessor, successor.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15101493 A 2D-3D Hybrid Vision System for Robotic Manipulation of Randomly Oriented Objects
Authors: Moulay A. Akhloufi
Abstract:
This paper presents an new vision technique for robotic manipulation of randomly oriented objects in industrial applications. The proposed approach uses 2D and 3D vision for efficiently extracting the 3D pose of an object in the presence of multiple randomly positioned objects. 2D vision permits to quickly select the objects of interest for 3D processing with a new modified ICP algorithm (FaR-ICP), thus reducing significantly the processing time. The extracted 3D pose is then sent to the robot manipulator for picking. The tests show that the proposed system achieves high performancesKeywords: 3D vision, Hand-Eye calibration, robot visual servoing, random bin picking.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 18141492 Comparison of Machine Learning Techniques for Single Imputation on Audiograms
Authors: Sarah Beaver, Renee Bryce
Abstract:
Audiograms detect hearing impairment, but missing values pose problems. This work explores imputations in an attempt to improve accuracy. This work implements Linear Regression, Lasso, Linear Support Vector Regression, Bayesian Ridge, K Nearest Neighbors (KNN), and Random Forest machine learning techniques to impute audiogram frequencies ranging from 125 Hz to 8000 Hz. The data contain patients who had or were candidates for cochlear implants. Accuracy is compared across two different Nested Cross-Validation k values. Over 4000 audiograms were used from 800 unique patients. Additionally, training on data combines and compares left and right ear audiograms versus single ear side audiograms. The accuracy achieved using Root Mean Square Error (RMSE) values for the best models for Random Forest ranges from 4.74 to 6.37. The R2 values for the best models for Random Forest ranges from .91 to .96. The accuracy achieved using RMSE values for the best models for KNN ranges from 5.00 to 7.72. The R2 values for the best models for KNN ranges from .89 to .95. The best imputation models received R2 between .89 to .96 and RMSE values less than 8dB. We also show that the accuracy of classification predictive models performed better with our imputation models versus constant imputations by a two percent increase.
Keywords: Machine Learning, audiograms, data imputations, single imputations.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1611491 Improved Computational Efficiency of Machine Learning Algorithms Based on Evaluation Metrics to Control the Spread of Coronavirus in the UK
Authors: Swathi Ganesan, Nalinda Somasiri, Rebecca Jeyavadhanam, Gayathri Karthick
Abstract:
The COVID-19 crisis presents a substantial and critical hazard to worldwide health. Since the occurrence of the disease in late January 2020 in the UK, the number of infected people confirmed to acquire the illness has increased tremendously across the country, and the number of individuals affected is undoubtedly considerably high. The purpose of this research is to figure out a predictive machine learning (ML) archetypal that could forecast the COVID-19 cases within the UK. This study concentrates on the statistical data collected from 31st January 2020 to 31st March 2021 in the United Kingdom. Information on total COVID-19 cases registered, new cases encountered on a daily basis, total death registered, and patients’ death per day due to Coronavirus is collected from World Health Organization (WHO). Data preprocessing is carried out to identify any missing values, outliers, or anomalies in the dataset. The data are split into 8:2 ratio for training and testing purposes to forecast future new COVID-19 cases. Support Vector Machine (SVM), Random Forest (RF), and linear regression (LR) algorithms are chosen to study the model performance in the prediction of new COVID-19 cases. From the evaluation metrics such as r-squared value and mean squared error, the statistical performance of the model in predicting the new COVID-19 cases is evaluated. RF outperformed the other two ML algorithms with a training accuracy of 99.47% and testing accuracy of 98.26% when n = 30. The mean square error obtained for RF is 4.05e11, which is lesser compared to the other predictive models used for this study. From the experimental analysis, RF algorithm can perform more effectively and efficiently in predicting the new COVID-19 cases, which could help the health sector to take relevant control measures for the spread of the virus.
Keywords: COVID-19, machine learning, supervised learning, unsupervised learning, linear regression, support vector machine, random forest.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 172