Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 31097
Quantitative Analysis of Carcinoembryonic Antigen (CEA) Using Micromechanical Piezoresistive Cantilever

Authors: Meisam Omidi, M. Mirijalili, Mohammadmehdi Choolaei, Z. Sharifi, F. Haghiralsadat, F. Yazdian


In this work, we have used arrays of micromechanical piezoresistive cantilever with different geometries to detect carcinoembryonic antigen (CEA), which is known as an important biomarker associated with various cancers such as colorectal, lung, breast, pancreatic, and bladder cancer. The sensing principle is based on the surface stress changes induced by antigen–antibody interaction on the microcantilevers surfaces. Different concentrations of CEA in a human serum albumin (HSA) solution were detected as a function of deflection of the beams. According to the experiments, it was revealed that microcantilevers have surface stress sensitivities in the order of 8 (mJ/m). This matter allows them to detect CEA concentrations as low as 3 ng/mL or 18 pM. This indicates the fact that the self-sensing microcantilevers approach is beneficial for pathological tests.

Keywords: micromechanical biosensors, carcinoembryonic antigen (CEA), surface stress

Digital Object Identifier (DOI):

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1929


[1] N. V. Lavrik, M. J. Sepaniak and P. G. Datskos, Rev. Sci. Instrum., 2004, 75(7), 2229.
[2] Arlett J.L., Myers E.B. and Roukes M.L., Nat. Nanotechnol., 2011, 6, 203.
[3] Boisen A., Dohn S., Keller S. S., Schmid S. and Tenje M., Rep. Prog. Phys., 2011, 74, 036101.
[4] Alvarez M. and Lechuga L. M., Analyst, 2010, 135, 827.
[5] Wu G., Datar R.H., Hansen K.M., Thundat T., Cote R.J. and Majumdar A., Nat. Biotechnol., 2001, 19, 856.
[6] Omidi M., Malakoutian M. A., Choolaei M., Chin. Phys. Lett., 2013, 30(6), 068701.
[7] Thundat T., Warmack R. J., Chen G. Y. and Allison D. P., Appl. Phys. Lett., 1994, 64, 2894.
[8] Lang H. P., Baller M. K., Berger R., Gerber C., Gimzewski J. K., Battiston F. M., Fornaro P., Ramseyer J. P., Meyer E. and Guntherodt H. J., Anal. Chim. Acta 1999, 393, 59.
[9] Ghatkesar M. K., Lang H. P., Gerber C., Hegner M. and Braun T., PLoS One, 2008, 3, 3610.
[10] Mukhopadhyay R., Sumbayev V. V., Lorentzen M., Kjems J., Andreasen P. A. and Besenbacher F., Nano Lett., 2005, 5, 2385.
[11] Aeschimann L., Meister A., Akiyama T., Chui B. W., Niedermann P., Heinzelmann H., De Rooij N. F., Staufer U. and Vettiger P., Microelectron. Eng., 2006, 83, 1698.
[12] Arlett, J. L.; Maloney, J. R.; Gudlewski, B.; Muluneh, M.; Roukes, M. L. Nano Lett., 2006, 6, 1000.
[13] Boisen A. and Thundat T., Mater. Today, 2009, 12, 32.
[14] Perkins, S. J., FEBS Lett., 2000, 475 (1), 11.
[15] Thomas SN, Zhu F, Schnaar RL, Alves CS, Konstantopoulos K., J Biol Chem., 2008, 283 (23), 15647.
[16] Brian B., Shaker A M., Nanotech. Sci. Applic.., 2011, 4, 1.
[17] Noelia D., Paula D., Sergio M., MarĂ­a G., Sara P., Alberto O. and Manuel F., Sens., 2012, 12, 2284.
[18] Stoney G. G., Proc. R. Soc. Lond., 1909, A(82), 172.