Search results for: statistical learning.
2056 Statistical Optimization of Process Variables for Direct Fermentation of 226 White Rose Tapioca Stem to Ethanol by Fusarium oxysporum
Authors: A. Magesh, B. Preetha, T. Viruthagiri
Abstract:
Direct fermentation of 226 white rose tapioca stem to ethanol by Fusarium oxysporum was studied in a batch reactor. Fermentation of ethanol can be achieved by sequential pretreatment using dilute acid and dilute alkali solutions using 100 mesh tapioca stem particles. The quantitative effects of substrate concentration, pH and temperature on ethanol concentration were optimized using a full factorial central composite design experiment. The optimum process conditions were then obtained using response surface methodology. The quadratic model indicated that substrate concentration of 33g/l, pH 5.52 and a temperature of 30.13oC were found to be optimum for maximum ethanol concentration of 8.64g/l. The predicted optimum process conditions obtained using response surface methodology was verified through confirmatory experiments. Leudeking-piret model was used to study the product formation kinetics for the production of ethanol and the model parameters were evaluated using experimental data.Keywords: Fusarium oxysporum, Lignocellulosic biomass, Product formation kinetics, Statistical experimental design
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16382055 Integration of Educational Data Mining Models to a Web-Based Support System for Predicting High School Student Performance
Authors: Sokkhey Phauk, Takeo Okazaki
Abstract:
The challenging task in educational institutions is to maximize the high performance of students and minimize the failure rate of poor-performing students. An effective method to leverage this task is to know student learning patterns with highly influencing factors and get an early prediction of student learning outcomes at the timely stage for setting up policies for improvement. Educational data mining (EDM) is an emerging disciplinary field of data mining, statistics, and machine learning concerned with extracting useful knowledge and information for the sake of improvement and development in the education environment. The study is of this work is to propose techniques in EDM and integrate it into a web-based system for predicting poor-performing students. A comparative study of prediction models is conducted. Subsequently, high performing models are developed to get higher performance. The hybrid random forest (Hybrid RF) produces the most successful classification. For the context of intervention and improving the learning outcomes, a feature selection method MICHI, which is the combination of mutual information (MI) and chi-square (CHI) algorithms based on the ranked feature scores, is introduced to select a dominant feature set that improves the performance of prediction and uses the obtained dominant set as information for intervention. By using the proposed techniques of EDM, an academic performance prediction system (APPS) is subsequently developed for educational stockholders to get an early prediction of student learning outcomes for timely intervention. Experimental outcomes and evaluation surveys report the effectiveness and usefulness of the developed system. The system is used to help educational stakeholders and related individuals for intervening and improving student performance.
Keywords: Academic performance prediction system, prediction model, educational data mining, dominant factors, feature selection methods, student performance.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 9752054 Machine Learning Facing Behavioral Noise Problem in an Imbalanced Data Using One Side Behavioral Noise Reduction: Application to a Fraud Detection
Authors: Salma El Hajjami, Jamal Malki, Alain Bouju, Mohammed Berrada
Abstract:
With the expansion of machine learning and data mining in the context of Big Data analytics, the common problem that affects data is class imbalance. It refers to an imbalanced distribution of instances belonging to each class. This problem is present in many real world applications such as fraud detection, network intrusion detection, medical diagnostics, etc. In these cases, data instances labeled negatively are significantly more numerous than the instances labeled positively. When this difference is too large, the learning system may face difficulty when tackling this problem, since it is initially designed to work in relatively balanced class distribution scenarios. Another important problem, which usually accompanies these imbalanced data, is the overlapping instances between the two classes. It is commonly referred to as noise or overlapping data. In this article, we propose an approach called: One Side Behavioral Noise Reduction (OSBNR). This approach presents a way to deal with the problem of class imbalance in the presence of a high noise level. OSBNR is based on two steps. Firstly, a cluster analysis is applied to groups similar instances from the minority class into several behavior clusters. Secondly, we select and eliminate the instances of the majority class, considered as behavioral noise, which overlap with behavior clusters of the minority class. The results of experiments carried out on a representative public dataset confirm that the proposed approach is efficient for the treatment of class imbalances in the presence of noise.Keywords: Machine learning, Imbalanced data, Data mining, Big data.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 11372053 Enhancement Approaches for Supporting Default Hierarchies Formation for Robot Behaviors
Authors: Saeed Mohammed Baneamoon, Rosalina Abdul Salam
Abstract:
Robotic system is an important area in artificial intelligence that aims at developing the performance techniques of the robot and making it more efficient and more effective in choosing its correct behavior. In this paper the distributed learning classifier system is used for designing a simulated control system for robot to perform complex behaviors. A set of enhanced approaches that support default hierarchies formation is suggested and compared with each other in order to make the simulated robot more effective in mapping the input to the correct output behavior.
Keywords: Learning Classifier System, Default Hierarchies, Robot Behaviors.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 14242052 Multistage Condition Monitoring System of Aircraft Gas Turbine Engine
Authors: A. M. Pashayev, D. D. Askerov, C. Ardil, R. A. Sadiqov, P. S. Abdullayev
Abstract:
Researches show that probability-statistical methods application, especially at the early stage of the aviation Gas Turbine Engine (GTE) technical condition diagnosing, when the flight information has property of the fuzzy, limitation and uncertainty is unfounded. Hence the efficiency of application of new technology Soft Computing at these diagnosing stages with the using of the Fuzzy Logic and Neural Networks methods is considered. According to the purpose of this problem training with high accuracy of fuzzy multiple linear and non-linear models (fuzzy regression equations) which received on the statistical fuzzy data basis is made. For GTE technical condition more adequate model making dynamics of skewness and kurtosis coefficients- changes are analysed. Researches of skewness and kurtosis coefficients values- changes show that, distributions of GTE work parameters have fuzzy character. Hence consideration of fuzzy skewness and kurtosis coefficients is expedient. Investigation of the basic characteristics changes- dynamics of GTE work parameters allows drawing conclusion on necessity of the Fuzzy Statistical Analysis at preliminary identification of the engines' technical condition. Researches of correlation coefficients values- changes shows also on their fuzzy character. Therefore for models choice the application of the Fuzzy Correlation Analysis results is offered. At the information sufficiency is offered to use recurrent algorithm of aviation GTE technical condition identification (Hard Computing technology is used) on measurements of input and output parameters of the multiple linear and non-linear generalised models at presence of noise measured (the new recursive Least Squares Method (LSM)). The developed GTE condition monitoring system provides stageby- stage estimation of engine technical conditions. As application of the given technique the estimation of the new operating aviation engine technical condition was made.Keywords: aviation gas turbine engine, technical condition, fuzzy logic, neural networks, fuzzy statistics
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15702051 Adopting Artificial Intelligence and Deep Learning Techniques in Cloud Computing for Operational Efficiency
Authors: Sandesh Achar
Abstract:
Artificial intelligence (AI) is being increasingly incorporated into many applications across various sectors such as health, education, security, and agriculture. Recently, there has been rapid development in cloud computing technology, resulting in AI’s implementation into cloud computing to enhance and optimize the technology service rendered. The deployment of AI in cloud-based applications has brought about autonomous computing, whereby systems achieve stated results without human intervention. Despite the amount of research into autonomous computing, work incorporating AI/ML into cloud computing to enhance its performance and resource allocation remains a fundamental challenge. This paper highlights different manifestations, roles, trends, and challenges related to AI-based cloud computing models. This work reviews and highlights investigations and progress in the domain. Future directions are suggested for leveraging AI/ML in next-generation computing for emerging computing paradigms such as cloud environments. Adopting AI-based algorithms and techniques to increase operational efficiency, cost savings, automation, reducing energy consumption and solving complex cloud computing issues are the major findings outlined in this paper.
Keywords: Artificial intelligence, AI, cloud computing, deep learning, machine learning, ML, internet of things, IoT.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 6272050 Pruning Method of Belief Decision Trees
Authors: Salsabil Trabelsi, Zied Elouedi, Khaled Mellouli
Abstract:
The belief decision tree (BDT) approach is a decision tree in an uncertain environment where the uncertainty is represented through the Transferable Belief Model (TBM), one interpretation of the belief function theory. The uncertainty can appear either in the actual class of training objects or attribute values of objects to classify. In this paper, we develop a post-pruning method of belief decision trees in order to reduce size and improve classification accuracy on unseen cases. The pruning of decision tree has a considerable intention in the areas of machine learning.Keywords: machine learning, uncertainty, belief function theory, belief decision tree, pruning.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 19102049 Perturbed-Chain Statistical Association Fluid Theory (PC-SAFT) Parameters for Propane, Ethylene, and Hydrogen under Supercritical Conditions
Authors: Ilke Senol
Abstract:
Perturbed-Chain Statistical Association Fluid Theory (PC-SAFT) equation of state (EOS) is a modified SAFT EOS with three pure component specific parameters: segment number (m), diameter (σ) and energy (ε). These PC-SAFT parameters need to be determined for each component under the conditions of interest by fitting experimental data, such as vapor pressure, density or heat capacity. PC-SAFT parameters for propane, ethylene and hydrogen in supercritical region were successfully estimated by fitting experimental density data available in literature. The regressed PCSAFT parameters were compared with the literature values by means of estimating pure component density and calculating average absolute deviation between the estimated and experimental density values. PC-SAFT parameters available in literature especially for ethylene and hydrogen estimated density in supercritical region reasonably well. However, the regressed PC-SAFT parameters performed better in supercritical region than the PC-SAFT parameters from literature.
Keywords: Equation of state, perturbed-chain, PC-SAFT, super critical.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 69922048 A Completed Adaptive De-mixing Algorithm on Stiefel Manifold for ICA
Authors: Jianwei Wu
Abstract:
Based on the one-bit-matching principle and by turning the de-mixing matrix into an orthogonal matrix via certain normalization, Ma et al proposed a one-bit-matching learning algorithm on the Stiefel manifold for independent component analysis [8]. But this algorithm is not adaptive. In this paper, an algorithm which can extract kurtosis and its sign of each independent source component directly from observation data is firstly introduced.With the algorithm , the one-bit-matching learning algorithm is revised, so that it can make the blind separation on the Stiefel manifold implemented completely in the adaptive mode in the framework of natural gradient.
Keywords: Independent component analysis, kurtosis, Stiefel manifold, super-gaussians or sub-gaussians.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15042047 A Fast Object Detection Method with Rotation Invariant Features
Authors: Zilong He, Yuesheng Zhu
Abstract:
Based on the combined shape feature and texture feature, a fast object detection method with rotation invariant features is proposed in this paper. A quick template matching scheme based online learning designed for online applications is also introduced in this paper. The experimental results have shown that the proposed approach has the features of lower computation complexity and higher detection rate, while keeping almost the same performance compared to the HOG-based method, and can be more suitable for run time applications.Keywords: gradient feature, online learning, rotationinvariance, template feature
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 24772046 Behavior of Media Exposure and Participation in Environmental Activities of King Mongkut-s University of Technology Thonburi Dormitory Students
Authors: Kuntida Thamwipat, Sorakrich Maneewan, Thanarat Pumjaroen
Abstract:
The purposes of this research were 1) to investigate behavior of media exposure and participation in environmental activities of King Mongkut-s University of Technology Thonburi (KMUTT) dormitory students, 2) to compare the correlation between faculties and participation in environmental activities of KMUTT dormitory students, and 3) to compare the correlation between media exposure and participation in environmental activities of KMUTT dormitory students. The tool used for collecting data was questionnaire. The research findings revealed that dormitory students were mostly exposed to the environmental media via public relations boards for general media and KMUTT dormitory media. Dormitory students were daily exposed to media via websites on the internet and weekly for other media. Dormitory students participation in the environmental activities was at high level (x = 3.65) on an individual basis and was at medium level (x = 2.76) on a collective basis. Faculties did not correlate with the participation in environmental activities of dormitory students at the .01 statistical level and media exposure via various media correlated with participation in environmental activities of dormitory students at the .01 statistical level.Keywords: Dormitary Students, Environmental Activities Media Exposure, Participation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 12852045 Clustering Mixed Data Using Non-normal Regression Tree for Process Monitoring
Authors: Youngji Yoo, Cheong-Sool Park, Jun Seok Kim, Young-Hak Lee, Sung-Shick Kim, Jun-Geol Baek
Abstract:
In the semiconductor manufacturing process, large amounts of data are collected from various sensors of multiple facilities. The collected data from sensors have several different characteristics due to variables such as types of products, former processes and recipes. In general, Statistical Quality Control (SQC) methods assume the normality of the data to detect out-of-control states of processes. Although the collected data have different characteristics, using the data as inputs of SQC will increase variations of data, require wide control limits, and decrease performance to detect outof- control. Therefore, it is necessary to separate similar data groups from mixed data for more accurate process control. In the paper, we propose a regression tree using split algorithm based on Pearson distribution to handle non-normal distribution in parametric method. The regression tree finds similar properties of data from different variables. The experiments using real semiconductor manufacturing process data show improved performance in fault detecting ability.Keywords: Semiconductor, non-normal mixed process data, clustering, Statistical Quality Control (SQC), regression tree, Pearson distribution system.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 17802044 The Statistical Significant of Adsorbents for Effective Zn (II) Ions Removal
Authors: Kiurski S. Jelena, Oros B. Ivana, Kecić S. Vesna, Kovačević M. Ilija, Aksentijević M. Snežana
Abstract:
The adsorption efficiency of various adsorbents for the removal of Zn(II) ions from the waste printing developer was studied in laboratory batch mode. The maximum adsorption efficiency of 94.1% was achieved with unfired clay pellets size (d ≈ 15 mm). The obtained values of adsorption efficiency was subjected to the independent-samples t test in order to investigate the statistically significant differences of the investigated adsorbents for the effective removal of Zn(II) ions from the waste printing developer. The most statistically significant differences of adsorption efficiencies for Zn(II) ions removal were obtained between unfired clay pellets (size d ≈ 15 mm) and activated carbon (½t½=6.909), natural zeolite (½t½=10.380), mixture of activated carbon and natural zeolite (½t½=9.865), bentonite (½t½=6.159), fired clay (½t½=6.641), fired clay pellets (size d ≈ 5 mm) (½t½=6.678), fired clay pellets (size d ≈ 8 mm) (½t½=3.422), respectively.
Keywords: Adsorbent, adsorption efficiency, statistical analysis, zinc ion.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 18882043 Consumer Load Profile Determination with Entropy-Based K-Means Algorithm
Authors: Ioannis P. Panapakidis, Marios N. Moschakis
Abstract:
With the continuous increment of smart meter installations across the globe, the need for processing of the load data is evident. Clustering-based load profiling is built upon the utilization of unsupervised machine learning tools for the purpose of formulating the typical load curves or load profiles. The most commonly used algorithm in the load profiling literature is the K-means. While the algorithm has been successfully tested in a variety of applications, its drawback is the strong dependence in the initialization phase. This paper proposes a novel modified form of the K-means that addresses the aforementioned problem. Simulation results indicate the superiority of the proposed algorithm compared to the K-means.
Keywords: Clustering, load profiling, load modeling, machine learning, energy efficiency and quality.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 12112042 Automatic Product Identification Based on Deep-Learning Theory in an Assembly Line
Authors: Fidel Lòpez Saca, Carlos Avilés-Cruz, Miguel Magos-Rivera, José Antonio Lara-Chávez
Abstract:
Automated object recognition and identification systems are widely used throughout the world, particularly in assembly lines, where they perform quality control and automatic part selection tasks. This article presents the design and implementation of an object recognition system in an assembly line. The proposed shapes-color recognition system is based on deep learning theory in a specially designed convolutional network architecture. The used methodology involve stages such as: image capturing, color filtering, location of object mass centers, horizontal and vertical object boundaries, and object clipping. Once the objects are cut out, they are sent to a convolutional neural network, which automatically identifies the type of figure. The identification system works in real-time. The implementation was done on a Raspberry Pi 3 system and on a Jetson-Nano device. The proposal is used in an assembly course of bachelor’s degree in industrial engineering. The results presented include studying the efficiency of the recognition and processing time.Keywords: Deep-learning, image classification, image identification, industrial engineering.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 7582041 Comprehensive Analysis of Data Mining Tools
Authors: S. Sarumathi, N. Shanthi
Abstract:
Due to the fast and flawless technological innovation there is a tremendous amount of data dumping all over the world in every domain such as Pattern Recognition, Machine Learning, Spatial Data Mining, Image Analysis, Fraudulent Analysis, World Wide Web etc., This issue turns to be more essential for developing several tools for data mining functionalities. The major aim of this paper is to analyze various tools which are used to build a resourceful analytical or descriptive model for handling large amount of information more efficiently and user friendly. In this survey the diverse tools are illustrated with their extensive technical paradigm, outstanding graphical interface and inbuilt multipath algorithms in which it is very useful for handling significant amount of data more indeed.
Keywords: Classification, Clustering, Data Mining, Machine learning, Visualization.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 24392040 Correlational Analysis between Brain Dominances and Multiple Intelligences
Authors: Lakshmi Dhandabani, Rajeev Sukumaran
Abstract:
Aim of this research study is to investigate and establish the characteristics of brain dominances (BD) and multiple intelligences (MI). This experimentation has been conducted for the sample size of 552 undergraduate computer-engineering students. In addition, mathematical formulation has been established to exhibit the relation between thinking and intelligence, and its correlation has been analyzed. Correlation analysis has been statistically measured using Pearson’s coefficient. Analysis of the results proves that there is a strong relational existence between thinking and intelligence. This research is carried to improve the didactic methods in engineering learning and also to improve e-learning strategies.Keywords: Thinking style assessment, correlational analysis, mathematical model, data analysis, dynamic equilibrium.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 18762039 Meditation Based Brain Painting Promoting Foreign Language Memory through Establishing a Brain-Computer Interface
Authors: Zhepeng Rui, Zhenyu Gu, Caitilin de Bérigny
Abstract:
In the current study, we designed an interactive meditation and brain painting application to cultivate users’ creativity, promote meditation, reduce stress, and improve cognition while attempting to learn a foreign language. User tests and data analyses were conducted on 42 male and 42 female participants to better understand sex-associated psychological and aesthetic differences. Our method utilized brain-computer interfaces to import meditation and attention data to create artwork in meditation-based applications. Female participants showed statistically significantly different language learning outcomes following three meditation paradigms. The art style of brain painting helped females with language memory. Our results suggest that the most ideal methods for promoting memory attention were meditation methods and brain painting exercises contributing to language learning, memory concentration promotion, and foreign word memorization. We conclude that a short period of meditation practice can help in learning a foreign language. These findings provide insights into meditation, creative language education, brain-computer interface, and human-computer interactions.
Keywords: Brain-computer interface, creative thinking, meditation, mental health.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 5862038 Land Suitability Prediction Modelling for Agricultural Crops Using Machine Learning Approach: A Case Study of Khuzestan Province, Iran
Authors: Saba Gachpaz, Hamid Reza Heidari
Abstract:
The sharp increase in population growth leads to more pressure on agricultural areas to satisfy the food supply. This necessitates increased resource consumption and underscores the importance of addressing sustainable agriculture development along with other environmental considerations. Land-use management is a crucial factor in obtaining optimum productivity. Machine learning is a widely used technique in the agricultural sector, from yield prediction to customer behavior. This method focuses on learning and provides patterns and correlations from our data set. In this study, nine physical control factors, namely, soil classification, electrical conductivity, normalized difference water index (NDWI), groundwater level, elevation, annual precipitation, pH of water, annual mean temperature, and slope in the alluvial plain in Khuzestan (an agricultural hotspot in Iran) are used to decide the best agricultural land use for both rainfed and irrigated agriculture for 10 different crops. For this purpose, each variable was imported into Arc GIS, and a raster layer was obtained. In the next level, by using training samples, all layers were imported into the python environment. A random forest model was applied, and the weight of each variable was specified. In the final step, results were visualized using a digital elevation model, and the importance of all factors for each one of the crops was obtained. Our results show that despite 62% of the study area being allocated to agricultural purposes, only 42.9% of these areas can be defined as a suitable class for cultivation purposes.
Keywords: Land suitability, machine learning, random forest, sustainable agriculture.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2832037 The Cloud Systems Used in Education: Properties and Overview
Authors: Agah Tuğrul Korucu, Handan Atun
Abstract:
Diversity and usefulness of information that used in education are have increased due to development of technology. Web technologies have made enormous contributions to the distance learning system especially. Mobile systems, one of the most widely used technology in distance education, made much easier to access web technologies. Not bounding by space and time, individuals have had the opportunity to access the information on web. In addition to this, the storage of educational information and resources and accessing these information and resources is crucial for both students and teachers. Because of this importance, development and dissemination of web technologies supply ease of access to information and resources are provided by web technologies. Dynamic web technologies introduced as new technologies that enable sharing and reuse of information, resource or applications via the Internet and bring websites into expandable platforms are commonly known as Web 2.0 technologies. Cloud systems are one of the dynamic web technologies that defined as a model provides approaching the demanded information independent from time and space in appropriate circumstances and developed by NIST. One of the most important advantages of cloud systems is meeting the requirements of users directly on the web regardless of hardware, software, and dealing with install. Hence, this study aims at using cloud services in education and investigating the services provided by the cloud computing. Survey method has been used as research method. In the findings of this research the fact that cloud systems are used such studies as resource sharing, collaborative work, assignment submission and feedback, developing project in the field of education, and also, it is revealed that cloud systems have plenty of significant advantages in terms of facilitating teaching activities and the interaction between teacher, student and environment.
Keywords: Cloud systems, cloud systems in education, distance learning, e-learning, integration of information technologies, online learning environment.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 10182036 Energetic and Exergetic Evaluation of Box-Type Solar Cookers Using Different Insulation Materials
Authors: Ademola K. Aremu, Joseph. C. Igbeka
Abstract:
The performance of box-type solar cookers has been reported by several researchers but little attention was paid to the effect of the type of insulation material on the energy and exergy efficiency of these cookers. This research aimed at evaluating the energy and exergy efficiencies of the box-type cookers containing different insulation materials. Energy and exergy efficiencies of five box-type solar cookers insulated with maize cob, air (control), maize husk, coconut coir and polyurethane foam respectively were obtained over a period of three years. The cookers were evaluated using water heating test procedures in determining the energy and exergy analysis. The results were subjected to statistical analysis using ANOVA. The result shows that the average energy input for the five solar cookers were: 245.5, 252.2, 248.7, 241.5 and 245.5J respectively while their respective average energy losses were: 201.2, 212.7, 208.4, 189.1 and 199.8J. The average exergy input for five cookers were: 228.2, 234.4, 231.1, 224.4 and 228.2J respectively while their respective average exergy losses were: 223.4, 230.6, 226.9, 218.9 and 223.0J. The energy and exergy efficiency was highest in the cooker with coconut coir (37.35 and 3.90% respectively) in the first year but was lowest for air (11 and 1.07% respectively) in the third year. Statistical analysis showed significant difference between the energy and exergy efficiencies over the years. These results reiterate the importance of a good insulating material for a box-type solar cooker.
Keywords: Efficiency, energy, exergy, heating, insolation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 26152035 An Investigation into the Role of School Social Workers and Psychologists with Children Experiencing Special Educational Needs in Libya
Authors: Abdelbasit Gadour
Abstract:
This study explores the function of schools’ psychosocial services within Libyan mainstream schools in relation to children’s special educational needs (SEN). This is with the aim to examine the role of school social workers and psychologists in the assessment procedure of children with SEN. A semi-structured interview was used in this study, with 21 professionals working in the schools’ psychosocial services, of whom 13 were school social workers (SSWs) and eight were school psychologists (SPs). The results of the interviews with SSWs and SPs provided insights into how SEN children are identified, assessed, and dealt with by school professionals. It appears from the results that what constitutes a problem has not changed significantly, and the link between learning difficulties and behavioural difficulties is also evident from this study. Children with behaviour difficulties are more likely to be referred to school psychosocial services than children with learning difficulties. Yet, it is not clear from the interviews with SSWs and SPs whether children are excluded merely because of their behaviour problems. Instead, they would surely be expelled from the school if they failed academically. Furthermore, the interviews with SSWs and SPs yield a rather unusual source accountable for children’s SEN; school-related difficulties were a major factor in which almost all participants attributed children’s learning and behaviour problems to teachers’ deficiencies, followed by school lack of resources.
Keywords: Special education, school, social workers, psychologist.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 6902034 The Examination of Prospective ICT Teachers’ Attitudes towards Application of Computer Assisted Instruction
Authors: Agâh Tuğrul Korucu, Ismail Fatih Yavuzaslan, Lale Toraman
Abstract:
Nowadays, thanks to development of technology, integration of technology into teaching and learning activities is spreading. Increasing technological literacy which is one of the expected competencies for individuals of 21st century is associated with the effective use of technology in education. The most important factor in effective use of technology in education institutions is ICT teachers. The concept of computer assisted instruction (CAI) refers to the utilization of information and communication technology as a tool aided teachers in order to make education more efficient and improve its quality in the process of educational. Teachers can use computers in different places and times according to owned hardware and software facilities and characteristics of the subject and student in CAI. Analyzing teachers’ use of computers in education is significant because teachers are the ones who manage the course and they are the most important element in comprehending the topic by students. To accomplish computer-assisted instruction efficiently is possible through having positive attitude of teachers. Determination the level of knowledge, attitude and behavior of teachers who get the professional knowledge from educational faculties and elimination of deficiencies if any are crucial when teachers are at the faculty. Therefore, the aim of this paper is to identify ICT teachers' attitudes toward computer-assisted instruction in terms of different variables. Research group consists of 200 prospective ICT teachers studying at Necmettin Erbakan University Ahmet Keleşoğlu Faculty of Education CEIT department. As data collection tool of the study; “personal information form” developed by the researchers and used to collect demographic data and "the attitude scale related to computer-assisted instruction" are used. The scale consists of 20 items. 10 of these items show positive feature, while 10 of them show negative feature. The Kaiser-Meyer-Olkin (KMO) coefficient of the scale is found 0.88 and Barlett test significance value is found 0.000. The Cronbach’s alpha reliability coefficient of the scale is found 0.93. In order to analyze the data collected by data collection tools computer-based statistical software package used; statistical techniques such as descriptive statistics, t-test, and analysis of variance are utilized. It is determined that the attitudes of prospective instructors towards computers do not differ according to their educational branches. On the other hand, the attitudes of prospective instructors who own computers towards computer-supported education are determined higher than those of the prospective instructors who do not own computers. It is established that the departments of students who previously received computer lessons do not affect this situation so much. The result is that; the computer experience affects the attitude point regarding the computer-supported education positively.
Keywords: Attitude, computer based instruction, information and communication technologies, technology based instruction, teacher candidate.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 17392033 Least Square-SVM Detector for Wireless BPSK in Multi-Environmental Noise
Authors: J. P. Dubois, Omar M. Abdul-Latif
Abstract:
Support Vector Machine (SVM) is a statistical learning tool developed to a more complex concept of structural risk minimization (SRM). In this paper, SVM is applied to signal detection in communication systems in the presence of channel noise in various environments in the form of Rayleigh fading, additive white Gaussian background noise (AWGN), and interference noise generalized as additive color Gaussian noise (ACGN). The structure and performance of SVM in terms of the bit error rate (BER) metric is derived and simulated for these advanced stochastic noise models and the computational complexity of the implementation, in terms of average computational time per bit, is also presented. The performance of SVM is then compared to conventional binary signaling optimal model-based detector driven by binary phase shift keying (BPSK) modulation. We show that the SVM performance is superior to that of conventional matched filter-, innovation filter-, and Wiener filter-driven detectors, even in the presence of random Doppler carrier deviation, especially for low SNR (signal-to-noise ratio) ranges. For large SNR, the performance of the SVM was similar to that of the classical detectors. However, the convergence between SVM and maximum likelihood detection occurred at a higher SNR as the noise environment became more hostile.Keywords: Colour noise, Doppler shift, innovation filter, least square-support vector machine, matched filter, Rayleigh fading, Wiener filter.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 18132032 Design Method for Knowledge Base Systems in Education Using COKB-ONT
Authors: Nhon Do, Tuyen Trong Tran, Phan Hoai Truong
Abstract:
Nowadays e-Learning is more popular, in Vietnam especially. In e-learning, materials for studying are very important. It is necessary to design the knowledge base systems and expert systems which support for searching, querying, solving of problems. The ontology, which was called Computational Object Knowledge Base Ontology (COB-ONT), is a useful tool for designing knowledge base systems in practice. In this paper, a design method for knowledge base systems in education using COKB-ONT will be presented. We also present the design of a knowledge base system that supports studying knowledge and solving problems in higher mathematics.Keywords: artificial intelligence, knowledge base systems, ontology, educational software.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 20422031 Monitoring Blood Pressure Using Regression Techniques
Authors: Qasem Qananwah, Ahmad Dagamseh, Hiam AlQuran, Khalid Shaker Ibrahim
Abstract:
Blood pressure helps the physicians greatly to have a deep insight into the cardiovascular system. The determination of individual blood pressure is a standard clinical procedure considered for cardiovascular system problems. The conventional techniques to measure blood pressure (e.g. cuff method) allows a limited number of readings for a certain period (e.g. every 5-10 minutes). Additionally, these systems cause turbulence to blood flow; impeding continuous blood pressure monitoring, especially in emergency cases or critically ill persons. In this paper, the most important statistical features in the photoplethysmogram (PPG) signals were extracted to estimate the blood pressure noninvasively. PPG signals from more than 40 subjects were measured and analyzed and 12 features were extracted. The features were fed to principal component analysis (PCA) to find the most important independent features that have the highest correlation with blood pressure. The results show that the stiffness index means and standard deviation for the beat-to-beat heart rate were the most important features. A model representing both features for Systolic Blood Pressure (SBP) and Diastolic Blood Pressure (DBP) was obtained using a statistical regression technique. Surface fitting is used to best fit the series of data and the results show that the error value in estimating the SBP is 4.95% and in estimating the DBP is 3.99%.
Keywords: Blood pressure, noninvasive optical system, PCA, continuous monitoring.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 6872030 Prospective English Language Teachers’ Views on Translation Use in Foreign Language Teaching
Authors: Ozlem Bozok, Yusuf Bozok
Abstract:
The importance of using mother tongue and translation in foreign language classrooms cannot be ignored and translation can be utilized as a method in English Language Teaching courses. There exist researches advocating or objecting to the use of translation in foreign language learning but they all have a point in common: Translation should be used as an aid to teaching, not an end in itself. In this research, prospective English language teachers’ opinions about translation use and use of mother tongue in foreign language teaching are investigated and according to the findings, some explanations and recommendations are made.
Keywords: Exposure to foreign language, translation, foreign language learning, prospective teachers’ opinions, use of L1.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 24662029 Analysis of Event-related Response in Human Visual Cortex with fMRI
Authors: Ayesha Zaman, Tanvir Atahary, Shahida Rafiq
Abstract:
Functional Magnetic Resonance Imaging(fMRI) is a noninvasive imaging technique that measures the hemodynamic response related to neural activity in the human brain. Event-related functional magnetic resonance imaging (efMRI) is a form of functional Magnetic Resonance Imaging (fMRI) in which a series of fMRI images are time-locked to a stimulus presentation and averaged together over many trials. Again an event related potential (ERP) is a measured brain response that is directly the result of a thought or perception. Here the neuronal response of human visual cortex in normal healthy patients have been studied. The patients were asked to perform a visual three choice reaction task; from the relative response of each patient corresponding neuronal activity in visual cortex was imaged. The average number of neurons in the adult human primary visual cortex, in each hemisphere has been estimated at around 140 million. Statistical analysis of this experiment was done with SPM5(Statistical Parametric Mapping version 5) software. The result shows a robust design of imaging the neuronal activity of human visual cortex.Keywords: Echo Planner Imaging, Event related Response, General Linear Model, Visual Neuronal Response.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 14562028 Adaptive Square-Rooting Companding Technique for PAPR Reduction in OFDM Systems
Authors: Wisam F. Al-Azzo, Borhanuddin Mohd. Ali
Abstract:
This paper addresses the problem of peak-to-average power ratio (PAPR) in orthogonal frequency division multiplexing (OFDM) systems. It also introduces a new PAPR reduction technique based on adaptive square-rooting (SQRT) companding process. The SQRT process of the proposed technique changes the statistical characteristics of the OFDM output signals from Rayleigh distribution to Gaussian-like distribution. This change in statistical distribution results changes of both the peak and average power values of OFDM signals, and consequently reduces significantly the PAPR. For the 64QAM OFDM system using 512 subcarriers, up to 6 dB reduction in PAPR was achieved by square-rooting technique with fixed degradation in bit error rate (BER) equal to 3 dB. However, the PAPR is reduced at the expense of only -15 dB out-ofband spectral shoulder re-growth below the in-band signal level. The proposed adaptive SQRT technique is superior in terms of BER performance than the original, non-adaptive, square-rooting technique when the required reduction in PAPR is no more than 5 dB. Also, it provides fixed amount of PAPR reduction in which it is not available in the original SQRT technique.Keywords: complementary cumulative distribution function(CCDF), OFDM, peak-to-average power ratio (PAPR), adaptivesquare-rooting PAPR reduction technique.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 22032027 Application of Granular Computing Paradigm in Knowledge Induction
Authors: Iftikhar U. Sikder
Abstract:
This paper illustrates an application of granular computing approach, namely rough set theory in data mining. The paper outlines the formalism of granular computing and elucidates the mathematical underpinning of rough set theory, which has been widely used by the data mining and the machine learning community. A real-world application is illustrated, and the classification performance is compared with other contending machine learning algorithms. The predictive performance of the rough set rule induction model shows comparative success with respect to other contending algorithms.
Keywords: Concept approximation, granular computing, reducts, rough set theory, rule induction.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 834