Search results for: Simulation Modeling
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 4992

Search results for: Simulation Modeling

3882 Development of an Automated Quality Management System to Control District Heating

Authors: Nigina Toktasynova, Sholpan Sagyndykova, Zhanat Kenzhebayeva, Maksat Kalimoldayev, Mariya Ishimova, Irbulat Utepbergenov

Abstract:

To solve these problems, we investigated the management system of heating enterprise, including strategic planning based on the balanced scorecard (BSC), quality management in accordance with the standards of the Quality Management System (QMS) ISO 9001 and analysis of the system based on expert judgment using fuzzy inference. To carry out our work we used the theory of fuzzy sets, the QMS in accordance with ISO 9001, BSC, method of construction of business processes according to the notation IDEF0, theory of modeling using Matlab software simulation tools and graphical programming LabVIEW. The results of the work are as follows: We determined possibilities of improving the management of heat-supply plant-based on QMS; after the justification and adaptation of software tool it has been used to automate a series of functions for the management and reduction of resources and for the maintenance of the system up to date; an application for the analysis of the QMS based on fuzzy inference has been created with novel organization of communication software with the application enabling the analysis of relevant data of enterprise management system. 

Keywords: Balanced scorecard, heat supply, quality management system, the theory of fuzzy sets.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1779
3881 Memory Estimation of Internet Server Using Queuing Theory: Comparative Study between M/G/1, G/M/1 and G/G/1 Queuing Model

Authors: L. K. Singh, Riktesh Srivastava

Abstract:

How to effectively allocate system resource to process the Client request by Gateway servers is a challenging problem. In this paper, we propose an improved scheme for autonomous performance of Gateway servers under highly dynamic traffic loads. We devise a methodology to calculate Queue Length and Waiting Time utilizing Gateway Server information to reduce response time variance in presence of bursty traffic. The most widespread contemplation is performance, because Gateway Servers must offer cost-effective and high-availability services in the elongated period, thus they have to be scaled to meet the expected load. Performance measurements can be the base for performance modeling and prediction. With the help of performance models, the performance metrics (like buffer estimation, waiting time) can be determined at the development process. This paper describes the possible queue models those can be applied in the estimation of queue length to estimate the final value of the memory size. Both simulation and experimental studies using synthesized workloads and analysis of real-world Gateway Servers demonstrate the effectiveness of the proposed system.

Keywords: M/M/1, M/G/1, G/M/1, G/G/1, Gateway Servers, Buffer Estimation, Waiting Time, Queuing Process.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1935
3880 Information Quality Evaluation Framework: Extending ISO 25012 Data Quality Model

Authors: Irfan Rafique, Philip Lew, Maissom Qanber Abbasi, Zhang Li

Abstract:

The world wide web coupled with the ever-increasing sophistication of online technologies and software applications puts greater emphasis on the need of even more sophisticated and consistent quality requirements modeling than traditional software applications. Web sites and Web applications (WebApps) are becoming more information driven and content-oriented raising the concern about their information quality (InQ). The consistent and consolidated modeling of InQ requirements for WebApps at different stages of the life cycle still poses a challenge. This paper proposes an approach to specify InQ requirements for WebApps by reusing and extending the ISO 25012:2008(E) data quality model. We also discuss learnability aspect of information quality for the WebApps. The proposed ISO 25012 based InQ framework is a step towards a standardized approach to evaluate WebApps InQ.

Keywords: Data Quality Model, Information learnability, Information Quality, Web applications.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 5784
3879 Simulation of the Finite Difference Time Domain in Two Dimension

Authors: Akram G., Jasmy Y.

Abstract:

The finite-difference time-domain (FDTD) method is one of the most widely used computational methods in electromagnetic. This paper describes the design of two-dimensional (2D) FDTD simulation software for transverse magnetic (TM) polarization using Berenger's split-field perfectly matched layer (PML) formulation. The software is developed using Matlab programming language. Numerical examples validate the software.

Keywords: Finite difference time domain (FDTD) method, perfectly matched layer (PML), split-filed formulation, transverse magnetic (TM) polarization.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 5619
3878 Mathematical Model for Progressive Phase Distribution of Ku-band Reflectarray Antennas

Authors: M. Y. Ismail, M. Inam, A. F. M. Zain, N. Misran

Abstract:

Progressive phase distribution is an important consideration in reflectarray antenna design which is required to form a planar wave in front of the reflectarray aperture. This paper presents a detailed mathematical model in order to determine the required reflection phase values from individual element of a reflectarray designed in Ku-band frequency range. The proposed technique of obtaining reflection phase can be applied for any geometrical design of elements and is independent of number of array elements. Moreover the model also deals with the solution of reflectarray antenna design with both centre and off-set feed configurations. The theoretical modeling has also been implemented for reflectarrays constructed on 0.508mm thickness of different dielectric substrates. The results show an increase in the slope of the phase curve from 4.61°/mm to 22.35°/mm by varying the material properties.

Keywords: Mathematical modeling, Progressive phase distribution, Reflectarray antenna, Reflection phase.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2066
3877 Enhancing the Effectiveness of Air Defense Systems through Simulation Analysis

Authors: F. Felipe

Abstract:

Air Defense Systems contain high-value assets that are expected to fulfill their mission for several years - in many cases, even decades - while operating in a fast-changing, technology-driven environment. Thus, it is paramount that decision-makers can assess how effective an Air Defense System is in the face of new developing threats, as well as to identify the bottlenecks that could jeopardize the security of the airspace of a country. Given the broad extent of activities and the great variety of assets necessary to achieve the strategic objectives, a systems approach was taken in order to delineate the core requirements and the physical architecture of an Air Defense System. Then, value-focused thinking helped in the definition of the measures of effectiveness. Furthermore, analytical methods were applied to create a formal structure that preliminarily assesses such measures. To validate the proposed methodology, a powerful simulation was also used to determine the measures of effectiveness, now in more complex environments that incorporate both uncertainty and multiple interactions of the entities. The results regarding the validity of this methodology suggest that the approach can support decisions aimed at enhancing the capabilities of Air Defense Systems. In conclusion, this paper sheds some light on how consolidated approaches of Systems Engineering and Operations Research can be used as valid techniques for solving problems regarding a complex and yet vital matter.

Keywords: Air defense, effectiveness, system, simulation, decision-support.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 407
3876 A New IT-Convergence Service Design Framework

Authors: Hwa-Jong Kim

Abstract:

In many countries, digital city or ubiquitous city (u-City) projects have been initiated to provide digitalized economic environments to cities. Recently in Korea, Kangwon Province has started the u-Kangwon project to boost local economy with digitalized tourism services. We analyze the limitations of the ubiquitous IT approach through the u-Kangwon case. We have found that travelers are more interested in quality over speed in access of information. For improved service quality, we are looking to develop an IT-convergence service design framework (ISDF). The ISDF is based on the service engineering technique and composed of three parts: Service Design, Service Simulation, and the Service Platform.

Keywords: Service design, service simulation, service platform, service design framework.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1258
3875 RANS Simulation of Viscous Flow around Hull of Multipurpose Amphibious Vehicle

Authors: M. Nakisa, A. Maimun, Yasser M. Ahmed, F. Behrouzi, A. Tarmizi

Abstract:

The practical application of the Computational Fluid Dynamics (CFD), for predicting the flow pattern around Multipurpose Amphibious Vehicle (MAV) hull has made much progress over the last decade. Today, several of the CFD tools play an important role in the land and water going vehicle hull form design. CFD has been used for analysis of MAV hull resistance, sea-keeping, maneuvering and investigating its variation when changing the hull form due to varying its parameters, which represents a very important task in the principal and final design stages. Resistance analysis based on CFD (Computational Fluid Dynamics) simulation has become a decisive factor in the development of new, economically efficient and environmentally friendly hull forms. Three-dimensional finite volume method (FVM) based on Reynolds Averaged Navier-Stokes equations (RANS) has been used to simulate incompressible flow around three types of MAV hull bow models in steady-state condition. Finally, the flow structure and streamlines, friction and pressure resistance and velocity contours of each type of hull bow will be compared and discussed.

Keywords: RANS Simulation, Multipurpose Amphibious Vehicle, Viscous Flow Structure.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2961
3874 Experiment and Simulation of Laser Effect on Thermal Field of Porcine Liver

Authors: K.Ting, K. T. Chen, Y. L. Su, C. J. Chang

Abstract:

In medical therapy, laser has been widely used to conduct cosmetic, tumor and other treatments. During the process of laser irradiation, there may be thermal damage caused by excessive laser exposure. Thus, the establishment of a complete thermal analysis model is clinically helpful to physicians in reference data. In this study, porcine liver in place of tissue was subjected to laser irradiation to set up the experimental data considering the explored impact on surface thermal field and thermal damage region under different conditions of power, laser irradiation time, and distance between laser and porcine liver. In the experimental process, the surface temperature distribution of the porcine lever was measured by the infrared thermal imager. In the part of simulation, the bio heat transfer Pennes-s equation was solved by software SYSWELD applying in welding process. The double ellipsoid function as a laser source term is firstly considered in the prediction for surface thermal field and internal tissue damage. The simulation results are compared with the experimental data to validate the mathematical model established here in.

Keywords: laser infrared thermal imager, bio-heat transfer, double ellipsoid function.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2057
3873 Spanning Tree Transformation of Connected Graphs into Single-Row Networks

Authors: S.L. Loh, S. Salleh, N.H. Sarmin

Abstract:

A spanning tree of a connected graph is a tree which consists the set of vertices and some or perhaps all of the edges from the connected graph. In this paper, a model for spanning tree transformation of connected graphs into single-row networks, namely Spanning Tree of Connected Graph Modeling (STCGM) will be introduced. Path-Growing Tree-Forming algorithm applied with Vertex-Prioritized is contained in the model to produce the spanning tree from the connected graph. Paths are produced by Path-Growing and they are combined into a spanning tree by Tree-Forming. The spanning tree that is produced from the connected graph is then transformed into single-row network using Tree Sequence Modeling (TSM). Finally, the single-row routing problem is solved using a method called Enhanced Simulated Annealing for Single-Row Routing (ESSR).

Keywords: Graph theory, simulated annealing, single-rowrouting and spanning tree.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1735
3872 Physics of Decision for Polling Place Management: A Case Study from the 2020 USA Presidential Election

Authors: Nafe Moradkhani, Frederick Benaben, Benoit Montreuil, Ali Vatankhah Barenji, Dima Nazzal

Abstract:

In the context of the global pandemic, the practical management of the 2020 presidential election in the USA was a strong concern. To anticipate and prepare for this election accurately, one of the main challenges was to confront: (i) forecasts of voter turnout, (ii) capacities of the facilities and, (iii) potential configuration options of resources. The approach chosen to conduct this anticipative study consists of collecting data about forecasts and using simulation models to work simultaneously on resource allocation and facility configuration of polling places in Fulton County, Georgia’s largest county. This article presents the results of the simulations of such places facing pre-identified potential risks. These results are oriented towards the efficiency of these places according to different criteria (health, trust, comfort). Then a dynamic framework is introduced to describe risks as physical forces perturbing the efficiency of the observed system. Finally, the main benefits and contributions resulting from this simulation campaign are presented.

Keywords: performance, decision support, simulation, artificial intelligence, risk management, election, pandemics, information system

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 639
3871 Computer Aided Design of Reshaping Process of Circular Pipes into Square Pipes

Authors: Parviz Alinezhad, Ali Sanati, Koorosh Naser Momtahen

Abstract:

Square pipes (pipes with square cross sections) are being used for various industrial objectives, such as machine structure components and housing/building elements. The utilization of them is extending rapidly and widely. Hence, the out-put of those pipes is increasing and new application fields are continually developing. Due to various demands in recent time, the products have to satisfy difficult specifications with high accuracy in dimensions. The reshaping process design of pipes with square cross sections; however, is performed by trial and error and based on expert-s experience. In this paper, a computer-aided simulation is developed based on the 2-D elastic-plastic method with consideration of the shear deformation to analyze the reshaping process. Effect of various parameters such as diameter of the circular pipe and mechanical properties of metal on product dimension and quality can be evaluated by using this simulation. Moreover, design of reshaping process include determination of shrinkage of cross section, necessary number of stands, radius of rolls and height of pipe at each stand, are investigated. Further, it is shown that there are good agreements between the results of the design method and the experimental results.

Keywords: Circular Pipes, Square Pipes, Shear Deformation, Reshaping Process, Numerical Simulation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1396
3870 Discrete Vector Control for Induction Motor Drives with the Rotor Time Constant Update

Authors: A.Larabi, M.S. Boucherit

Abstract:

In this paper, we investigated vector control of an induction machine taking into account discretization problems of the command. In the purpose to show how to include in a discrete model of this current control and with rotor time constant update. The results of simulation obtained are very satisfaisant. That was possible thanks to the good choice of the values of the parameters of the regulators used which shows, the founded good of the method used, for the choice of the parameters of the discrete regulators. The simulation results are presented at the end of this paper.

Keywords: Induction motor, discrete vector control, PIRegulator, transformation of park, PWM.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1511
3869 A Robust Software for Advanced Analysis of Space Steel Frames

Authors: Viet-Hung Truong, Seung-Eock Kim

Abstract:

This paper presents a robust software package for practical advanced analysis of space steel framed structures. The pre- and post-processors of the presented software package are coded in the C++ programming language while the solver is written by using the FORTRAN programming language. A user-friendly graphical interface of the presented software is developed to facilitate the modeling process and result interpretation of the problem. The solver employs the stability functions for capturing the second-order effects to minimize modeling and computational time. Both the plastic-hinge and fiber-hinge beam-column elements are available in the presented software. The generalized displacement control method is adopted to solve the nonlinear equilibrium equations.

Keywords: Advanced analysis, beam-column, fiber-hinge, plastic hinge, steel frame.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1461
3868 A Study on Cancer-Cell Invasion Based On the Diffuse Interface Model

Authors: Zhang Linan, Jihwan Song, Dongchoul Kim

Abstract:

In this study, a three-dimensional haptotaxis model to simulate the migration of a population of cancer cells has been proposed. The invasion of cancer cells is related with the hapto-attractant and the effect of the interface energies between the cells and the ECM. The diffuse interface model, which incorporates the haptotaxis mechanism and interface energies, is employed. The semi-implicit Fourier spectral scheme is adopted for efficient evaluation of the simulation. The simulation results thoroughly reveal the dynamics of cancer-cell migration.

Keywords: Haptotaxis, Cancer Cells, Cell Migration, Interface Energy, Diffuse Interface Model

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1424
3867 Reliability Evaluation of Composite Electric Power System Based On Latin Hypercube Sampling

Authors: R. Ashok Bakkiyaraj, N. Kumarappan

Abstract:

This paper investigates the suitability of Latin Hypercube sampling (LHS) for composite electric power system reliability analysis. Each sample generated in LHS is mapped into an equivalent system state and used for evaluating the annualized system and load point indices. DC loadflow based state evaluation model is solved for each sampled contingency state. The indices evaluated are loss of load probability, loss of load expectation, expected demand not served and expected energy not supplied. The application of the LHS is illustrated through case studies carried out using RBTS and IEEE-RTS test systems. Results obtained are compared with non-sequential Monte Carlo simulation and state enumeration analytical approaches. An error analysis is also carried out to check the LHS method’s ability to capture the distributions of the reliability indices. It is found that LHS approach estimates indices nearer to actual value and gives tighter bounds of indices than non-sequential Monte Carlo simulation.

Keywords: Composite power system, Latin Hypercube sampling, Monte Carlo simulation, Reliability evaluation, Variance analysis.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3108
3866 A Performance Evaluation of Oscillation Based Test in Continuous Time Filters

Authors: Eduardo Romero, Marcelo Costamagna, Gabriela Peretti, Carlos Marqués

Abstract:

This work evaluates the ability of OBT for detecting parametric faults in continuous-time filters. To this end, we adopt two filters with quite different topologies as cases of study and a previously reported statistical fault model. In addition, we explore the behavior of the test schemes when a particular test condition is changed. The new data reported here, obtained from a fault simulation process, reveal a lower performance of OBT not observed in previous work using single-deviation faults, even under the change in the test condition.

Keywords: Testing, analog fault simulation, analog filter test, oscillation based test.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1443
3865 A Numerical Study of a Droplet Impinging on a Liquid Surface

Authors: S.Asadi, H.Panahi

Abstract:

The Navier–Stokes equations for unsteady, incompressible, viscous fluids in the axisymmetric coordinate system are solved using a control volume method. The volume-of-fluid (VOF) technique is used to track the free-surface of the liquid. Model predictions are in good agreement with experimental measurements. It is found that the dynamic processes after impact are sensitive to the initial droplet velocity and the liquid pool depth. The time evolution of the crown height and diameter are obtained by numerical simulation. The critical We number for splashing (Wecr) is studied for Oh (Ohnesorge) numbers in the range of 0.01~0.1; the results compares well with those of the experiments.

Keywords: Droplet impingement, free surface flows, liquid crown, numerical simulation, thin liquid film.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1983
3864 CFD Simulation for Air-Borne Infection Analysis in AII-Room

Authors: Young Kwon Yang, In Sung Kang, Jung Ha Hwang, Jin Chul Park

Abstract:

The present study is a foundational study for performance improvements on isolation wards to prevent proliferation of secondary infection of infectious diseases such as SARS, H1N1, and MERS inside hospitals. Accordingly, the present study conducted an analysis of the effect of sealing mechanisms and filling of openings on ensuring air tightness performance in isolation wards as well as simulation on air currents in improved isolation wards. The study method is as follows. First, previous studies on aerial infection type and mechanism were reviewed, and the review results were utilized as basic data of analysis on simulation of air current. Second, national and international legislations and regulations in relation to isolation wards as well as case studies on developed nations were investigated in order to identify the problems in isolation wards in Korea and improvement plans. Third, construction and facility plans were compared and analyzed between general and isolation wards focusing on large general hospitals in Korea, thereby conducting comparison and analysis on the performance and effects of air-tightness of general and isolation wards through CFD simulations. The study results showed that isolation wards had better air-tightness performance than that of general wards.

Keywords: AII Room, air-borne infection, CFD, computational fluid dynamics.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1520
3863 Comparison between the Efficiency of Heterojunction Thin Film InGaP\GaAs\Ge and InGaP\GaAs Solar Cell

Authors: F. Djaafar, B. Hadri, G. Bachir

Abstract:

This paper presents the design parameters for a thin film 3J InGaP/GaAs/Ge solar cell with a simulated maximum efficiency of 32.11% using Tcad Silvaco. Design parameters include the doping concentration, molar fraction, layers’ thickness and tunnel junction characteristics. An initial dual junction InGaP/GaAs model of a previous published heterojunction cell was simulated in Tcad Silvaco to accurately predict solar cell performance. To improve the solar cell’s performance, we have fixed meshing, material properties, models and numerical methods. However, thickness and layer doping concentration were taken as variables. We, first simulate the InGaP\GaAs dual junction cell by changing the doping concentrations and thicknesses which showed an increase in efficiency. Next, a triple junction InGaP/GaAs/Ge cell was modeled by adding a Ge layer to the previous dual junction InGaP/GaAs model with an InGaP /GaAs tunnel junction.

Keywords: Heterojunction, modeling, simulation, thin film, Tcad Silvaco.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1244
3862 Control of Grid Connected PMSG-Based Wind Turbine System with Back-To-Back Converter Topology Using Resonant Controller

Authors: Fekkak Bouazza, Menaa Mohamed, Loukriz Abdelhamid, Krim Mohamed L.

Abstract:

This paper presents modeling and control strategy for the grid connected wind turbine system based on Permanent Magnet Synchronous Generator (PMSG). The considered system is based on back-to-back converter topology. The Grid Side Converter (GSC) achieves the DC bus voltage control and unity power factor. The Machine Side Converter (MSC) assures the PMSG speed control. The PMSG is used as a variable speed generator and connected directly to the turbine without gearbox. The pitch angle control is not either considered in this study. Further, Optimal Tip Speed Ratio (OTSR) based MPPT control strategy is used to ensure the most energy efficiency whatever the wind speed variations. A filter (L) is put between the GSC and the grid to reduce current ripple and to improve the injected power quality. The proposed grid connected wind system is built under MATLAB/Simulink environment. The simulation results show the feasibility of the proposed topology and performance of its control strategies.

Keywords: Wind, grid, PMSG, MPPT, OTSR.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 895
3861 Numerical Analysis of the Turbulent Flow around DTMB 4119 Marine Propeller

Authors: K. Boumediene, S. E. Belhenniche

Abstract:

This article presents a numerical analysis of a turbulent flow past DTMB 4119 marine propeller by the means of RANS approach; the propeller designed at David Taylor Model Basin in USA. The purpose of this study is to predict the hydrodynamic performance of the marine propeller, it aims also to compare the results obtained with the experiment carried out in open water tests; a periodical computational domain was created to reduce the unstructured mesh size generated. The standard kw turbulence model for the simulation is selected; the results were in a good agreement. Therefore, the errors were estimated respectively to 1.3% and 5.9% for KT and KQ.

Keywords: propeller flow, CFD simulation, hydrodynamic performance, RANS

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2913
3860 FEM Simulation of HE Blast-Fragmentation Warhead and the Calculation of Lethal Range

Authors: G. Tanapornraweekit, W. Kulsirikasem

Abstract:

This paper presents the simulation of fragmentation warhead using a hydrocode, Autodyn. The goal of this research is to determine the lethal range of such a warhead. This study investigates the lethal range of warheads with and without steel balls as preformed fragments. The results from the FE simulation, i.e. initial velocities and ejected spray angles of fragments, are further processed using an analytical approach so as to determine a fragment hit density and probability of kill of a modelled warhead. In order to simulate a plenty of preformed fragments inside a warhead, the model requires expensive computation resources. Therefore, this study attempts to model the problem in an alternative approach by considering an equivalent mass of preformed fragments to the mass of warhead casing. This approach yields approximately 7% and 20% difference of fragment velocities from the analytical results for one and two layers of preformed fragments, respectively. The lethal ranges of the simulated warheads are 42.6 m and 56.5 m for warheads with one and two layers of preformed fragments, respectively, compared to 13.85 m for a warhead without preformed fragment. These lethal ranges are based on the requirement of fragment hit density. The lethal ranges which are based on the probability of kill are 27.5 m, 61 m and 70 m for warheads with no preformed fragment, one and two layers of preformed fragments, respectively.

Keywords: Lethal Range, Natural Fragment, Preformed Fragment, Warhead.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 4308
3859 Engineering Topology of Construction Ecology for Dynamic Integration of Sustainability Outcomes to Functions in Urban Environments: Spatial Modeling

Authors: Moustafa Osman Mohammed

Abstract:

Integration sustainability outcomes give attention to construction ecology in the design review of urban environments to comply with Earth’s System that is composed of integral parts of the (i.e., physical, chemical and biological components). Naturally, exchange patterns of industrial ecology have consistent and periodic cycles to preserve energy flows and materials in Earth’s System. When engineering topology is affecting internal and external processes in system networks, it postulated the valence of the first-level spatial outcome (i.e., project compatibility success). These instrumentalities are dependent on relating the second-level outcome (i.e., participant security satisfaction). The construction ecology-based topology (i.e., as feedback energy system) flows from biotic and abiotic resources in the entire Earth’s ecosystems. These spatial outcomes are providing an innovation, as entails a wide range of interactions to state, regulate and feedback “topology” to flow as “interdisciplinary equilibrium” of ecosystems. The interrelation dynamics of ecosystems are performing a process in a certain location within an appropriate time for characterizing their unique structure in “equilibrium patterns”, such as biosphere and collecting a composite structure of many distributed feedback flows. These interdisciplinary systems regulate their dynamics within complex structures. These dynamic mechanisms of the ecosystem regulate physical and chemical properties to enable a gradual and prolonged incremental pattern to develop a stable structure. The engineering topology of construction ecology for integration sustainability outcomes offers an interesting tool for ecologists and engineers in the simulation paradigm as an initial form of development structure within compatible computer software. This approach argues from ecology, resource savings, static load design, financial other pragmatic reasons, while an artistic/architectural perspective, these are not decisive. The paper described an attempt to unify analytic and analogical spatial modeling in developing urban environments as a relational setting, using optimization software and applied as an example of integrated industrial ecology where the construction process is based on a topology optimization approach.

Keywords: Construction ecology, industrial ecology, urban topology, environmental planning.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 632
3858 Development of Coronal Field and Solar Wind Components for MHD Interplanetary Simulations

Authors: Ljubomir Nikolic, Larisa Trichtchenko

Abstract:

The connection between solar activity and adverse phenomena in the Earth’s environment that can affect space and ground based technologies has spurred interest in Space Weather (SW) research. A great effort has been put on the development of suitable models that can provide advanced forecast of SW events. With the progress in computational technology, it is becoming possible to develop operational large scale physics based models which can incorporate the most important physical processes and domains of the Sun-Earth system. In order to enhance our SW prediction capabilities we are developing advanced numerical tools. With operational requirements in mind, our goal is to develop a modular simulation framework of propagation of the disturbances from the Sun through interplanetary space to the Earth. Here, we report and discuss on the development of coronal field and solar wind components for a large scale MHD code. The model for these components is based on a potential field source surface model and an empirical Wang-Sheeley-Arge solar wind relation. 

Keywords: Space weather, numerical modeling, coronal field, solar wind.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2138
3857 Response of the Residential Building Structureon Load Technical Seismicity due to Mining Activities

Authors: V. Salajka, Z. Kaláb, J. Kala, P. Hradil

Abstract:

In the territories where high-intensity earthquakes are frequent is paid attention to the solving of the seismic problems. In the paper are described two computational model variants based on finite element method of the construction with different subsoil simulation (rigid or elastic subsoil) is used. For simulation and calculations program system based on method final elements ANSYS was used. Seismic responses calculations of residential building structure were effected on loading characterized by accelerogram for comparing with the responses spectra method.

Keywords: Accelerogram, ANSYS, mining induced seismic, residential building structure, spectra, subsoil.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1535
3856 Numerical Solution of the Equations of Salt Diffusion into the Potato Tissues

Authors: Behrouz Mosayebi Dehkordi, Frazaneh Hashemi, Ramin Mostafazadeh

Abstract:

Fick's second law equations for unsteady state diffusion of salt into the potato tissues were solved numerically. The set of equations resulted from implicit modeling were solved using Thomas method to find the salt concentration profiles in solid phase. The needed effective diffusivity and equilibrium distribution coefficient were determined experimentally. Cylindrical samples of potato were infused with aqueous NaCl solutions of 1-3% concentrations, and variations in salt concentrations of brine were determined over time. Solute concentrations profiles of samples were determined by measuring salt uptake of potato slices. For the studied conditions, equilibrium distribution coefficients were found to be dependent on salt concentrations, whereas the effective diffusivity was slightly affected by brine concentration.

Keywords: Brine, Diffusion, Diffusivity, Modeling, Potato

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1884
3855 Parameters Identification of Mathematical Model of the Fission Yeast Cell Cycle Control Using Evolutionary Strategy

Authors: A. Ghaffari, A. S. Mostafavi

Abstract:

Complex assemblies of interacting proteins carry out most of the interesting jobs in a cell, such as metabolism, DNA synthesis, mitosis and cell division. These physiological properties play out as a subtle molecular dance, choreographed by underlying regulatory networks that control the activities of cyclin-dependent kinases (CDK). The network can be modeled by a set of nonlinear differential equations and its behavior predicted by numerical simulation. In this paper, an innovative approach has been proposed that uses genetic algorithms to mine a set of behavior data output by a biological system in order to determine the kinetic parameters of the system. In our approach, the machine learning method is integrated with the framework of existent biological information in a wiring diagram so that its findings are expressed in a form of system dynamic behavior. By numerical simulations it has been illustrated that the model is consistent with experiments and successfully shown that such application of genetic algorithms will highly improve the performance of mathematical model of the cell division cycle to simulate such a complicated bio-system.

Keywords: Cell cycle, Cyclin-dependent kinase, Fission yeast, Genetic algorithms, Mathematical modeling, Wiring diagram

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1504
3854 A Goal-Driven Crime Scripting Framework

Authors: Hashem Dehghanniri

Abstract:

Crime scripting is a simple and effective crime modeling technique that aims to improve understanding of security analysts about security and crime incidents. Low-quality scripts provide a wrong, incomplete, or sophisticated understanding of the crime commission process, which oppose the purpose of their application, e.g., identifying effective and cost-efficient situational crime prevention (SCP) measures. One important and overlooked factor in generating quality scripts is the crime scripting method. This study investigates the problems within the existing crime scripting practices and proposes a crime scripting approach that contributes to generating quality crime scripts. It was validated by experienced crime scripters. This framework helps analysts develop better crime scripts and contributes to their effective application, e.g., SCP measures identification or policy-making.

Keywords: Attack modeling, crime commission process, crime script, situational crime prevention.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 706
3853 Numerical Modeling of Determination of in situ Rock Mass Deformation Modulus Using the Plate Load Test

Authors: A. Khodabakhshi, A. Mortazavi

Abstract:

Accurate determination of rock mass deformation modulus, as an important design parameter, is one of the most controversial issues in most engineering projects. A 3D numerical model of standard plate load test (PLT) using the FLAC3D code was carried to investigate the mechanism governing the test process. Five objectives were the focus of this study. The first goal was to employ 3D modeling in the interpretation of PLT conducted at the Bazoft dam site, Iran. The second objective was to investigate the effect of displacements measuring depth from the loading plates on the calculated moduli. The magnitude of rock mass deformation modulus calculated from PLT depends on anchor depth, and in practice, this may be a cause of error in the selection of realistic deformation modulus for the rock mass. The third goal of the study was to investigate the effect of testing plate diameter on the calculated modulus. Moreover, a comparison of the calculated modulus from ISRM formula, numerical modeling and calculated modulus from the actual PLT carried out at right abutment of the Bazoft dam site was another objective of the study. Finally, the effect of plastic strains on the calculated moduli in each of the loading-unloading cycles for three loading plates was investigated. The geometry, material properties, and boundary conditions on the constructed 3D model were selected based on the in-situ conditions of PLT at Bazoft dam site. A good agreement was achieved between numerical model results and the field tests results.

Keywords: Deformation modulus, numerical model, plate loading test, rock mass.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 770