Search results for: Case-based reasoning; Breast cancer diagnosis; Genetic algorithm; Wrapper feature selection
4552 Risk of Occupational Exposure to Cytotoxic Drugs: The Role of Handling Procedures of Hospital Workers
Authors: J. Silva, P. Arezes, R. Schierl, N. Costa
Abstract:
In order to study environmental contamination by cytostatic drugs in Portugal hospitals, sampling campaigns were conducted in three hospitals in 2015 (112 samples). Platinum containing drugs and fluorouracil were chosen because both were administered in high amounts. The detection limit was 0.01 pg/cm² for platinum and 0.1 pg/cm² for fluorouracil. The results show that spills occur mainly on the patient`s chair, while the most referenced occurrence is due to an inadequately closed wrapper. Day hospitals facilities were detected as having the largest number of contaminated samples and with higher levels of contamination.
Keywords: Antineoplastic, drugs, exposure, surface.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 10514551 Sensitivity Analysis during the Optimization Process Using Genetic Algorithms
Authors: M. A. Rubio, A. Urquia
Abstract:
Genetic algorithms (GA) are applied to the solution of high-dimensional optimization problems. Additionally, sensitivity analysis (SA) is usually carried out to determine the effect on optimal solutions of changes in parameter values of the objective function. These two analyses (i.e., optimization and sensitivity analysis) are computationally intensive when applied to high-dimensional functions. The approach presented in this paper consists in performing the SA during the GA execution, by statistically analyzing the data obtained of running the GA. The advantage is that in this case SA does not involve making additional evaluations of the objective function and, consequently, this proposed approach requires less computational effort than conducting optimization and SA in two consecutive steps.Keywords: Optimization, sensitivity, genetic algorithms, model calibration.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 14734550 Offset Dependent Uniform Delay Mathematical Optimization Model for Signalized Traffic Network Using Differential Evolution Algorithm
Authors: Tahseen Al-Shaikhli, Halim Ceylan, Jonathan Weaver, Osman Nuri Çelik, Onur Gungor Sahin
Abstract:
A concept of uniform delay offset dependent mathematical optimization problem is derived as the main objective for this study using a differential evolution algorithm. Furthermore, the objectives are to control the coordination problem which mainly depends on offset selection, and to estimate the uniform delay based on the offset choice at each signalized intersection. The assumption is the periodic sinusoidal function for arrival and departure patterns. The cycle time is optimized at the entry links and the optimized value is used in the non-entry links as a common cycle time. The offset optimization algorithm is used to calculate the uniform delay at each link. The results are illustrated by using a case study and compared with the canonical uniform delay model derived by Webster and the highway capacity manual’s model. The findings show that the derived model minimizes the total uniform delay to almost half compared to conventional models; the mathematical objective function is robust; the algorithm convergence time is fast.
Keywords: Area traffic control, differential evolution, offset variable, sinusoidal periodic function, traffic flow, uniform delay.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3654549 Evaluation and Selection of Construction Contractors by Polish Public Clients
Authors: R. Kozik, A. Leśniak A., E. Plebankiewicz
Abstract:
Contracting authorities in the public sector are obligated to apply the principles provided for in the Polish law for the evaluation and selection of contractors. In order to analyse the methods of contractors selecting applied in practice by public clients, the notices of contract award results for construction works were analysed. The analysis shows that the procedure selected more and more often is open competitive bidding, where the assessment of the competence of contractors is not very precise, as well as noncompetitive bidding, i.e. single source procurement. The share of procurement procedures, where the only criterion is price, is increasing. The solution to the problems existing here might be the introduction of one of the forms of pre-selection of contractors. The article also briefly discusses verification systems for companies applying for public contracts used in EU countries.
Keywords: Certification, contractors selection, open tendering, public investors.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 19334548 A Method under Uncertain Information for the Selection of Students in Interdisciplinary Studies
Authors: José M. Merigó, Pilar López-Jurado, M.Carmen Gracia, Montserrat Casanovas
Abstract:
We present a method for the selection of students in interdisciplinary studies based on the hybrid averaging operator. We assume that the available information given in the problem is uncertain so it is necessary to use interval numbers. Therefore, we suggest a new type of hybrid aggregation called uncertain induced generalized hybrid averaging (UIGHA) operator. It is an aggregation operator that considers the weighted average (WA) and the ordered weighted averaging (OWA) operator in the same formulation. Therefore, we are able to consider the degree of optimism of the decision maker and grades of importance in the same approach. By using interval numbers, we are able to represent the information considering the best and worst possible results so the decision maker gets a more complete view of the decision problem. We develop an illustrative example of the proposed scheme in the selection of students in interdisciplinary studies. We see that with the use of the UIGHA operator we get a more complete representation of the selection problem. Then, the decision maker is able to consider a wide range of alternatives depending on his interests. We also show other potential applications that could be used by using the UIGHA operator in educational problems about selection of different types of resources such as students, professors, etc.Keywords: Decision making, Selection of students, Uncertainty, Aggregation operators.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 13944547 Information Retrieval in Domain Specific Search Engine with Machine Learning Approaches
Authors: Shilpy Sharma
Abstract:
As the web continues to grow exponentially, the idea of crawling the entire web on a regular basis becomes less and less feasible, so the need to include information on specific domain, domain-specific search engines was proposed. As more information becomes available on the World Wide Web, it becomes more difficult to provide effective search tools for information access. Today, people access web information through two main kinds of search interfaces: Browsers (clicking and following hyperlinks) and Query Engines (queries in the form of a set of keywords showing the topic of interest) [2]. Better support is needed for expressing one's information need and returning high quality search results by web search tools. There appears to be a need for systems that do reasoning under uncertainty and are flexible enough to recover from the contradictions, inconsistencies, and irregularities that such reasoning involves. In a multi-view problem, the features of the domain can be partitioned into disjoint subsets (views) that are sufficient to learn the target concept. Semi-supervised, multi-view algorithms, which reduce the amount of labeled data required for learning, rely on the assumptions that the views are compatible and uncorrelated. This paper describes the use of semi-structured machine learning approach with Active learning for the “Domain Specific Search Engines". A domain-specific search engine is “An information access system that allows access to all the information on the web that is relevant to a particular domain. The proposed work shows that with the help of this approach relevant data can be extracted with the minimum queries fired by the user. It requires small number of labeled data and pool of unlabelled data on which the learning algorithm is applied to extract the required data.Keywords: Search engines; machine learning, Informationretrieval, Active logic.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 20824546 Feature Preserving Image Interpolation and Enhancement Using Adaptive Bidirectional Flow
Authors: Shujun Fu, Qiuqi Ruan, Wenqia Wang
Abstract:
Image interpolation is a common problem in imaging applications. However, most interpolation algorithms in existence suffer visually to some extent the effects of blurred edges and jagged artifacts in the image. This paper presents an adaptive feature preserving bidirectional flow process, where an inverse diffusion is performed to enhance edges along the normal directions to the isophote lines (edges), while a normal diffusion is done to remove artifacts (''jaggies'') along the tangent directions. In order to preserve image features such as edges, angles and textures, the nonlinear diffusion coefficients are locally adjusted according to the first and second order directional derivatives of the image. Experimental results on synthetic images and nature images demonstrate that our interpolation algorithm substantially improves the subjective quality of the interpolated images over conventional interpolations.
Keywords: anisotropic diffusion, bidirectional flow, directionalderivatives, edge enhancement, image interpolation, inverse flow, shock filter.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 14974545 Using Different Aspects of the Signings for Appearance-based Sign Language Recognition
Authors: Morteza Zahedi, Philippe Dreuw, Thomas Deselaers, Hermann Ney
Abstract:
Sign language is used by the deaf and hard of hearing people for communication. Automatic sign language recognition is a challenging research area since sign language often is the only way of communication for the deaf people. Sign language includes different components of visual actions made by the signer using the hands, the face, and the torso, to convey his/her meaning. To use different aspects of signs, we combine the different groups of features which have been extracted from the image frames recorded directly by a stationary camera. We combine the features in two levels by employing three techniques. At the feature level, an early feature combination can be performed by concatenating and weighting different feature groups, or by concatenating feature groups over time and using LDA to choose the most discriminant elements. At the model level, a late fusion of differently trained models can be carried out by a log-linear model combination. In this paper, we investigate these three combination techniques in an automatic sign language recognition system and show that the recognition rate can be significantly improved.
Keywords: American sign language, appearance-based features, Feature combination, Sign language recognition
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 13974544 Swarmed Discriminant Analysis for Multifunction Prosthesis Control
Authors: Rami N. Khushaba, Ahmed Al-Ani, Adel Al-Jumaily
Abstract:
One of the approaches enabling people with amputated limbs to establish some sort of interface with the real world includes the utilization of the myoelectric signal (MES) from the remaining muscles of those limbs. The MES can be used as a control input to a multifunction prosthetic device. In this control scheme, known as the myoelectric control, a pattern recognition approach is usually utilized to discriminate between the MES signals that belong to different classes of the forearm movements. Since the MES is recorded using multiple channels, the feature vector size can become very large. In order to reduce the computational cost and enhance the generalization capability of the classifier, a dimensionality reduction method is needed to identify an informative yet moderate size feature set. This paper proposes a new fuzzy version of the well known Fisher-s Linear Discriminant Analysis (LDA) feature projection technique. Furthermore, based on the fact that certain muscles might contribute more to the discrimination process, a novel feature weighting scheme is also presented by employing Particle Swarm Optimization (PSO) for estimating the weight of each feature. The new method, called PSOFLDA, is tested on real MES datasets and compared with other techniques to prove its superiority.Keywords: Discriminant Analysis, Pattern Recognition, SignalProcessing.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15554543 Simulation of Climate Variability for Assessing Impacts on Yield and Genetic Change of Thai Soybean
Authors: Kanita Thanacharoenchanaphas, Orose Rugchati
Abstract:
This study assessed the effects of climate change on Thai soybeans under simulation situations. Our study is focused on temperature variability and effects on growth, yield, and genetic changes in 2 generations of Chiang Mai 60 cultivars. In the experiment, soybeans were exposed to 3 levels of air temperature for 8 h day-1 in an open top chamber for 2 cropping periods. Air temperature levels in each treatment were controlled at 30-33°C (± 2.3) for LT-treatment, 33-36°C ( ± 2.4) for AT-treatment, and 36-40 °C ( ± 3.2) for HT-treatment, respectively. Positive effects of high temperature became obvious at the maturing stage when yield significantly increased in both cropping periods. Results in growth indicated that shoot length at the pre-maturing stage (V3-R3) was more positively affected by high temperature than at the maturing stage. However, the positive effect on growth under high temperature was not found in the 2nd cropping period. Finally, genetic changes were examined in phenotype characteristics by the AFLPs technique. The results showed that the high temperature factor clearly caused genetic change in the soybeans and showed more alteration in the 2nd cropping period.Keywords: simulation, air temperature, variability, Thai soybean, yield , genetic change
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16804542 Deterministic Random Number Generator Algorithm for Cryptosystem Keys
Authors: Adi A. Maaita, Hamza A. A. Al_Sewadi
Abstract:
One of the crucial parameters of digital cryptographic systems is the selection of the keys used and their distribution. The randomness of the keys has a strong impact on the system’s security strength being difficult to be predicted, guessed, reproduced, or discovered by a cryptanalyst. Therefore, adequate key randomness generation is still sought for the benefit of stronger cryptosystems. This paper suggests an algorithm designed to generate and test pseudo random number sequences intended for cryptographic applications. This algorithm is based on mathematically manipulating a publically agreed upon information between sender and receiver over a public channel. This information is used as a seed for performing some mathematical functions in order to generate a sequence of pseudorandom numbers that will be used for encryption/decryption purposes. This manipulation involves permutations and substitutions that fulfill Shannon’s principle of “confusion and diffusion”. ASCII code characters were utilized in the generation process instead of using bit strings initially, which adds more flexibility in testing different seed values. Finally, the obtained results would indicate sound difficulty of guessing keys by attackers.Keywords: Cryptosystems, Information Security agreement, Key distribution, Random numbers.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 34304541 Study of Sickle Cell Syndromes in the Population of the Region of Batna
Authors: K .Belhadi, H. Bousselsela, M. Yahia, A. Zidani, S. Benbia
Abstract:
Sickle cell anemia is a recessive genetic disease caused by the presence in the red blood cell, of abnormal hemoglobin called hemoglobin S. It results from the replacement in the beta chain of the acid glutamic acid by valin at position 6. Topics may be homozygous (SS) or heterozygous (AS) most often asymptomatic. Other mutations result in compound heterozygous: - Synthesis of hemoglobin C mutation in the sixth leucin codon (heterozygous SC); - ß-thalassemia (heterozygous S-ß thalassemia). SS homozygous, heterozygous SC and S- ß -thalassemia are grouped under the major sickle cell syndromes. To make a laboratory diagnosis of hemoglobinopathies in a portion of the population in region of Batna, our study was conducted on 115 patients with suspected sickle cell anemia, all cases have benefited from hematological tests as blood count (count RBC, calculated erythrocyte indices, MCV and MCHC, measuring the hemoglobin concentration) and a biochemical test in this case electrophoresis CAPILLARYS HEMOGLOBIN (E). The results showed: 27 cases of sickle cell anemia were found on 115 suspected cases, 73,03% homozygous sickle cell disease and 59,25% sickle cell trait. Finally, the double heterozygous S/C, represent the incidence rate of 3, 70%.Keywords: Hemoglobin, sickle cell syndromes, laboratory diagnosis
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15444540 Wireless Transmission of Big Data Using Novel Secure Algorithm
Authors: K. Thiagarajan, K. Saranya, A. Veeraiah, B. Sudha
Abstract:
This paper presents a novel algorithm for secure, reliable and flexible transmission of big data in two hop wireless networks using cooperative jamming scheme. Two hop wireless networks consist of source, relay and destination nodes. Big data has to transmit from source to relay and from relay to destination by deploying security in physical layer. Cooperative jamming scheme determines transmission of big data in more secure manner by protecting it from eavesdroppers and malicious nodes of unknown location. The novel algorithm that ensures secure and energy balance transmission of big data, includes selection of data transmitting region, segmenting the selected region, determining probability ratio for each node (capture node, non-capture and eavesdropper node) in every segment, evaluating the probability using binary based evaluation. If it is secure transmission resume with the two- hop transmission of big data, otherwise prevent the attackers by cooperative jamming scheme and transmit the data in two-hop transmission.Keywords: Big data, cooperative jamming, energy balance, physical layer, two-hop transmission, wireless security.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 21794539 An Improvement of Multi-Label Image Classification Method Based on Histogram of Oriented Gradient
Authors: Ziad Abdallah, Mohamad Oueidat, Ali El-Zaart
Abstract:
Image Multi-label Classification (IMC) assigns a label or a set of labels to an image. The big demand for image annotation and archiving in the web attracts the researchers to develop many algorithms for this application domain. The existing techniques for IMC have two drawbacks: The description of the elementary characteristics from the image and the correlation between labels are not taken into account. In this paper, we present an algorithm (MIML-HOGLPP), which simultaneously handles these limitations. The algorithm uses the histogram of gradients as feature descriptor. It applies the Label Priority Power-set as multi-label transformation to solve the problem of label correlation. The experiment shows that the results of MIML-HOGLPP are better in terms of some of the evaluation metrics comparing with the two existing techniques.Keywords: Data mining, information retrieval system, multi-label, problem transformation, histogram of gradients.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 13144538 An Algorithm for Computing the Analytic Singular Value Decomposition
Authors: Drahoslava Janovska, Vladimir Janovsky, Kunio Tanabe
Abstract:
A proof of convergence of a new continuation algorithm for computing the Analytic SVD for a large sparse parameter– dependent matrix is given. The algorithm itself was developed and numerically tested in [5].
Keywords: Analytic Singular Value Decomposition, large sparse parameter–dependent matrices, continuation algorithm of a predictorcorrector type.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 14554537 Operating System Based Virtualization Models in Cloud Computing
Authors: Dev Ras Pandey, Bharat Mishra, S. K. Tripathi
Abstract:
Cloud computing is ready to transform the structure of businesses and learning through supplying the real-time applications and provide an immediate help for small to medium sized businesses. The ability to run a hypervisor inside a virtual machine is important feature of virtualization and it is called nested virtualization. In today’s growing field of information technology, many of the virtualization models are available, that provide a convenient approach to implement, but decision for a single model selection is difficult. This paper explains the applications of operating system based virtualization in cloud computing with an appropriate/suitable model with their different specifications and user’s requirements. In the present paper, most popular models are selected, and the selection was based on container and hypervisor based virtualization. Selected models were compared with a wide range of user’s requirements as number of CPUs, memory size, nested virtualization supports, live migration and commercial supports, etc. and we identified a most suitable model of virtualization.
Keywords: Virtualization, OS based virtualization, container and hypervisor based virtualization.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 19424536 A Novel Prostate Segmentation Algorithm in TRUS Images
Authors: Ali Rafiee, Ahad Salimi, Ali Reza Roosta
Abstract:
Prostate cancer is one of the most frequent cancers in men and is a major cause of mortality in the most of countries. In many diagnostic and treatment procedures for prostate disease accurate detection of prostate boundaries in transrectal ultrasound (TRUS) images is required. This is a challenging and difficult task due to weak prostate boundaries, speckle noise and the short range of gray levels. In this paper a novel method for automatic prostate segmentation in TRUS images is presented. This method involves preprocessing (edge preserving noise reduction and smoothing) and prostate segmentation. The speckle reduction has been achieved by using stick filter and top-hat transform has been implemented for smoothing. A feed forward neural network and local binary pattern together have been use to find a point inside prostate object. Finally the boundary of prostate is extracted by the inside point and an active contour algorithm. A numbers of experiments are conducted to validate this method and results showed that this new algorithm extracted the prostate boundary with MSE less than 4.6% relative to boundary provided manually by physicians.
Keywords: Prostate segmentation, stick filter, neural network, active contour.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 19684535 Linear Phase High Pass FIR Filter Design using Improved Particle Swarm Optimization
Authors: Sangeeta Mondal, Vasundhara, Rajib Kar, Durbadal Mandal, S. P. Ghoshal
Abstract:
This paper presents an optimal design of linear phase digital high pass finite impulse response (FIR) filter using Improved Particle Swarm Optimization (IPSO). In the design process, the filter length, pass band and stop band frequencies, feasible pass band and stop band ripple sizes are specified. FIR filter design is a multi-modal optimization problem. An iterative method is introduced to find the optimal solution of FIR filter design problem. Evolutionary algorithms like real code genetic algorithm (RGA), particle swarm optimization (PSO), improved particle swarm optimization (IPSO) have been used in this work for the design of linear phase high pass FIR filter. IPSO is an improved PSO that proposes a new definition for the velocity vector and swarm updating and hence the solution quality is improved. A comparison of simulation results reveals the optimization efficacy of the algorithm over the prevailing optimization techniques for the solution of the multimodal, nondifferentiable, highly non-linear, and constrained FIR filter design problems.Keywords: FIR Filter, IPSO, GA, PSO, Parks and McClellan Algorithm, Evolutionary Optimization, High Pass Filter
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 30984534 Disparity Estimation for Objects of Interest
Authors: Yen San Yong, Hock Woon Hon
Abstract:
An algorithm for estimating the disparity of objects of interest is proposed. This algorithm uses image shifting and overlapping area to estimate the disparity value; thereby depth of the objects of interest can be obtained. The algorithm is able to perform at different levels of accuracy. However, as the accuracy increases the processing speed decreases. The algorithm is tested with static stereo images and sequence of stereo images. The experimental results are presented in this paper.Keywords: stereo vision, binocular parallax
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 12294533 Cardiac Disorder Classification Based On Extreme Learning Machine
Authors: Chul Kwak, Oh-Wook Kwon
Abstract:
In this paper, an extreme learning machine with an automatic segmentation algorithm is applied to heart disorder classification by heart sound signals. From continuous heart sound signals, the starting points of the first (S1) and the second heart pulses (S2) are extracted and corrected by utilizing an inter-pulse histogram. From the corrected pulse positions, a single period of heart sound signals is extracted and converted to a feature vector including the mel-scaled filter bank energy coefficients and the envelope coefficients of uniform-sized sub-segments. An extreme learning machine is used to classify the feature vector. In our cardiac disorder classification and detection experiments with 9 cardiac disorder categories, the proposed method shows significantly better performance than multi-layer perceptron, support vector machine, and hidden Markov model; it achieves the classification accuracy of 81.6% and the detection accuracy of 96.9%.
Keywords: Heart sound classification, extreme learning machine
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 19324532 An Immunosensor for Bladder Cancer Screening
Authors: Congo Tak Shing Ching, Hong-Sheng Chen, Tai-Ping Sun, Hsiu-Li Shieh
Abstract:
Nuclear matrix protein 22 (NMP22) is a FDA approved biomarker for bladder cancer. The objective of this study is to develop a simple NMP22 immumosensor (NMP22-IMS) for accurate measurement of NMP22. The NMP22-IMS was constructed with NMP22 antibody immobilized on screen-printed carbon electrodes. The construction procedures and antibody immobilization are simple. Results showed that the NMP22-IMS has an excellent (r2³0.95) response range (20 – 100 ng/mL). In conclusion, a simple and reliable NMP22-IMS was developed, capable of precisely determining urine NMP22 level.Keywords: Bladder Cancer, Immunosensor, Impedance, NMP22
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16564531 An Efficient Obstacle Detection Algorithm Using Colour and Texture
Authors: Chau Nguyen Viet, Ian Marshall
Abstract:
This paper presents a new classification algorithm using colour and texture for obstacle detection. Colour information is computationally cheap to learn and process. However in many cases, colour alone does not provide enough information for classification. Texture information can improve classification performance but usually comes at an expensive cost. Our algorithm uses both colour and texture features but texture is only needed when colour is unreliable. During the training stage, texture features are learned specifically to improve the performance of a colour classifier. The algorithm learns a set of simple texture features and only the most effective features are used in the classification stage. Therefore our algorithm has a very good classification rate while is still fast enough to run on a limited computer platform. The proposed algorithm was tested with a challenging outdoor image set. Test result shows the algorithm achieves a much better trade-off between classification performance and efficiency than a typical colour classifier.
Keywords: Colour, texture, classification, obstacle detection.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 18214530 An Improved Ant Colony Algorithm for Genome Rearrangements
Authors: Essam Al Daoud
Abstract:
Genome rearrangement is an important area in computational biology and bioinformatics. The basic problem in genome rearrangements is to compute the edit distance, i.e., the minimum number of operations needed to transform one genome into another. Unfortunately, unsigned genome rearrangement problem is NP-hard. In this study an improved ant colony optimization algorithm to approximate the edit distance is proposed. The main idea is to convert the unsigned permutation to signed permutation and evaluate the ants by using Kaplan algorithm. Two new operations are added to the standard ant colony algorithm: Replacing the worst ants by re-sampling the ants from a new probability distribution and applying the crossover operations on the best ants. The proposed algorithm is tested and compared with the improved breakpoint reversal sort algorithm by using three datasets. The results indicate that the proposed algorithm achieves better accuracy ratio than the previous methods.
Keywords: Ant colony algorithm, Edit distance, Genome breakpoint, Genome rearrangement, Reversal sort.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 19034529 Simulation Tools for Fixed Point DSP Algorithms and Architectures
Authors: K. B. Cullen, G. C. M. Silvestre, N. J. Hurley
Abstract:
This paper presents software tools that convert the C/Cµ floating point source code for a DSP algorithm into a fixedpoint simulation model that can be used to evaluate the numericalperformance of the algorithm on several different fixed pointplatforms including microprocessors, DSPs and FPGAs. The tools use a novel system for maintaining binary point informationso that the conversion from floating point to fixed point isautomated and the resulting fixed point algorithm achieves maximum possible precision. A configurable architecture is used during the simulation phase so that the algorithm can produce a bit-exact output for several different target devices.
Keywords: DSP devices, DSP algorithm, simulation model, software
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 25504528 Quantitative Analysis of Carcinoembryonic Antigen (CEA) Using Micromechanical Piezoresistive Cantilever
Authors: Meisam Omidi, M. Mirijalili, Mohammadmehdi Choolaei, Z. Sharifi, F. Haghiralsadat, F. Yazdian
Abstract:
In this work, we have used arrays of micromechanical piezoresistive cantilever with different geometries to detect carcinoembryonic antigen (CEA), which is known as an important biomarker associated with various cancers such as colorectal, lung, breast, pancreatic, and bladder cancer. The sensing principle is based on the surface stress changes induced by antigen–antibody interaction on the microcantilevers surfaces. Different concentrations of CEA in a human serum albumin (HSA) solution were detected as a function of deflection of the beams. According to the experiments, it was revealed that microcantilevers have surface stress sensitivities in the order of 8 (mJ/m). This matter allows them to detect CEA concentrations as low as 3 ng/mL or 18 pM. This indicates the fact that the self-sensing microcantilevers approach is beneficial for pathological tests.
Keywords: Micromechanical biosensors, Carcinoembryonic antigen (CEA), surface stress.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 23604527 Rule-Based Expert System for Headache Diagnosis and Medication Recommendation
Authors: Noura Al-Ajmi, Mohammed A. Almulla
Abstract:
With the increased utilization of technology devices around the world, healthcare and medical diagnosis are critical issues that people worry about these days. Doctors are doing their best to avoid any medical errors while diagnosing diseases and prescribing the wrong medication. Subsequently, artificial intelligence applications that can be installed on mobile devices such as rule-based expert systems facilitate the task of assisting doctors in several ways. Due to their many advantages, the usage of expert systems has increased recently in health sciences. This work presents a backward rule-based expert system that can be used for a headache diagnosis and medication recommendation system. The structure of the system consists of three main modules, namely the input unit, the processing unit, and the output unit.Keywords: Headache diagnosis system, treatment recommender system, rule-based expert system.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 7444526 Efficient Secured Lossless Coding of Medical Images– Using Modified Runlength Coding for Character Representation
Authors: S. Annadurai, P. Geetha
Abstract:
Lossless compression schemes with secure transmission play a key role in telemedicine applications that helps in accurate diagnosis and research. Traditional cryptographic algorithms for data security are not fast enough to process vast amount of data. Hence a novel Secured lossless compression approach proposed in this paper is based on reversible integer wavelet transform, EZW algorithm, new modified runlength coding for character representation and selective bit scrambling. The use of the lifting scheme allows generating truly lossless integer-to-integer wavelet transforms. Images are compressed/decompressed by well-known EZW algorithm. The proposed modified runlength coding greatly improves the compression performance and also increases the security level. This work employs scrambling method which is fast, simple to implement and it provides security. Lossless compression ratios and distortion performance of this proposed method are found to be better than other lossless techniques.Keywords: EZW algorithm, lifting scheme, losslesscompression, reversible integer wavelet transform, securetransmission, selective bit scrambling, modified runlength coding .
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 13664525 Association of the p53 Codon 72 Polymorphism with Colorectal Cancer in South West of Iran
Authors: A. Doosti, P. Ghasemi Dehkordi, M. Zamani, S. Taheri, M. Banitalebi, M. Mahmoudzadeh
Abstract:
The p53 tumor suppressor gene plays two important roles in genomic stability: blocking cell proliferation after DNA damage until it has been repaired, and starting apoptosis if the damage is too critical. Codon 72 exon4 polymorphism (Arg72Pro) of the P53 gene has been implicated in cancer risk. Various studies have been done to investigate the status of p53 at codon 72 for arginine (Arg) and proline (Pro) alleles in different populations and also the association of this codon 72 polymorphism with various tumors. Our objective was to investigate the possible association between P53 Arg72Pro polymorphism and susceptibility to colorectal cancer among Isfahan and Chaharmahal Va Bakhtiari (a part of south west of Iran) population. We investigated the status of p53 at codon 72 for Arg/Arg, Arg/Pro and Pro/Pro allele polymorphisms in blood samples from 145 colorectal cancer patients and 140 controls by Nested-PCR of p53 exon 4 and digestion with BstUI restriction enzyme and the DNA fragments were then resolved by electrophoresis in 2% agarose gel. The Pro allele was 279 bp, while the Arg allele was restricted into two fragments of 160 and 119 bp. Among the 145 colorectal cancer cases 49 cases (33.79%) were homozygous for the Arg72 allele (Arg/Arg), 18 cases (12.41%) were homozygous for the Pro72 allele (Pro/Pro) and 78 cases (53.8%) found in heterozygous (Arg/Pro). In conclusion, it can be said that p53Arg/Arg genotype may be correlated with possible increased risk of this kind of cancers in south west of Iran.Keywords: TP53, Polymorphism, Colorectal Cancer, Iran
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 23914524 A Fast Silhouette Detection Algorithm for Shadow Volumes in Augmented Reality
Authors: Hoshang Kolivand, Mahyar Kolivand, Mohd Shahrizal Sunar, Mohd Azhar M. Arsad
Abstract:
Real-time shadow generation in virtual environments and Augmented Reality (AR) was always a hot topic in the last three decades. Lots of calculation for shadow generation among AR needs a fast algorithm to overcome this issue and to be capable of implementing in any real-time rendering. In this paper, a silhouette detection algorithm is presented to generate shadows for AR systems. Δ+ algorithm is presented based on extending edges of occluders to recognize which edges are silhouettes in the case of real-time rendering. An accurate comparison between the proposed algorithm and current algorithms in silhouette detection is done to show the reduction calculation by presented algorithm. The algorithm is tested in both virtual environments and AR systems. We think that this algorithm has the potential to be a fundamental algorithm for shadow generation in all complex environments.Keywords: Silhouette detection, shadow volumes, real-time shadows, rendering, augmented reality.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 20184523 Quick Sequential Search Algorithm Used to Decode High-Frequency Matrices
Authors: Mohammed M. Siddeq, Mohammed H. Rasheed, Omar M. Salih, Marcos A. Rodrigues
Abstract:
This research proposes a data encoding and decoding method based on the Matrix Minimization algorithm. This algorithm is applied to high-frequency coefficients for compression/encoding. The algorithm starts by converting every three coefficients to a single value; this is accomplished based on three different keys. The decoding/decompression uses a search method called QSS (Quick Sequential Search) Decoding Algorithm presented in this research based on the sequential search to recover the exact coefficients. In the next step, the decoded data are saved in an auxiliary array. The basic idea behind the auxiliary array is to save all possible decoded coefficients; this is because another algorithm, such as conventional sequential search, could retrieve encoded/compressed data independently from the proposed algorithm. The experimental results showed that our proposed decoding algorithm retrieves original data faster than conventional sequential search algorithms.
Keywords: Matrix Minimization Algorithm, Decoding Sequential Search Algorithm, image compression, Discrete Cosine Transform, Discrete Wavelet Transform.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 246