Search results for: active learning strategies
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 3737

Search results for: active learning strategies

2657 Reduced Rule Based Fuzzy Logic Controlled Isolated Bidirectional Converter Operating in Extended Phase Shift Control for Bidirectional Energy Transfer

Authors: Anupam Kumar, Abdul Hamid Bhat, Pramod Agarwal

Abstract:

Bidirectional energy transfer capability with high efficiency and reduced cost is fast gaining prominence in the central part of a lot of power conversion systems in Direct Current (DC) microgrid. Preferably, under the economics constraints, these systems utilise a single high efficiency power electronics conversion system and a dual active bridge converter. In this paper, modeling and performance of Dual Active Bridge (DAB) converter with Extended Phase Shift (EPS) is evaluated with two batteries on both sides of DC bus and bidirectional energy transfer is facilitated and this is further compared with the Single Phase Shift (SPS) mode of operation. Optimum operating zone is identified through exhaustive simulations using MATLAB/Simulink and SimPowerSystem software. Reduced rules based fuzzy logic controller is implemented for closed loop control of DAB converter. The control logic enables the bidirectional energy transfer within the batteries even at lower duty ratios. Charging and discharging of batteries is supervised by the fuzzy logic controller. State of charge, current and voltage for both the batteries are plotted in the battery characteristics. Power characteristics of batteries are also obtained using MATLAB simulations.

Keywords: Fuzzy logic controller, rule base, membership functions, dual active bridge converter, bidirectional power flow, duty ratio, extended phase shift, state of charge.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 870
2656 Enlightening Malaysia's Energy Policies and Strategies for Modernization and Sustainable Development

Authors: Hussain Ali Bekhet, Nor Salwati Othman

Abstract:

Malaysia has achieved remarkable economic growth since 1957, moving toward modernization from a predominantly agriculture base to manufacturing and—now—modern services. The development policies (i.e., New Economic Policy [1970–1990], the National Development Policy [1990–2000], and Vision 2020) have been recognized as the most important drivers of this transformation. The transformation of the economic structure has moved along with rapid gross domestic product (GDP) growth, urbanization growth, and greater demand for energy from mainly fossil fuel resources, which in turn, increase CO2 emissions. Malaysia faced a great challenge to bring down the CO2 emissions without compromising economic development. Solid policies and a strategy to reduce dependencies on fossil fuel resources and reduce CO2 emissions are needed in order to achieve sustainable development. This study provides an overview of the Malaysian economic, energy, and environmental situation, and explores the existing policies and strategies related to energy and the environment. The significance is to grasp a clear picture on what types of policies and strategies Malaysia has in hand. In the future, this examination should be extended by drawing a comparison with other developed countries and highlighting several options for sustainable development.

Keywords: Energy policies, energy efficiency, renewable energy, green building, Malaysia, sustainable development.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2663
2655 Machine Learning Methods for Environmental Monitoring and Flood Protection

Authors: Alexander L. Pyayt, Ilya I. Mokhov, Bernhard Lang, Valeria V. Krzhizhanovskaya, Robert J. Meijer

Abstract:

More and more natural disasters are happening every year: floods, earthquakes, volcanic eruptions, etc. In order to reduce the risk of possible damages, governments all around the world are investing into development of Early Warning Systems (EWS) for environmental applications. The most important task of the EWS is identification of the onset of critical situations affecting environment and population, early enough to inform the authorities and general public. This paper describes an approach for monitoring of flood protections systems based on machine learning methods. An Artificial Intelligence (AI) component has been developed for detection of abnormal dike behaviour. The AI module has been integrated into an EWS platform of the UrbanFlood project (EU Seventh Framework Programme) and validated on real-time measurements from the sensors installed in a dike.

Keywords: Early Warning System, intelligent environmentalmonitoring, machine learning, flood protection.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 4084
2654 Comparison of Field-Oriented Control and Direct Torque Control for Permanent Magnet Synchronous Motor (PMSM)

Authors: M. S. Merzoug, F. Naceri

Abstract:

This paper presents a comparative study on two most popular control strategies for Permanent Magnet Synchronous Motor (PMSM) drives: field-oriented control (FOC) and direct torque control (DTC). The comparison is based on various criteria including basic control characteristics, dynamic performance, and implementation complexity. The study is done by simulation using the Simulink Power System Blockset that allows a complete representation of the power section (inverter and PMSM) and the control system. The simulation and evaluation of both control strategies are performed using actual parameters of Permanent Magnet Synchronous Motor fed by an IGBT PWM inverter.

Keywords: PMSM, FOC, DTC, hysteresis, PWM.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 7080
2653 The Strategic Engine Model: Redefined Strategy Structure, as per Market-and Resource-Based Theory Application, Tested in the Automotive Industry

Authors: Krassimir Todorov

Abstract:

The purpose of the paper is to redefine the levels of structure of corporate, business and functional strategies that were established over the past several decades, to a conceptual model, consisting of corporate, business and operations strategies, that are reinforced by functional strategies. We will propose a conceptual framework of different perspectives in the role of strategic operations as a separate strategic place and reposition the remaining functional strategies as supporting tools, existing at all three levels. The proposed model is called ‘the strategic engine’, since the mutual relationships of its ingredients are identical with main elements and working principle of the internal combustion engine. Based on theoretical essence, related to every strategic level, we will prove that the strategic engine model is useful for managers seeking to safeguard the competitive advantage of their companies. Each strategy level is researched through its basic elements. At the corporate level we examine the scope of firm’s product, the vertical and geographical coverage. At the business level, the point of interest is limited to the SWOT analysis’ basic elements. While at operations level, the key research issue relates to the scope of the following performance indicators: cost, quality, speed, flexibility and dependability. In this relationship, the paper provides a different view for the role of operations strategy within the overall strategy concept. We will prove that the theoretical essence of operations goes far beyond the scope of traditionally accepted business functions. Exploring the applications of Resource-based theory and Market-based theory within the strategic levels framework, we will prove that there is a logical consequence of the theoretical impact in corporate, business and operations strategy – at every strategic level, the validity of one theory is substituted to the level of the other. Practical application of the conceptual model is tested in automotive industry. Actually, the proposed theoretical concept is inspired by a leading global automotive group – Inchcape PLC, listed on the London Stock Exchange, and constituent of the FTSE 250 Index.

Keywords: Business strategy, corporate strategy, functional strategies, operations strategy.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 881
2652 Improving Similarity Search Using Clustered Data

Authors: Deokho Kim, Wonwoo Lee, Jaewoong Lee, Teresa Ng, Gun-Ill Lee, Jiwon Jeong

Abstract:

This paper presents a method for improving object search accuracy using a deep learning model. A major limitation to provide accurate similarity with deep learning is the requirement of huge amount of data for training pairwise similarity scores (metrics), which is impractical to collect. Thus, similarity scores are usually trained with a relatively small dataset, which comes from a different domain, causing limited accuracy on measuring similarity. For this reason, this paper proposes a deep learning model that can be trained with a significantly small amount of data, a clustered data which of each cluster contains a set of visually similar images. In order to measure similarity distance with the proposed method, visual features of two images are extracted from intermediate layers of a convolutional neural network with various pooling methods, and the network is trained with pairwise similarity scores which is defined zero for images in identical cluster. The proposed method outperforms the state-of-the-art object similarity scoring techniques on evaluation for finding exact items. The proposed method achieves 86.5% of accuracy compared to the accuracy of the state-of-the-art technique, which is 59.9%. That is, an exact item can be found among four retrieved images with an accuracy of 86.5%, and the rest can possibly be similar products more than the accuracy. Therefore, the proposed method can greatly reduce the amount of training data with an order of magnitude as well as providing a reliable similarity metric.

Keywords: Visual search, deep learning, convolutional neural network, machine learning.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 827
2651 Learning Programming for Hearing Impaired Students via an Avatar

Authors: Nihal Esam Abuzinadah, Areej Abbas Malibari, Arwa Abdulaziz Allinjawi, Paul Krause

Abstract:

Deaf and hearing-impaired students face many obstacles throughout their education, especially with learning applied sciences such as computer programming. In addition, there is no clear signs in the Arabic Sign Language that can be used to identify programming logic terminologies such as while, for, case, switch etc. However, hearing disabilities should not be a barrier for studying purpose nowadays, especially with the rapid growth in educational technology. In this paper, we develop an Avatar based system to teach computer programming to deaf and hearing-impaired students using Arabic Signed language with new signs vocabulary that is been developed for computer programming education. The system is tested on a number of high school students and results showed the importance of visualization in increasing the comprehension or understanding of concepts for deaf students through the avatar.

Keywords: Hearing-impaired students, isolation, self-esteem, learning difficulties.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1223
2650 Applications of Prediction and Identification Using Adaptive DCMAC Neural Networks

Authors: Yu-Lin Liao, Ya-Fu Peng

Abstract:

An adaptive dynamic cerebellar model articulation controller (DCMAC) neural network used for solving the prediction and identification problem is proposed in this paper. The proposed DCMAC has superior capability to the conventional cerebellar model articulation controller (CMAC) neural network in efficient learning mechanism, guaranteed system stability and dynamic response. The recurrent network is embedded in the DCMAC by adding feedback connections in the association memory space so that the DCMAC captures the dynamic response, where the feedback units act as memory elements. The dynamic gradient descent method is adopted to adjust DCMAC parameters on-line. Moreover, the analytical method based on a Lyapunov function is proposed to determine the learning-rates of DCMAC so that the variable optimal learning-rates are derived to achieve most rapid convergence of identifying error. Finally, the adaptive DCMAC is applied in two computer simulations. Simulation results show that accurate identifying response and superior dynamic performance can be obtained because of the powerful on-line learning capability of the proposed DCMAC.

Keywords: adaptive, cerebellar model articulation controller, CMAC, prediction, identification

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1401
2649 Machine Learning for Aiding Meningitis Diagnosis in Pediatric Patients

Authors: Karina Zaccari, Ernesto Cordeiro Marujo

Abstract:

This paper presents a Machine Learning (ML) approach to support Meningitis diagnosis in patients at a children’s hospital in Sao Paulo, Brazil. The aim is to use ML techniques to reduce the use of invasive procedures, such as cerebrospinal fluid (CSF) collection, as much as possible. In this study, we focus on predicting the probability of Meningitis given the results of a blood and urine laboratory tests, together with the analysis of pain or other complaints from the patient. We tested a number of different ML algorithms, including: Adaptative Boosting (AdaBoost), Decision Tree, Gradient Boosting, K-Nearest Neighbors (KNN), Logistic Regression, Random Forest and Support Vector Machines (SVM). Decision Tree algorithm performed best, with 94.56% and 96.18% accuracy for training and testing data, respectively. These results represent a significant aid to doctors in diagnosing Meningitis as early as possible and in preventing expensive and painful procedures on some children.

Keywords: Machine learning, medical diagnosis, meningitis detection, gradient boosting.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1110
2648 Integration of Big Data to Predict Transportation for Smart Cities

Authors: Sun-Young Jang, Sung-Ah Kim, Dongyoun Shin

Abstract:

The Intelligent transportation system is essential to build smarter cities. Machine learning based transportation prediction could be highly promising approach by delivering invisible aspect visible. In this context, this research aims to make a prototype model that predicts transportation network by using big data and machine learning technology. In detail, among urban transportation systems this research chooses bus system.  The research problem that existing headway model cannot response dynamic transportation conditions. Thus, bus delay problem is often occurred. To overcome this problem, a prediction model is presented to fine patterns of bus delay by using a machine learning implementing the following data sets; traffics, weathers, and bus statues. This research presents a flexible headway model to predict bus delay and analyze the result. The prototyping model is composed by real-time data of buses. The data are gathered through public data portals and real time Application Program Interface (API) by the government. These data are fundamental resources to organize interval pattern models of bus operations as traffic environment factors (road speeds, station conditions, weathers, and bus information of operating in real-time). The prototyping model is designed by the machine learning tool (RapidMiner Studio) and conducted tests for bus delays prediction. This research presents experiments to increase prediction accuracy for bus headway by analyzing the urban big data. The big data analysis is important to predict the future and to find correlations by processing huge amount of data. Therefore, based on the analysis method, this research represents an effective use of the machine learning and urban big data to understand urban dynamics.

Keywords: Big data, bus headway prediction, machine learning, public transportation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1563
2647 Tokyo Skyscrapers: Technologically Advanced Structures in Seismic Areas

Authors: J. Szolomicki, H. Golasz-Szolomicka

Abstract:

The architectural and structural analysis of selected high-rise buildings in Tokyo is presented in this paper. The capital of Japan is the most densely populated city in the world and moreover is located in one of the most active seismic zones. The combination of these factors has resulted in the creation of sophisticated designs and innovative engineering solutions, especially in the field of design and construction of high-rise buildings. The foreign architectural studios (as, for Jean Nouvel, Kohn Pedesen Associates, Skidmore, Owings & Merill) which specialize in the designing of skyscrapers, played a major role in the development of technological ideas and architectural forms for such extraordinary engineering structures. Among the projects completed by them, there are examples of high-rise buildings that set precedents for future development. An essential aspect which influences the design of high-rise buildings is the necessity to take into consideration their dynamic reaction to earthquakes and counteracting wind vortices. The need to control motions of these buildings, induced by the force coming from earthquakes and wind, led to the development of various methods and devices for dissipating energy which occur during such phenomena. Currently, Japan is a global leader in seismic technologies which safeguard seismic influence on high-rise structures. Due to these achievements the most modern skyscrapers in Tokyo are able to withstand earthquakes with a magnitude of over seven degrees at the Richter scale. Damping devices applied are of a passive, which do not require additional power supply or active one which suppresses the reaction with the input of extra energy. In recent years also hybrid dampers were used, with an additional active element to improve the efficiency of passive damping.

Keywords: Core structure, damping systems, high-rise buildings.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1017
2646 Accelerating Quantum Chemistry Calculations: Machine Learning for Efficient Evaluation of Electron-Repulsion Integrals

Authors: Nishant Rodrigues, Nicole Spanedda, Chilukuri K. Mohan, Arindam Chakraborty

Abstract:

A crucial objective in quantum chemistry is the computation of the energy levels of chemical systems. This task requires electron-repulsion integrals as inputs and the steep computational cost of evaluating these integrals poses a major numerical challenge in efficient implementation of quantum chemical software. This work presents a moment-based machine learning approach for the efficient evaluation of electron-repulsion integrals. These integrals were approximated using linear combinations of a small number of moments. Machine learning algorithms were applied to estimate the coefficients in the linear combination. A random forest approach was used to identify promising features using a recursive feature elimination approach, which performed best for learning the sign of each coefficient, but not the magnitude. A neural network with two hidden layers was then used to learn the coefficient magnitudes, along with an iterative feature masking approach to perform input vector compression, identifying a small subset of orbitals whose coefficients are sufficient for the quantum state energy computation. Finally, a small ensemble of neural networks (with a median rule for decision fusion) was shown to improve results when compared to a single network.

Keywords: Quantum energy calculations, atomic orbitals, electron-repulsion integrals, ensemble machine learning, random forests, neural networks, feature extraction.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 188
2645 System Survivability in Networks in the Context of Defense/Attack Strategies: The Large Scale

Authors: A. Ben Yaghlane, M. N. Azaiez, M. Mrad

Abstract:

We investigate the large scale of networks in the context of network survivability under attack. We use appropriate techniques to evaluate and the attacker-based- and the defenderbased- network survivability. The attacker is unaware of the operated links by the defender. Each attacked link has some pre-specified probability to be disconnected. The defender choice is so that to maximize the chance of successfully sending the flow to the destination node. The attacker however will select the cut-set with the highest chance to be disabled in order to partition the network. Moreover, we extend the problem to the case of selecting the best p paths to operate by the defender and the best k cut-sets to target by the attacker, for arbitrary integers p,k>1. We investigate some variations of the problem and suggest polynomial-time solutions.

Keywords: Defense/attack strategies, large scale, networks, partitioning a network.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1481
2644 Students' Acceptance of Incorporating Emerging Communication Technologies in Higher Education in Kuwait

Authors: Bashaiar Alsanaa

Abstract:

Never has a revolution affected all aspects of humanity as the communication revolution during the past two decades. This revolution, with all its advances and utilities, swept the world thus becoming an integral part of our lives, hence giving way to emerging applications at the social, economic, political, and educational levels. More specifically, such applications have changed the delivery system through which learning is acquired by students. Interaction with educators, accessibility to content, and creative delivery options are but a few facets of the new learning experience now being offered through the use of technology in the educational field. With different success rates, third world countries have tried to pace themselves with use of educational technology in advanced parts of the world. One such country is the small rich-oil state of Kuwait which has tried to adopt the e-educational model, however, an evaluation of such trial is yet to be done. This study aimed to fill the void of research conducted around that topic. The study explored students' acceptance of incorporating communication technologies in higher education in Kuwait. Students' responses to survey questions presented an overview of the e-learning experience in this country, and drew a framework through which implications and suggestions for future research were discussed to better serve the advancement of e-education in developing countries.

Keywords: Communication technologies, E-learning, Kuwait, Social media

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1701
2643 Enhancing Critical Reflective Practice in Fieldwork Education: An Exploratory Study of the Role of Social Work Agencies in the Welfare Context of Hong Kong

Authors: Yee-May Chan

Abstract:

In recent decades, it is observed that social work agencies have participated actively, and thus, have gradually been more influential in social work education in Hong Kong. The neo-liberal welfare ideologies and changing funding mode have transformed the landscape in social work practice and have also had a major influence on the fieldwork environment in Hong Kong. The aim of this research is to explore the educational role of social work agencies and examine in particular whether they are able to enhance or hinder critical reflective learning in fieldwork. In-depth interviews with 15 frontline social workers and managers in different social work agencies were conducted to collect their views and experience in helping social work students in fieldwork. The overall findings revealed that under the current social welfare context most social workers consider that the most important role of social work agencies in fieldwork is to help students prepare to fit-in the practice requirements and work within agencies’ boundary. The fit-for-purpose and down-to-earth view of fieldwork practice is seen as prevalent among most social workers. This narrow perception of agency’s role seems to be more favourable to competence-based approaches. In contrast, though critical reflection has been seen as important in addressing the changing needs of service users, the role of enhancing critical reflective learning has not been clearly expected or understood by most agency workers. The notion of critical reflection, if considered, has been narrowly perceived in fieldwork learning. The findings suggest that the importance of critical reflection is found to be subordinate to that of practice competence. The lack of critical reflection in the field is somehow embedded in the competence-based social work practice. In general, social work students’ critical reflection has not been adequately supported or enhanced in fieldwork agencies, nor critical reflective practice has been encouraged in fieldwork process. To address this situation, the role of social work agencies in fieldwork should be re-examined. To maximise critical reflective learning in the field, critical reflection as an avowed objective in fieldwork learning should be clearly stated. Concrete suggestions are made to help fieldwork agencies become more prepared to critical reflective learning. It is expected that the research can help social work communities to reflect upon the current realities of fieldwork context and to identify ways to strengthen agencies’ capacities to enhance critical reflective learning and practice of social work students.

Keywords: Competence-based social work, fieldwork, neo-liberal welfare, critical reflective learning.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1009
2642 Vocational Skills, Recognition of Prior Learning and Technology: The Future of Higher Education

Authors: Shankar Subramanian Iyer

Abstract:

The vocational education, enhanced by technology and Recognition of Prior Learning (RPL) is going to be the main ingredient of the future of education. This is coming from the various issues of the current educational system like cost, time, type of course, type of curriculum, unemployment, to name the major reasons. Most millennials like to perform and learn rather than learning how to perform. This is the essence of vocational education be it any field from cooking, painting, plumbing to modern technologies using computers. Even a more theoretical course like entrepreneurship can be taught as to be an entrepreneur and learn about its nuances. The best way to learn accountancy is actually keeping accounts for a small business or grocer and learn the ropes of accountancy and finance. The purpose of this study is to investigate the relationship between vocational skills, RPL and new technologies with future employability. This study implies that individual's knowledge and skills are essential aspects to be emphasized in future education and to give credit for prior experience for future employability. Virtual reality can be used to stimulate workplace situations for vocational learning for fields like hospitality, medical emergencies, healthcare, draughtsman ship, building inspection, quantity surveying, estimation, to name a few. All disruptions in future education, especially vocational education, are going to be technology driven with the advent of AI, ML, IoT, VR, VI etc. Vocational education not only helps institutes cut costs drastically, but allows all students to have hands-on experiences, rather than to be observers. The earlier experiential learning theory and the recent theory of knowledge and skills-based learning modified and applied to the vocational education and development of skills is the proposed contribution of this paper. Apart from secondary research study on major scholarly articles, books, primary research using interviews, questionnaire surveys have been used to validate and test the reliability of the suggested model using Partial Least Square- Structural Equation Method (PLS-SEM), the factors being assimilated using an existing literature review. Major findings have been that there exists high relationship between the vocational skills, RPL, new technology to the future employability through mediation of future employability skills.

Keywords: Vocational education, vocational skills, competencies, modern technologies, Recognition of Prior Learning, RPL.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 775
2641 HIV Modelling - Parallel Implementation Strategies

Authors: Dimitri Perrin, Heather J. Ruskin, Martin Crane

Abstract:

We report on the development of a model to understand why the range of experience with respect to HIV infection is so diverse, especially with respect to the latency period. To investigate this, an agent-based approach is used to extract highlevel behaviour which cannot be described analytically from the set of interaction rules at the cellular level. A network of independent matrices mimics the chain of lymph nodes. Dealing with massively multi-agent systems requires major computational effort. However, parallelisation methods are a natural consequence and advantage of the multi-agent approach and, using the MPI library, are here implemented, tested and optimized. Our current focus is on the various implementations of the data transfer across the network. Three communications strategies are proposed and tested, showing that the most efficient approach is communication based on the natural lymph-network connectivity.

Keywords: HIV, Immune modelling, MPI, Parallelisation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1550
2640 Analyses of Socio-Cognitive Identity Styles by Slovak Adolescents

Authors: Blandína Šramová, Gabriel Bianchi, Barbara Lášticová, Katarína Fichnová, Anežka Hamranová

Abstract:

The contribution deals with analysis of identity style at adolescents (N=463) at the age from 16 to 19 (the average age is 17,7 years). We used the Identity Style Inventory by Berzonsky, distinguishing three basic, measured identity styles: informational, normative, diffuse-avoidant identity style and also commitment. The informational identity style influencing on personal adaptability, coping strategies, quality of life and the normative identity style, it means the style in which an individual takes on models of authorities at self-defining were found to have the highest representation in the studied group of adolescents by higher scores at girls in comparison with boys. The normative identity style positively correlates with the informational identity style. The diffuse-avoidant identity style was found to be positively associated with maladaptive decisional strategies, neuroticism and depressive reactions. There is the style, in which the individual shifts aside defining his personality. In our research sample the lowest score represents it and negatively correlates with commitment, it means with coping strategies, thrust in oneself and the surrounding world. The age of adolescents did not significantly differentiate representation of identity style. We were finding the model, in which informational and normative identity style had positive relationship and the informational and diffuseavoidant style had negative relationship, which were determinated with commitment. In the same time the commitment is influenced with other outside factors.

Keywords: Identity Style Inventory, Informational IdentityStyle, Normative Identity Style, Diffuse-Avoidant Style, IdentityCommitment.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1597
2639 The Study of Idiom Translation in Fiction from English into Thai

Authors: Chinchira Bunchutrakun

Abstract:

The purposes of the study are to investigate the problems that the translators encountered when translating English idioms into Thai and study the strategies they applied in solving the problems. The original English version and the Thai translated version of each of two works of fiction were purposively selected for the study. The first was Mr. Maybe, written by Jane Green and translated by Montharat Songphao. The second was The Trials of Tiffany Trott, written by Isabel Wolff and translated by Jitraporn Notoda. Thirty idioms of two translated works of fiction were, then, analyzed. Questionnaires and interviews with the translators of each novel were conducted to obtain the best possible information.

The results indicated that the only type of problem that occurred was cultural problems, and these were solved differently by the two translators

Keywords: Translation, idiom translation, fiction translation, problem-solution strategies.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3557
2638 A Protocol for Applied Consumer Behavior Research in Academia

Authors: A. Otjen, S. Keller

Abstract:

A Montana university has used applied consumer research in experiential learning with non-profit clients for over a decade. Through trial and error, a successful protocol has been established from problem statement through formative research to integrated marketing campaign execution. In this paper, we describe the protocol and its applications. Analysis was completed to determine the effectiveness of the campaigns and the results of how pre- and post-consumer research mark societal change because of media.

Keywords: Marketing, experiential learning, consumer behavior, community partner.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 188
2637 A Study on Holosen-Pleistosen Sedimentology of Morphotectonic Structure and Seismicity of Gökova Bay

Authors: Ebru Aktepe Erkoç, Atilla Uluğ

Abstract:

In this research which has been prepared to show the relationship between Gökova Bay’s morphotectonic structure and seismicity, it is clear that there are many active faults in the region. The existence of a thick sedimentary accumulation since Late Quaternary times is obvious as a result of the geophysical workings in the region and the interpretation of seismic data which has been planning to be taken from the Bay. In the regions which have been tectonically active according to the interpretation of the taken data, the existence of the successive earthquakes in the last few years is remarkable. By analyzing large earthquakes affecting the areas remaining inside the sediments in West Anatolian Collapse System, this paper aims to reveal the fault systems constituting earthquakes with the information obtained from this study and to determine seismicity of the present residential areas right next to them. It is also aimed to anticipate the measures to be taken against possible earthquake hazards, to identify these areas posing a risk in terms of residential and urban planning and to determine at least partly the characteristics of the basin.

Keywords: Gökova Bay, seismic, sedimentation, West Anatolian Region.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2535
2636 Medical Imaging Fusion: A Teaching-Learning Simulation Environment

Authors: Cristina M. R. Caridade, Ana Rita F. Morais

Abstract:

The use of computational tools has become essential in the context of interactive learning, especially in engineering education. In the medical industry, teaching medical image processing techniques is a crucial part of training biomedical engineers, as it has integrated applications with health care facilities and hospitals. The aim of this article is to present a teaching-learning simulation tool, developed in MATLAB using Graphical User Interface, for medical image fusion that explores different image fusion methodologies and processes in combination with image pre-processing techniques. The application uses different algorithms and medical fusion techniques in real time, allowing to view original images and fusion images, compare processed and original images, adjust parameters and save images. The tool proposed in an innovative teaching and learning environment, consists of a dynamic and motivating teaching simulation for biomedical engineering students to acquire knowledge about medical image fusion techniques, necessary skills for the training of biomedical engineers. In conclusion, the developed simulation tool provides a real-time visualization of the original and fusion images and the possibility to test, evaluate and progress the student’s knowledge about the fusion of medical images. It also facilitates the exploration of medical imaging applications, specifically image fusion, which is critical in the medical industry. Teachers and students can make adjustments and/or create new functions, making the simulation environment adaptable to new techniques and methodologies.

Keywords: Image fusion, image processing, teaching-learning simulation tool, biomedical engineering education.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 26
2635 Classification of Computer Generated Images from Photographic Images Using Convolutional Neural Networks

Authors: Chaitanya Chawla, Divya Panwar, Gurneesh Singh Anand, M. P. S Bhatia

Abstract:

This paper presents a deep-learning mechanism for classifying computer generated images and photographic images. The proposed method accounts for a convolutional layer capable of automatically learning correlation between neighbouring pixels. In the current form, Convolutional Neural Network (CNN) will learn features based on an image's content instead of the structural features of the image. The layer is particularly designed to subdue an image's content and robustly learn the sensor pattern noise features (usually inherited from image processing in a camera) as well as the statistical properties of images. The paper was assessed on latest natural and computer generated images, and it was concluded that it performs better than the current state of the art methods.

Keywords: Image forensics, computer graphics, classification, deep learning, convolutional neural networks.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1175
2634 A Soft Switching PWM DC-DC Boost Converter with Increased Efficiency by Using ZVT-ZCT Techniques

Authors: Yakup Sahin, Naim Suleyman Ting, Ismail Aksoy

Abstract:

In this paper, an improved active snubber cell is proposed on account of soft switching (SS) family of pulse width modulation (PWM) DC-DC converters. The improved snubber cell provides zero-voltage transition (ZVT) turn on and zero-current transition (ZCT) turn off for main switch. The snubber cell decreases EMI noise and operates with SS in a wide range of line and load voltages. Besides, all of the semiconductor devices in the converter operate with SS. There is no additional voltage and current stress on the main devices. Additionally, extra voltage stress does not occur on the auxiliary switch and its current stress is acceptable value. The improved converter has a low cost and simple structure. The theoretical analysis of converter is clarified and the operating states are given in detail. The experimental results of converter are obtained by prototype of 500 W and 100 kHz. It is observed that the experimental results and theoretical analysis of converter are suitable with each other perfectly.

Keywords: Active snubber cells, DC-DC converters, zero-voltage transition, zero-current transition.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1929
2633 Knowledge Management Factors Affecting the Level of Commitment

Authors: Abbas Keramati, Abtin Boostani, Mohammad Jamal Sadeghi

Abstract:

This paper examines the influence of knowledge management factors on organizational commitment for employees in the oil and gas drilling industry of Iran. We determine what knowledge factors have the greatest impact on the personnel loyalty and commitment to the organization using collected data from a survey of over 300 full-time personnel working in three large companies active in oil and gas drilling industry of Iran. To specify the effect of knowledge factors in the organizational commitment of the personnel in the studied organizations, the Principal Component Analysis (PCA) is used. Findings of our study show that the factors such as knowledge and expertise, in-service training, the knowledge value and the application of individuals’ knowledge in the organization as the factor “learning and perception of personnel from the value of knowledge within the organization” has the greatest impact on the organizational commitment. After this factor, “existence of knowledge and knowledge sharing environment in the organization”; “existence of potential knowledge exchanging in the organization”; and “organizational knowledge level” factors have the most impact on the organizational commitment of personnel, respectively.

Keywords: Knowledge management, organizational commitment, loyalty, drilling industry, principle component analysis.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 877
2632 Teachers’ Continuance Intention Towards Using Madrasati Platform: A Conceptual Framework

Authors: Fiasal Assiri, Joanna Wincenciak, David Morrison-Love

Abstract:

With the rapid spread of the COVID-19 pandemic, the Saudi government suspended students from going to school to combat the outbreak. As e-learning was not applied at all in schools, online teaching and learning have been revived in Saudi Arabia by providing a new platform called ‘Madrasati’. The Decomposed Theory of Planned Behaviour (DTPB) is used to examine individuals’ intention behaviour in many fields. Nevertheless, the factors that affect teachers’ continuance intention of the Madrasati platform have not yet been investigated. The purpose of this paper is to present a conceptual model in light with DTPB. To enhance the predictability of the model, the study incorporates other variables including learning content quality and interactivity as sub-factors under the perceived usefulness, students and government influences under the subjective norms, and technical support and prior e-learning experience under the perceived behavioural control. The model will be further validated using a mixed methods approach. Such findings would help administrators and stakeholders to understand teachers’ needs and develop new methods that might encourage teachers to continue using Madrasati effectively in their teaching.

Keywords: Madrasati, Decomposed Theory of Planned Behaviour, continuance intention, attitude, subjective norms, perceived behavioural control.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 501
2631 Multi-Agent Systems for Intelligent Clustering

Authors: Jung-Eun Park, Kyung-Whan Oh

Abstract:

Intelligent systems are required in order to quickly and accurately analyze enormous quantities of data in the Internet environment. In intelligent systems, information extracting processes can be divided into supervised learning and unsupervised learning. This paper investigates intelligent clustering by unsupervised learning. Intelligent clustering is the clustering system which determines the clustering model for data analysis and evaluates results by itself. This system can make a clustering model more rapidly, objectively and accurately than an analyzer. The methodology for the automatic clustering intelligent system is a multi-agent system that comprises a clustering agent and a cluster performance evaluation agent. An agent exchanges information about clusters with another agent and the system determines the optimal cluster number through this information. Experiments using data sets in the UCI Machine Repository are performed in order to prove the validity of the system.

Keywords: Intelligent Clustering, Multi-Agent System, PCA, SOM, VC(Variance Criterion)

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1727
2630 Hybrid Reliability-Similarity-Based Approach for Supervised Machine Learning

Authors: Walid Cherif

Abstract:

Data mining has, over recent years, seen big advances because of the spread of internet, which generates everyday a tremendous volume of data, and also the immense advances in technologies which facilitate the analysis of these data. In particular, classification techniques are a subdomain of Data Mining which determines in which group each data instance is related within a given dataset. It is used to classify data into different classes according to desired criteria. Generally, a classification technique is either statistical or machine learning. Each type of these techniques has its own limits. Nowadays, current data are becoming increasingly heterogeneous; consequently, current classification techniques are encountering many difficulties. This paper defines new measure functions to quantify the resemblance between instances and then combines them in a new approach which is different from actual algorithms by its reliability computations. Results of the proposed approach exceeded most common classification techniques with an f-measure exceeding 97% on the IRIS Dataset.

Keywords: Data mining, knowledge discovery, machine learning, similarity measurement, supervised classification.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1529
2629 Self-Propelled Intelligent Robotic Vehicle Based on Octahedral Dodekapod to Move in Active Branched Pipelines with Variable Cross-Sections

Authors: Sergey N. Sayapin, Anatoly P. Karpenko, Suan H. Dang

Abstract:

Comparative analysis of robotic vehicles for pipe inspection is presented in this paper. The promising concept of self-propelled intelligent robotic vehicle (SPIRV) based on octahedral dodekapod for inspection and operation in active branched pipelines with variable cross-sections is reasoned. SPIRV is able to move in pipeline, regardless of its spatial orientation. SPIRV can also be used to move along the outside of the pipelines as well as in space between surfaces of annular tubes. Every one of faces of the octahedral dodekapod can clamp/unclamp a thing with a closed loop surface of various forms as well as put pressure on environmental surface of contact. These properties open new possibilities for its applications in SPIRV. We examine design principles of octahedral dodekapod as future intelligent building blocks for various robotic vehicles that can self-move and self-reconfigure.

Keywords: Modular robot, octahedral dodekapod, pipe inspection robot, spatial parallel structure.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1127
2628 A Case Study of Mobile Game Based Learning Design for Gender Responsive STEM Education

Authors: Raluca Ionela Maxim

Abstract:

Designing a gender responsive Science, Technology, Engineering and Mathematics (STEM) mobile game based learning solution (mGBL) is a challenge in terms of content, gamification level and equal engagement of girls and boys. The goal of this case study was to research and create a high-fidelity prototype design of a mobile game that contains role-models as avatars that guide and expose girls and boys to STEM learning content. For this research purpose it was applied the methodology of design sprint with five-phase process that combines design thinking principles. The technique of this methodology comprises smart interviews with STEM experts, mind-map creation, sketching, prototyping and usability testing of the interactive prototype of the gender responsive STEM mGBL. The results have shown that the effect of the avatar/role model had a positive impact. Therefore, by exposing students (boys and girls) to STEM role models in an mGBL tool is helpful for the decreasing of the gender inequalities in STEM fields.

Keywords: Design thinking, design sprint, gender-responsive STEM education, mobile game based learning, role-models.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1373