

Abstract—Unified Modelling Language (UML) is a software

modelling language that is widely used and accepted. One significant
drawback, of which, is that the language lacks formality. This makes
carrying out any type of rigorous analysis difficult process. Many
researchers attempt to introduce their approaches to formalise UML
diagrams. However, it is always hard to decide what language and/or
approach to use. Therefore, in this paper, we highlight some of the
advantages and disadvantages of number of those approaches. We
also try to compare different counterpart approaches. In addition, we
draw some guidelines to help in choosing the suitable approach.
Special concern is given to the formalisation of the static aspects of
UML shown is class diagrams.

Keywords—UML formalisation, Object Constraints Language
(OCL), Description Logic (DL), Z language.

I. INTRODUCTION
N software engineering, the use of natural language and
graphical notation (such as UML) for specification purposes

could lead to incompleteness and lack of precision. Therefore,
formalisation could help overcoming such issues.
Furthermore, formalisation is an essential requirement for
rigorous and automated analysis [1], [2].

UML accommodates a number of diagrams, for instance,
Class, Sequence, and other diagrams which are used to
represent structural and behavioural aspects of systems. UML
suffers from informal representation [3]; therefore, many
researchers have introduced their approaches [4]-[12] to
formalize those diagrams.

UML diagrams are always present in all stages of software
systems development process. Formalising those diagrams is
needed for carrying out many rigorous analyses, for example,
implementation verification, forward engineering, and design
patterns detection. As a result, choosing an approach to
formalise those diagram is a hard task. Therefore, this paper
highlights some of formalisation approaches and offers some
guidelines on choosing the suitable method.

The rest of this paper is organised as follows: In Section II,
we define formalisation in general. Consequently, we
introduce the main recognized methods for UML
formalisation. In Section III, a comparison based on different
criteria is curried out. Finally, we sum up the main finding in
Section IV.

Abdullah A. H. Alzahrani, Majd Zohri Yafi, and Fawaz K. Alarfaj are PhD

students at School of Computer Science and Electronic Engineering,
University of Essex, United Kingdom (e-mail: aahalz@essex.ac.uk, mzohri
@essex.ac.uk, falarf @essex.ac.uk).

II. UML FORMALISATION
Formalisation could be defined as any process of conveying

ambiguous statements or notions into precise ones [13]. This
is usually achieved using variety of mathematical and logical
methods (i.e. first order logic FOL, higher order logic HOL,
and temporal logic).

Because of the fact that UML lacks precision, this has led to
ambiguity and incompleteness in its diagrams. Consequently,
rigorous analysis cannot be carried out when such issues exist.
This includes consistency verification, traceability, and formal
reasoning [5], [14].

In order to overcome the above mentioned issues,
researchers have introduced many methodologies to present
UML in a formal shape. These methodologies fall into two
categories [14]: a) transforming UML to formal models [15],
[16], [17], and b) providing abstract syntax and formal
semantics for UML diagrams [18]-[20]. However, there has to
be a trade-off between these categories as each category
emphasizes certain aspects on formalising UML. Many formal
languages have been proposed in formalising UML such as
Object Constraints Language (OCL), Z, Description Logic
(DL), B, PVS, etc. Each of these languages has a number of
properties which might not appear in others. As a result,

UML formalisation has been studied and carried out
differently according to the researchers’ reasons of choosing
the formalisation approach. The following section casts light
on some of the UML formalisation approaches which are
based on different formal languages.

A. UML Formalisation Using OCL
OCL is a formal language used with UML in order to

specify constraints and conditions on UML model. It plays an
important role in improving precision of the specification of
UML [21], [22]. Many researches [4], [11] have used OCL to
express UML syntax and semantic.

For instance, in [4], the authors addressed the problem of
consistency between the design presented in UML and the
implementation. The authors highlight the issue of formalising
UML composition relations in terms of lifetime and
interoperability, and suggest using OCL to formalise UML
composition property as well as other UML properties. They,
in addition, claim that the existing modelling tools do deal
with such problem. Furthermore, the authors propose an
approach to overcome this issue; however, the approach is in
its early stage and has not tool support.

The approach suggested in [11] is to transform UML class
diagram to another UML class diagram employing only binary
associations and OCL constraints. However, translating

Abdullah A. H. Alzahrani, Majd Zohri Yafi, Fawaz K. Alarfaj

Some Considerations on UML Class Diagram
Formalisation Approaches

I

World Academy of Science, Engineering and Technology
International Journal of Computer and Information Engineering

 Vol:8, No:5, 2014

741International Scholarly and Scientific Research & Innovation 8(5) 2014 ISNI:0000000091950263

O
pe

n
Sc

ie
nc

e
In

de
x,

 C
om

pu
te

r
an

d
In

fo
rm

at
io

n
E

ng
in

ee
ri

ng
 V

ol
:8

, N
o:

5,
 2

01
4

pu
bl

ic
at

io
ns

.w
as

et
.o

rg
/9

99
81

51
.p

df

complex associations to binary ones has the issue of losing
semantic information.

By the mean of formality, OCL was founded to overcome
UML ambiguity. However, OCL itself suffers from a level of
ambiguity [23]. As a result, it does not help with formal
reasoning and formal proofs [5], [24]. Furthermore, it is
difficult to be checked and detected so it raises issues in the
development and the maintenance process of the software
system. Moreover, OCL seems not to be sufficient when
stating complex constraints [5].

B. UML Formalisation Using Description Logic
Description Logic (DL) is one of many approaches to

knowledge representation. It is built on a mathematical
foundation and supports formal reasoning. A number of
description logic languages exist such as AL and ALEN [25].
Many researchers [5], [6], [9], [10], [12] have tried to
formalise UML in DL.

Kadir et al. [5] have proposed an approach to formalise
UML class diagram using DL. They have assessed their
approach to UML formalisation as not satisfactory. This is due
to two reasons: (1) many properties are not defined such as
dependency, and (2) the formalisation is done manually and
there is no tool to automate it. Furthermore, as it can be seen
in Fig. 1, employing such approach in the process of the
formalization of large-scale software can lead to an unreadable
formal specification which consequently can be error prone.
Moreover, it would need a solid mathematical foundation to
be understood and verified.

Fig. 1 An example of formalising one attribute and one operation of a

class in DL [5]

Zhihong et al. [9] considered the formalisation of UML

class diagram in DL but from a different perspective. They
considered the formalisation process itself. They first provided
a brief comparison between DL languages in formalising
UML. Then, they addressed some concerns when choosing a
DL language for formalisation. They suggested some solutions
to the problems which occur in formalising UML class
diagram. They concluded that formalising UML in DL is a
hard and difficult task.

Moreover, [10] have also contributed to the field of UML
formalisation in DL. They have chosen DLR description logic
language in order to formalise UML class diagram in terms of
classes, associations, and constraints. They have shown how to

map the constructs of a class diagram to the corresponding
formalism in DL. They did not consider those aspects which
relate to the implementation (source code) (public, protected
and qualifiers for methods and attributes) when formalising
the class diagrams. The approach was experimented in FACT
[26]. Although, the work is promising, many properties need
to be considered to mature this formal framework (such as
modelling and reasoning on objects and links) as authors
concluded.

Berardi et al. [12] carried out an experimental investigation
on the use of the most dominant DL-based reasoning systems
to reason about UML class diagrams. The authors illustrate
their approach of formalising UML class diagram in DLR
description logic language. The approach they used in
formalising UML class diagram is similar to [10]; however,
the difference is in the choice of the DL language. They
reported detailed results about the most popular DL-based
reasoning systems namely FACT [26] and RACER [27].
Briefly, the result of the experiment showed that the tested
DL-based reasoning systems suffer from critical efficiency
issues when dealing with knowledge bases.

DL is a formal approach which can be used to formalise
UML diagrams. Its main features are soundness and
completeness which are essential in rigorous reasoning. In
addition, DL has a number of languages which vary in their
features. However, DL cannot formally represent all UML
properties such as dependency relation [5], [6], [8]. In
addition, when formalising UML diagram in DL, the choice of
the DL language needs to be considered carefully [9].
Furthermore, as DL’s languages are similar, transferring
between DL languages can happen easily which makes it
difficult to say which DL language is used if not an explicit
statement exists. In conclusion, the process of UML
formalisation in DL is hard and needs skills (in DL) since it is
still done manually.

C. UML Formalisation Using Z
Z is a specification language strongly typed in mathematics

[7]. Since its introduction, it has been an interest for
formalisation advocates. This resulted in introducing Object-
Z which is an extension of Z. Object-Z was developed to
improve Z in many aspects, mainly in structuring and object-
oriented representations. This is to enhance effectiveness in
specifying large and medium scale software systems.
However, it is claimed that a specification in Z is also a
specification in Object-Z [28]. UML formalisation using Z and
Object-Z has been of interest to many researchers [7], [8]. The
following is a review of some works done on this research
area.

[7] has proposed a methodology to formalise different kinds
of UML diagrams in Z language and represent the result
visually using Entity-Relationship (ER) diagram. The authors
have clarified their methodology on formalising UML class,
Use-Case, and Sequence diagrams. However, the proposed
approach has a number of drawbacks. First, the ER diagram
can be large when representing industry-scale system. Second,
the process of the transformation of Z specification into ER

World Academy of Science, Engineering and Technology
International Journal of Computer and Information Engineering

 Vol:8, No:5, 2014

742International Scholarly and Scientific Research & Innovation 8(5) 2014 ISNI:0000000091950263

O
pe

n
Sc

ie
nc

e
In

de
x,

 C
om

pu
te

r
an

d
In

fo
rm

at
io

n
E

ng
in

ee
ri

ng
 V

ol
:8

, N
o:

5,
 2

01
4

pu
bl

ic
at

io
ns

.w
as

et
.o

rg
/9

99
81

51
.p

df

diagram is not clear. This would introduce more ambiguity
than UML diagrams. Finally, the proposed approach has not
been implemented in a tool which automates formalisation
into Z, ER representation, and consistency verification.

Another work has been carried out in [8] to formalise UML
diagrams in Z language. Here, authors introduce their
approach by formalising Use-Case diagram, Class diagram,
and State Machine diagram, in Z specification language. They
have, in addition, implemented a tool to support their
approach. The tool checks diagrams and generates
automatically the appropriate Z specification if there is no
violation of constraints. Additionally, the tool could generate
source code for class diagrams in C#, visual basic and
JavaScript.

Fig. 2 An example of formalising one generalization relation between

two classes in Z [8]

However, the approach uses abstraction concepts, of object-

oriented programming, which are not sufficient in describing
temporal relations [29]. Moreover, consistency verification is
not considered in this approach. Fig. 2 demonstrates one
generalization relation in Z. This approach has the limitation
when dealing with large-scale software. The reason behind
this is the overwhelming specification generated, which makes
carrying out any formal reasoning a difficult process.

In conclusion, Z specification is a formal method which can
help in formal reasoning and formal proofs. However, Z
notations are not graphical and need a solid mathematics
background to be formed and understood [7]. In addition, Z
lacks of some notations such as Interface. It, also, lacks clarity
when the specification is for large scale software systems [28].
Furthermore, a glance at state-of-the-art approaches reveals
that there is no tool to support automating the formalisation of
UML diagrams in Z and the detection of Z specification from
source code.

III. FORMALISATION COMPARISON
In this section we compare between the three

aforementioned approaches classified as the methodology
used. Table I describes the main comparison findings. We
used the following criteria: Firstly, we compare between the

different approaches of being formal. The second criteria is
information lose, which highlight the possibility of losing
some information in the process of transferring the UML class
diagram into a formal specification. Another criterion is
abstraction support, which shows to which extent an approach
is responsive to large-scale software representation. The
complex constraints support criteria refers to whither an
approach be used in formalizing complex constraints.
Automation tool illustrate the availability of any tool which
automate the formalisation processes using the current
approach. Finally, “Math backg” describes the need for a solid
mathematical background in the formalisation process or
thereafter.

Formalisation approaches vary in order to fulfill the
different needs. This makes each approach unique in the way
it deals with UML diagrams. The difference does not make
one approach outperform the others; however, it shows the
main purpose behind the introduction of such an approach.
Table I demonstrates the outcome results from comparing a
number of UML class diagram formalisation approaches in
OCL, DL, and Z.

IV. CONCLUSION
Formalization tackles ambiguity and incompleteness which

exist in UML diagrams. In this paper we have reviewed a
number of formalization approaches. The key finding is that
UML formalisation approaches produce side-effects which
can be divided into the following categories:
1. Information loss: this occurs when the chosen approach

cannot formally represent a UML property (such as DL
and dependency relation).

2. Manual formalisation: this is encountered in the absence
of computer aided software.

3. Requires high mathematical foundation.
4. No tool to support automated consistency verification.

Finally, to the best of our knowledge, there is no such
approach which can eliminate these side-effects. This makes
those categories commendable guidelines when a new UML
formalisation approach is to be introduced.

TABLE I

METHODS COMPARISON TABLE
 Z DL OCL

Formal Yes Yes No
Information lose Yes Yes Yes

Abstraction support No No No
Complex constraints support Yes Yes No

Automation tool support Yes No No
Math backg. Yes Yes No

ACKNOWLEDGMENT
This research was funded in part by Umm Al-Qura

University, Management Information Systems section at the
University of Essex, and Imam Muhammad bin Saud
University. We also would like to thank Dr. Amnon Eden for
his outstanding feedback and help.

World Academy of Science, Engineering and Technology
International Journal of Computer and Information Engineering

 Vol:8, No:5, 2014

743International Scholarly and Scientific Research & Innovation 8(5) 2014 ISNI:0000000091950263

O
pe

n
Sc

ie
nc

e
In

de
x,

 C
om

pu
te

r
an

d
In

fo
rm

at
io

n
E

ng
in

ee
ri

ng
 V

ol
:8

, N
o:

5,
 2

01
4

pu
bl

ic
at

io
ns

.w
as

et
.o

rg
/9

99
81

51
.p

df

REFERENCES
[1] W. E. McUmber and B. H. Cheng, “A general framework for

formalizing UML with formal languages,” in Proceedings of the 23rd
international conference on Software engineering, 2001, p. 433442.

[2] B. Potter, D. Till, and J. Sinclair, An introduction to formal specification
and Z. Prentice Hall PTR, 1996.

[3] D. Pilone, UML 2.0 pocket reference. O’Reilly Media, 2006.
[4] H. Chavez and W. Shen, “Formalization of uml composition in ocl,” in

2012 IEEE/ACIS 11th International Conference on Computer and
Information Science (ICIS), 2012, pp. 675–680.

[5] W. Kadir, W. M. Nasir, and R. Mohamad, “Formalization of uml class
diagram using description logics,” 2010.

[6] B. Zhou, J. Lu, Z. Wang, Y. Zhang, and Z. Miao, “Formalizing fuzzy
uml class diagrams with fuzzy description logics,” vol. 1, 2009, pp. 171–
174.

[7] S. Sengupta and S. Bhattacharya, “Formalization of uml diagrams and
their consistency verification: A z notation based approach,” in
Proceedings of the 1st India software engineering conference, ser. ISEC
08. New York, NY, USA: ACM, 2008, p. 151152.

[8] Mostafa, M. Ismail, H. El-Bolok, and E. Saad, “Toward a formalization
of UML2.0 metamodel using z specifications,” in Eighth ACIS
International Conference on Software Engineering, Artificial
Intelligence, Networking, and Parallel/Distributed Computing, 2007.
SNPD 2007, vol. 1, 2007, pp. 694–701.

[9] Z. Zhihong and Z. Mingtian, “Some considerations in formalizing uml
class diagrams with description logics,” vol. 1, 2003, p. 111115.

[10] A. Cal, D. Calvanese, G. De Giacomo, and M. Lenzerini, “A formal
framework for reasoning on uml class diagrams,” in Foundations of
Intelligent Systems. Springer, 2002, p. 503513.

[11] M. Gogolla and M. Richters, “Expressing uml class diagrams properties
with ocl,” ser. Lecture Notes in Computer Science, T. Clark and J.
Warmer, Eds. Springer Berlin Heidelberg, 2002, pp. 85–114.

[12] D. Berardi, D. Calvanese, and G. De Giacomo, “Reasoning on uml class
diagrams using description logic based systems,” vol. 44, 2001.

[13] J. B. Wordsworth, Software development with Z: a practical approach to
formal methods in software engineering. Addison-Wesley Longman
Publishing Co., Inc., 1992.

[14] W. Yan and Y. Du, “Research on reverse engineering from formal
models to UML models,” 2010, pp. 406–411.

[15] Y. Ledru, “Using jaza to animate RoZ specifications of UML class
diagrams,” in Software Engineering Workshop, 2006. SEW ’06. 30th
Annual IEEE/NASA, 2006, pp. 253–262.

[16] M. Bittner and F. Kammuller, “Translating fusion/uml to object-z,”
2003, pp. 49–50.

[17] E. Sekerinski and R. Zurob, “Translating statecharts to b,” 2002, p.
128144.

[18] X. Li, Z. Liu, and H. Jifeng, “A formal semantics of uml sequence
diagram,” in Software Engineering Conference, 2004. Proceedings. 2004
Australian, 2004, pp. 168–177.

[19] M. Y. Ng and M. Butler, “Towards formalizing UML state diagrams in
CSP,” in First International Conference on Software Engineering and
Formal Methods, 2003.Proceedings, 2003, pp. 138–147.

[20] S.-K. Kim and C. David, “Formalizing the uml class diagram using
object-z.” Springer, 1999, p. 8398.

[21] OMG, “Omg object constraint language ocl,” Tech. Rep., 2012.
[22] I. Bajwa, B. Bordbar, and M. Lee, “Ocl constraints generation from

natural language specification,” 2010, pp. 204–13.
[23] S. Flake and W. Mueller, “An ocl extension for real-time constraints,” in

Object Modeling with the OCL. Springer, 2002, p. 150171.
[24] A. Evans, R. France, K. Lano, and B. Rumpe, “Developing the uml as a

formal modelling notation,” in Proc. UML98, LNCS, vol. 1618, 1998.
[25] F. Baader, The description logic handbook: theory, implementation, and

applications. Cambridge: Cambridge University Press, 2003.
[26] I. Horrocks, U. Sattler, and S. Tobies, “Practical reasoning for

expressive description logics,” in Logic for Programming and
Automated Reasoning, 1999, p. 161180.

[27] V. Haarslev and R. Mller, “Racer system description,” in Automated
Reasoning. Springer, 2001, p. 701705.

[28] G. Smith, The Object-Z specification language. Citeseer, 2000, vol. 101.
[29] D. Kakollu and B. Chaudhary, “A z-specification of classification and

relationships between usecases,” in Ninth ACIS International
Conference on Software Engineering, Artificial Intelligence,
Networking, and Parallel/Distributed Computing, 2008. SNPD ’08,
2008, pp. 779–784.

World Academy of Science, Engineering and Technology
International Journal of Computer and Information Engineering

 Vol:8, No:5, 2014

744International Scholarly and Scientific Research & Innovation 8(5) 2014 ISNI:0000000091950263

O
pe

n
Sc

ie
nc

e
In

de
x,

 C
om

pu
te

r
an

d
In

fo
rm

at
io

n
E

ng
in

ee
ri

ng
 V

ol
:8

, N
o:

5,
 2

01
4

pu
bl

ic
at

io
ns

.w
as

et
.o

rg
/9

99
81

51
.p

df

