Search results for: object recognition.
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 1386

Search results for: object recognition.

336 Contrast Enhancement in Digital Images Using an Adaptive Unsharp Masking Method

Authors: Z. Mortezaie, H. Hassanpour, S. Asadi Amiri

Abstract:

Captured images may suffer from Gaussian blur due to poor lens focus or camera motion. Unsharp masking is a simple and effective technique to boost the image contrast and to improve digital images suffering from Gaussian blur. The technique is based on sharpening object edges by appending the scaled high-frequency components of the image to the original. The quality of the enhanced image is highly dependent on the characteristics of both the high-frequency components and the scaling/gain factor. Since the quality of an image may not be the same throughout, we propose an adaptive unsharp masking method in this paper. In this method, the gain factor is computed, considering the gradient variations, for individual pixels of the image. Subjective and objective image quality assessments are used to compare the performance of the proposed method both with the classic and the recently developed unsharp masking methods. The experimental results show that the proposed method has a better performance in comparison to the other existing methods.

Keywords: Unsharp masking, blur image, sub-region gradient, image enhancement.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1412
335 Adaptive Few-Shot Deep Metric Learning

Authors: Wentian Shi, Daming Shi, Maysam Orouskhani, Feng Tian

Abstract:

Currently the most prevalent deep learning methods require a large amount of data for training, whereas few-shot learning tries to learn a model from limited data without extensive retraining. In this paper, we present a loss function based on triplet loss for solving few-shot problem using metric based learning. Instead of setting the margin distance in triplet loss as a constant number empirically, we propose an adaptive margin distance strategy to obtain the appropriate margin distance automatically. We implement the strategy in the deep siamese network for deep metric embedding, by utilizing an optimization approach by penalizing the worst case and rewarding the best. Our experiments on image recognition and co-segmentation model demonstrate that using our proposed triplet loss with adaptive margin distance can significantly improve the performance.

Keywords: Few-shot learning, triplet network, adaptive margin, deep learning.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 912
334 Sequence-based Prediction of Gamma-turn Types using a Physicochemical Property-based Decision Tree Method

Authors: Chyn Liaw, Chun-Wei Tung, Shinn-Jang Ho, Shinn-Ying Ho

Abstract:

The γ-turns play important roles in protein folding and molecular recognition. The prediction and analysis of γ-turn types are important for both protein structure predictions and better understanding the characteristics of different γ-turn types. This study proposed a physicochemical property-based decision tree (PPDT) method to interpretably predict γ-turn types. In addition to the good prediction performance of PPDT, three simple and human interpretable IF-THEN rules are extracted from the decision tree constructed by PPDT. The identified informative physicochemical properties and concise rules provide a simple way for discriminating and understanding γ-turn types.

Keywords: Classification and regression tree (CART), γ-turn, Physicochemical properties, Protein secondary structure.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1551
333 Sequential Straightforward Clustering for Local Image Block Matching

Authors: Mohammad Akbarpour Sekeh, Mohd. Aizaini Maarof, Mohd. Foad Rohani, Malihe Motiei

Abstract:

Duplicated region detection is a technical method to expose copy-paste forgeries on digital images. Copy-paste is one of the common types of forgeries to clone portion of an image in order to conceal or duplicate special object. In this type of forgery detection, extracting robust block feature and also high time complexity of matching step are two main open problems. This paper concentrates on computational time and proposes a local block matching algorithm based on block clustering to enhance time complexity. Time complexity of the proposed algorithm is formulated and effects of two parameter, block size and number of cluster, on efficiency of this algorithm are considered. The experimental results and mathematical analysis demonstrate this algorithm is more costeffective than lexicographically algorithms in time complexity issue when the image is complex.

Keywords: Copy-paste forgery detection, Duplicated region, Timecomplexity, Local block matching, Sequential block clustering.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1832
332 MTSSM - A Framework for Multi-Track Segmentation of Symbolic Music

Authors: Brigitte Rafael, Stefan M. Oertl

Abstract:

Music segmentation is a key issue in music information retrieval (MIR) as it provides an insight into the internal structure of a composition. Structural information about a composition can improve several tasks related to MIR such as searching and browsing large music collections, visualizing musical structure, lyric alignment, and music summarization. The authors of this paper present the MTSSM framework, a twolayer framework for the multi-track segmentation of symbolic music. The strength of this framework lies in the combination of existing methods for local track segmentation and the application of global structure information spanning via multiple tracks. The first layer of the MTSSM uses various string matching techniques to detect the best candidate segmentations for each track of a multi-track composition independently. The second layer combines all single track results and determines the best segmentation for each track in respect to the global structure of the composition.

Keywords: Pattern Recognition, Music Information Retrieval, Machine Learning.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1629
331 Collision Detection Algorithm Based on Data Parallelism

Authors: Zhen Peng, Baifeng Wu

Abstract:

Modern computing technology enters the era of parallel computing with the trend of sustainable and scalable parallelism. Single Instruction Multiple Data (SIMD) is an important way to go along with the trend. It is able to gather more and more computing ability by increasing the number of processor cores without the need of modifying the program. Meanwhile, in the field of scientific computing and engineering design, many computation intensive applications are facing the challenge of increasingly large amount of data. Data parallel computing will be an important way to further improve the performance of these applications. In this paper, we take the accurate collision detection in building information modeling as an example. We demonstrate a model for constructing a data parallel algorithm. According to the model, a complex object is decomposed into the sets of simple objects; collision detection among complex objects is converted into those among simple objects. The resulting algorithm is a typical SIMD algorithm, and its advantages in parallelism and scalability is unparalleled in respect to the traditional algorithms.

Keywords: Data parallelism, collision detection, single instruction multiple data, building information modeling, continuous scalability.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1235
330 Protection of Cultural Heritage against the Effects of Climate Change Using Autonomous Aerial Systems Combined with Automated Decision Support

Authors: Artur Krukowski, Emmanouela Vogiatzaki

Abstract:

The article presents an ongoing work in research projects such as SCAN4RECO or ARCH, both funded by the European Commission under Horizon 2020 program. The former one concerns multimodal and multispectral scanning of Cultural Heritage assets for their digitization and conservation via spatiotemporal reconstruction and 3D printing, while the latter one aims to better preserve areas of cultural heritage from hazards and risks. It co-creates tools that would help pilot cities to save cultural heritage from the effects of climate change. It develops a disaster risk management framework for assessing and improving the resilience of historic areas to climate change and natural hazards. Tools and methodologies are designed for local authorities and practitioners, urban population, as well as national and international expert communities, aiding authorities in knowledge-aware decision making. In this article we focus on 3D modelling of object geometry using primarily photogrammetric methods to achieve very high model accuracy using consumer types of devices, attractive both to professions and hobbyists alike.

Keywords: 3D modeling, UAS, cultural heritage, preservation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 705
329 Keyloggers Prevention with Time-Sensitive Obfuscation

Authors: Chien-Wei Hung, Fu-Hau Hsu, Chuan-Sheng Wang, Chia-Hao Lee

Abstract:

Nowadays, the abuse of keyloggers is one of the most widespread approaches to steal sensitive information. In this paper, we propose an On-Screen Prompts Approach to Keyloggers (OSPAK) and its analysis, which is installed in public computers. OSPAK utilizes a canvas to cue users when their keystrokes are going to be logged or ignored by OSPAK. This approach can protect computers against recoding sensitive inputs, which obfuscates keyloggers with letters inserted among users' keystrokes. It adds a canvas below each password field in a webpage and consists of three parts: two background areas, a hit area and a moving foreground object. Letters at different valid time intervals are combined in accordance with their time interval orders, and valid time intervals are interleaved with invalid time intervals. It utilizes animation to visualize valid time intervals and invalid time intervals, which can be integrated in a webpage as a browser extension. We have tested it against a series of known keyloggers and also performed a study with 95 users to evaluate how easily the tool is used. Experimental results made by volunteers show that OSPAK is a simple approach.

Keywords: Authentication, computer security, keylogger, privacy, information leakage.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 778
328 Intelligent Earthquake Prediction System Based On Neural Network

Authors: Emad Amar, Tawfik Khattab, Fatma Zada

Abstract:

Predicting earthquakes is an important issue in the study of geography. Accurate prediction of earthquakes can help people to take effective measures to minimize the loss of personal and economic damage, such as large casualties, destruction of buildings and broken of traffic, occurred within a few seconds. United States Geological Survey (USGS) science organization provides reliable scientific information about Earthquake Existed throughout history & the Preliminary database from the National Center Earthquake Information (NEIC) show some useful factors to predict an earthquake in a seismic area like Aleutian Arc in the U.S. state of Alaska. The main advantage of this prediction method that it does not require any assumption, it makes prediction according to the future evolution of the object's time series. The article compares between simulation data result from trained BP and RBF neural network versus actual output result from the system calculations. Therefore, this article focuses on analysis of data relating to real earthquakes. Evaluation results show better accuracy and higher speed by using radial basis functions (RBF) neural network.

Keywords: BP neural network, Prediction, RBF neural network.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3219
327 Estimation of Missing or Incomplete Data in Road Performance Measurement Systems

Authors: Kristjan Kuhi, Kati K. Kaare, Ott Koppel

Abstract:

Modern management in most fields is performance based; both planning and implementation of maintenance and operational activities are driven by appropriately defined performance indicators. Continuous real-time data collection for management is becoming feasible due to technological advancements. Outdated and insufficient input data may result in incorrect decisions. When using deterministic models the uncertainty of the object state is not visible thus applying the deterministic models are more likely to give false diagnosis. Constructing structured probabilistic models of the performance indicators taking into consideration the surrounding indicator environment enables to estimate the trustworthiness of the indicator values. It also assists to fill gaps in data to improve the quality of the performance analysis and management decisions. In this paper authors discuss the application of probabilistic graphical models in the road performance measurement and propose a high-level conceptual model that enables analyzing and predicting more precisely future pavement deterioration based on road utilization.

Keywords: Probabilistic graphical models, performance indicators, road performance management, data collection

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1835
326 Combining the Description Features of UMLRT and CSP+T Specifications Applied to a Complete Design of Real-Time Systems

Authors: Kawtar Benghazi Akhlaki, Manuel I. Capel-Tuñón

Abstract:

UML is a collection of notations for capturing a software system specification. These notations have a specific syntax defined by the Object Management Group (OMG), but many of their constructs only present informal semantics. They are primarily graphical, with textual annotation. The inadequacies of standard UML as a vehicle for complete specification and implementation of real-time embedded systems has led to a variety of competing and complementary proposals. The Real-time UML profile (UML-RT), developed and standardized by OMG, defines a unified framework to express the time, scheduling and performance aspects of a system. We present in this paper a framework approach aimed at deriving a complete specification of a real-time system. Therefore, we combine two methods, a semiformal one, UML-RT, which allows the visual modeling of a realtime system and a formal one, CSP+T, which is a design language including the specification of real-time requirements. As to show the applicability of the approach, a correct design of a real-time system with hard real time constraints by applying a set of mapping rules is obtained.

Keywords: CSP+T, formal software specification, process algebras, real-time systems, unified modeling language.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1809
325 Morphological Characteristics and Pollination Requirement in Red Pitaya (Hylocereus spp.)

Authors: Dinh Ha, Tran, Chung - Ruey Yen

Abstract:

This study explored the morphological characteristics and effects of pollination methods on fruit set and characteristics in 4 red pitaya (Hylocereus spp.) clones. The distinctive morphological recognition and classification among pitaya clones were confirmed by the stem, flower and fruit features. The fruit production season was indicated from the beginning of May to the end of August – the beginning of September with 6-7 flowering cycles per year. The floral stage took from 15-19 days and fruit duration spent 30–32 days. VN White, fully self-compatible, obtained high fruit set rates (80.0–90.5%) in all pollination treatments and the maximum fruit weight (402.6g) in hand self- and (403.4g) in open-pollination. Chaozhou 5 was partially self-compatible while Orejona and F11 were completely self-incompatible. Hand cross-pollination increased significantly fruit set (95.8; 88.4 and 90.2%) and fruit weight (374.2; 281.8 and 416.3 g) in Chaozhou 5, Orejona, and F11, respectively. TSS contents were not much influenced by pollination methods.

Keywords: Hylocereus spp., morphology, floral phenology, pollination requirement.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3546
324 Morphological Characteristics and Pollination Requirement in Red Pitaya (Hylocereus spp.)

Authors: Dinh - Ha Tran, Chung - Ruey Yen

Abstract:

This study explored the morphological characteristics and effects of pollination methods on fruit set and characteristics in 4 red pitaya (Hylocereus spp.) clones. The distinctive morphological recognition and classification among pitaya clones were confirmed by the stem, flower and fruit features. The fruit production season was indicated from the beginning of May to the end of August – the beginning of September with 6-7 flowering cycles per year. The floral stage took from 15-19 days and fruit duration spent 30–32 days. VN White, fully self-compatible, obtained high fruit set rates (80.0–90.5%) in all pollination treatments and the maximum fruit weight (402.6g) in hand self- and (403.4g) in open-pollination. Chaozhou 5 was partially self-compatible while Orejona and F11 were completely self-incompatible. Hand cross-pollination increased significantly fruit set (95.8; 88.4 and 90.2%) and fruit weight (374.2; 281.8 and 416.3g) in Chaozhou 5, Orejona and F11, respectively. TSS contents were not much influcenced by pollination methods.

Keywords: Hylocereus spp., morphology, floral phenology, pollination requirement.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2936
323 Hysteresis Modulation Based Sliding Mode Control for Positive Output Elementary Super Lift Luo Converter

Authors: K. Ramash Kumar, S. Jeevananthan

Abstract:

The Object of this paper is to design and analyze a Hysteresis modulation based sliding mode control (HMSMC) for positive output elementary super lift Luo converter (POESLLC), which is the start-of-the-art DC-DC converter. The positive output elementary super lift Luo converter performs the voltage conversion from positive source voltage to positive load voltage. This paper proposes a HMSMC capable of providing the good steady state and dynamic performance compared to conventional controllers. Dynamic equations describing the positive output elementary super lift luo converter are derived by using state space average method. The simulation model of the positive output elementary super lift Luo converter with its control circuit is implemented in Matlab/Simulink. The HMSMC for positive output elementary super lift Luo converter is tested for line changes, load changes and also for components variations.

Keywords: DC-DC converter, Positive output elementarysuper lift Luo converter (POESLLC), Hysteresis modulation basedsliding mode control (HMSMC).

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2250
322 Join and Meet Block Based Default Definite Decision Rule Mining from IDT and an Incremental Algorithm

Authors: Chen Wu, Jingyu Yang

Abstract:

Using maximal consistent blocks of tolerance relation on the universe in incomplete decision table, the concepts of join block and meet block are introduced and studied. Including tolerance class, other blocks such as tolerant kernel and compatible kernel of an object are also discussed at the same time. Upper and lower approximations based on those blocks are also defined. Default definite decision rules acquired from incomplete decision table are proposed in the paper. An incremental algorithm to update default definite decision rules is suggested for effective mining tasks from incomplete decision table into which data is appended. Through an example, we demonstrate how default definite decision rules based on maximal consistent blocks, join blocks and meet blocks are acquired and how optimization is done in support of discernibility matrix and discernibility function in the incomplete decision table.

Keywords: rough set, incomplete decision table, maximalconsistent block, default definite decision rule, join and meet block.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1288
321 Learning User Keystroke Patterns for Authentication

Authors: Ying Zhao

Abstract:

Keystroke authentication is a new access control system to identify legitimate users via their typing behavior. In this paper, machine learning techniques are adapted for keystroke authentication. Seven learning methods are used to build models to differentiate user keystroke patterns. The selected classification methods are Decision Tree, Naive Bayesian, Instance Based Learning, Decision Table, One Rule, Random Tree and K-star. Among these methods, three of them are studied in more details. The results show that machine learning is a feasible alternative for keystroke authentication. Compared to the conventional Nearest Neighbour method in the recent research, learning methods especially Decision Tree can be more accurate. In addition, the experiment results reveal that 3-Grams is more accurate than 2-Grams and 4-Grams for feature extraction. Also, combination of attributes tend to result higher accuracy.

Keywords: Keystroke Authentication, Pattern recognition, MachineLearning, Instance-based Learning, Bayesian, Decision Tree.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2822
320 Structural Basis of Resistance of Helicobacterpylori DnaK to Antimicrobial Peptide Pyrrhocoricin

Authors: Musammat F. Nahar, Anna Roujeinikova

Abstract:

Bacterial molecular chaperone DnaK plays an essential role in protein folding, stress response and transmembrane targeting of proteins. DnaKs from many bacterial species, including Escherichia coli, Salmonella typhimurium and Haemophilus infleunzae are the molecular targets for the insect-derived antimicrobial peptide pyrrhocoricin. Pyrrhocoricin-like peptides bind in the substrate recognition tunnel. Despite the high degree of crossspecies sequence conservation in the substrate-binding tunnel, some bacteria are not sensitive to pyrrhocoricin. This work addresses the molecular mechanism of resistance of Helicobacter pylori DnaK to pyrrhocoricin. Homology modelling, structural and sequence analysis identify a single aminoacid substitution at the interface between the lid and the β-sandwich subdomains of the DnaK substrate-binding domain as the major determinant for its resistance.

Keywords: Helicobacter pylori, molecular chaperone DnaK, pyrrhocoricin, structural biology.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1749
319 Gene Expression Data Classification Using Discriminatively Regularized Sparse Subspace Learning

Authors: Chunming Xu

Abstract:

Sparse representation which can represent high dimensional data effectively has been successfully used in computer vision and pattern recognition problems. However, it doesn-t consider the label information of data samples. To overcome this limitation, we develop a novel dimensionality reduction algorithm namely dscriminatively regularized sparse subspace learning(DR-SSL) in this paper. The proposed DR-SSL algorithm can not only make use of the sparse representation to model the data, but also can effective employ the label information to guide the procedure of dimensionality reduction. In addition,the presented algorithm can effectively deal with the out-of-sample problem.The experiments on gene-expression data sets show that the proposed algorithm is an effective tool for dimensionality reduction and gene-expression data classification.

Keywords: sparse representation, dimensionality reduction, labelinformation, sparse subspace learning, gene-expression data classification.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1447
318 Experimental Study of the Metal Foam Flow Conditioner for Orifice Plate Flowmeters

Authors: B. Manshoor, N. Ihsak, Amir Khalid

Abstract:

The sensitivity of orifice plate metering to disturbed flow (either asymmetric or swirling) is a subject of great concern to flow meter users and manufacturers. The distortions caused by pipe fittings and pipe installations upstream of the orifice plate are major sources of this type of non-standard flows. These distortions can alter the accuracy of metering to an unacceptable degree. In this work, a multi-scale object known as metal foam has been used to generate a predetermined turbulent flow upstream of the orifice plate. The experimental results showed that the combination of an orifice plate and metal foam flow conditioner is broadly insensitive to upstream disturbances. This metal foam demonstrated a good performance in terms of removing swirl and producing a repeatable flow profile within a short distance downstream of the device. The results of using a combination of a metal foam flow conditioner and orifice plate for non-standard flow conditions including swirling flow and asymmetric flow show this package can preserve the accuracy of metering up to the level required in the standards.

Keywords: Metal foam flow conditioner, flow measurement, orifice plate.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2060
317 A Cross-Gender Statistical Analysis of Tuvinian Intonation Features in Comparison With Uzbek and Azerbaijani

Authors: D. Beziakina, E. Bulgakova

Abstract:

The paper deals with cross-gender and cross-linguistic comparison of pitch characteristics for Tuvinian with two other Turkic languages - Uzbek and Azerbaijani, based on the results of statistical analysis of pitch parameter values and intonation patterns used by male and female speakers.

The main goal of our work is to obtain the ranges of pitch parameter values typical for Tuvinian speakers for the purpose of automatic language identification. We also propose a cross-gender analysis of declarative intonation in the poorly studied Tuvinian language.

The ranges of pitch parameter values were obtained by means of specially developed software that deals with the distribution of pitch values and allows us to obtain statistical language-specific pitch intervals.

Keywords: Speech analysis, Statistical analysis, Speaker recognition, Identification of person.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1849
316 A Novel Prostate Segmentation Algorithm in TRUS Images

Authors: Ali Rafiee, Ahad Salimi, Ali Reza Roosta

Abstract:

Prostate cancer is one of the most frequent cancers in men and is a major cause of mortality in the most of countries. In many diagnostic and treatment procedures for prostate disease accurate detection of prostate boundaries in transrectal ultrasound (TRUS) images is required. This is a challenging and difficult task due to weak prostate boundaries, speckle noise and the short range of gray levels. In this paper a novel method for automatic prostate segmentation in TRUS images is presented. This method involves preprocessing (edge preserving noise reduction and smoothing) and prostate segmentation. The speckle reduction has been achieved by using stick filter and top-hat transform has been implemented for smoothing. A feed forward neural network and local binary pattern together have been use to find a point inside prostate object. Finally the boundary of prostate is extracted by the inside point and an active contour algorithm. A numbers of experiments are conducted to validate this method and results showed that this new algorithm extracted the prostate boundary with MSE less than 4.6% relative to boundary provided manually by physicians.

Keywords: Prostate segmentation, stick filter, neural network, active contour.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1969
315 Enhancing Efficiency for Reducing Sugar from Cassava Bagasse by Pretreatment

Authors: S. Gaewchingduang, P. Pengthemkeerati

Abstract:

Cassava bagasse is one of major biomass wastes in Thailand from starch processing industry, which contains high starch content of about 60%. The object of this study was to investigate the optimal condition for hydrothermally pretreating cassava baggasses with or without acid addition. The pretreated samples were measured reducing sugar yield directly or after enzymatic hydrolysis (alpha-amylase). In enzymatic hydrolysis, the highest reducing sugar content was obtained under hydrothermal conditions for at 125oC for 30 min. The result shows that pretreating cassava baggasses increased the efficiency of enzymatic hydrolysis. For acid hydrolysis, pretreating cassava baggasses with sulfuric acid at 120oC for 60 min gave a maximum reducing sugar yield. In this study, sulfuric acid had a greater capacity for hydrolyzing cassava baggasses than phosphoric acid. In comparison, dilute acid hydrolysis to provide a higher yield of reducing sugar than the enzymatic hydrolysis combined hydrothermal pretreatment. However, enzymatic hydrolysis in a combination with hydrothermal pretreatment was an alternative to enhance efficiency reducing sugar production from cassava bagasse.

Keywords: Acid hydrolysis, cassava bagasse, enzymatic hydrolysis, hydrothermal pretreatment.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2979
314 Improved Artificial Immune System Algorithm with Local Search

Authors: Ramin Javadzadeh., Zahra Afsahi, MohammadReza Meybodi

Abstract:

The Artificial immune systems algorithms are Meta heuristic optimization method, which are used for clustering and pattern recognition applications are abundantly. These algorithms in multimodal optimization problems are more efficient than genetic algorithms. A major drawback in these algorithms is their slow convergence to global optimum and their weak stability can be considered in various running of these algorithms. In this paper, improved Artificial Immune System Algorithm is introduced for the first time to overcome its problems of artificial immune system. That use of the small size of a local search around the memory antibodies is used for improving the algorithm efficiently. The credibility of the proposed approach is evaluated by simulations, and it is shown that the proposed approach achieves better results can be achieved compared to the standard artificial immune system algorithms

Keywords: Artificial immune system, Cellular Automata, Cellular learning automata, Cellular learning automata, , Local search, Optimization.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1893
313 Elemental Graph Data Model: A Semantic and Topological Representation of Building Elements

Authors: Yasmeen A. S. Essawy, Khaled Nassar

Abstract:

With the rapid increase of complexity in the building industry, professionals in the A/E/C industry were forced to adopt Building Information Modeling (BIM) in order to enhance the communication between the different project stakeholders throughout the project life cycle and create a semantic object-oriented building model that can support geometric-topological analysis of building elements during design and construction. This paper presents a model that extracts topological relationships and geometrical properties of building elements from an existing fully designed BIM, and maps this information into a directed acyclic Elemental Graph Data Model (EGDM). The model incorporates BIM-based search algorithms for automatic deduction of geometrical data and topological relationships for each building element type. Using graph search algorithms, such as Depth First Search (DFS) and topological sortings, all possible construction sequences can be generated and compared against production and construction rules to generate an optimized construction sequence and its associated schedule. The model is implemented in a C# platform.

Keywords: Building information modeling, elemental graph data model, geometric and topological data models, and graph theory.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1204
312 Elastic and Plastic Collision Comparison Using Finite Element Method

Authors: Gustavo Rodrigues, Hans Weber, Larissa Driemeier

Abstract:

The prevision of post-impact conditions and the behavior of the bodies during the impact have been object of several collision models. The formulation from Hertz’s theory is generally used dated from the 19th century. These models consider the repulsive force as proportional to the deformation of the bodies under contact and may consider it proportional to the rate of deformation. The objective of the present work is to analyze the behavior of the bodies during impact using the Finite Element Method (FEM) with elastic and plastic material models. The main parameters to evaluate are, the contact force, the time of contact and the deformation of the bodies. An advantage of using the FEM approach is the possibility to apply a plastic deformation to the model according to the material definition: there will be used Johnson–Cook plasticity model whose parameters are obtained through empirical tests of real materials. This model allows analyzing the permanent deformation caused by impact, phenomenon observed in real world depending on the forces applied to the body. These results are compared between them and with the model-based Hertz theory.

Keywords: Collision, finite element method, Hertz’s Theory, impact models.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 778
311 Collaborative Design System based on Object- Oriented Modeling of Supply Chain Simulation: A Case Study of Thai Jewelry Industry

Authors: Somlak Wannarumon, Apichai Ritvirool, Thana Boonrit

Abstract:

The paper proposes a new concept in developing collaborative design system. The concept framework involves applying simulation of supply chain management to collaborative design called – 'SCM–Based Design Tool'. The system is developed particularly to support design activities and to integrate all facilities together. The system is aimed to increase design productivity and creativity. Therefore, designers and customers can collaborate by the system since conceptual design. JAG: Jewelry Art Generator based on artificial intelligence techniques is integrated into the system. Moreover, the proposed system can support users as decision tool and data propagation. The system covers since raw material supply until product delivery. Data management and sharing information are visually supported to designers and customers via user interface. The system is developed on Web–assisted product development environment. The prototype system is presented for Thai jewelry industry as a system prototype demonstration, but applicable for other industry.

Keywords: Collaborative design, evolutionary art, jewelry design, supply chain management.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1744
310 Collaborative Design System based on Object-Oriented Modeling of Supply Chain Simulation: A Case Study of Thai Jewelry Industry

Authors: Somlak Wannarumon, Apichai Ritvirool, Thana Boonrit

Abstract:

The paper proposes a new concept in developing collaborative design system. The concept framework involves applying simulation of supply chain management to collaborative design called – 'SCM–Based Design Tool'. The system is developed particularly to support design activities and to integrate all facilities together. The system is aimed to increase design productivity and creativity. Therefore, designers and customers can collaborate by the system since conceptual design. JAG: Jewelry Art Generator based on artificial intelligence techniques is integrated into the system. Moreover, the proposed system can support users as decision tool and data propagation. The system covers since raw material supply until product delivery. Data management and sharing information are visually supported to designers and customers via user interface. The system is developed on Web–assisted product development environment. The prototype system is presented for Thai jewelry industry as a system prototype demonstration, but applicable for other industry.

Keywords: Collaborative design, evolutionary art, jewelry design, supply chain management.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1542
309 Empirical Study on the Student Satisfaction in Higher Education: Importance-Satisfaction Analysis

Authors: Silva, Fátima, Fernandes, Paula Odete

Abstract:

The future of Higher Education Institutions (HEI) depend on their ability to attract and retain students, increase recognition and prestige. In order to respond to the 'customers' increasingly demanding, HEI need to identify the key factors that influence the satisfaction of a 'customers', thereby creating competitive advantages. These determinants of satisfaction are important elements that guide the strategy of an institution and allow the successful achievement of strategic plans, both teaching and administrative, to offer their ‘costumers’ services and products with higher quality. Following this way of thinking, the purpose of this study was to evaluate the satisfaction with the service quality of the School of Technology and Management of Bragança (ESTiG), of the Polytechnic Institute of Bragança, identifying, thus, the dimensions related to the quality of services that might influence students' satisfaction. The results showed that, in general, the students are satisfied with the performance of ESTiG.

Keywords: Customer Satisfaction, Higher Education Institutions, Importance-Satisfaction Model.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2867
308 Multi-models Approach for Describing and Verifying Constraints Based Interactive Systems

Authors: Mamoun Sqali, Mohamed Wassim Trojet

Abstract:

The requirements analysis, modeling, and simulation have consistently been one of the main challenges during the development of complex systems. The scenarios and the state machines are two successful models to describe the behavior of an interactive system. The scenarios represent examples of system execution in the form of sequences of messages exchanged between objects and are a partial view of the system. In contrast, state machines can represent the overall system behavior. The automation of processing scenarios in the state machines provide some answers to various problems such as system behavior validation and scenarios consistency checking. In this paper, we propose a method for translating scenarios in state machines represented by Discreet EVent Specification and procedure to detect implied scenarios. Each induced DEVS model represents the behavior of an object of the system. The global system behavior is described by coupling the atomic DEVS models and validated through simulation. We improve the validation process with integrating formal methods to eliminate logical inconsistencies in the global model. For that end, we use the Z notation.

Keywords: Scenarios, DEVS, synthesis, validation and verification, simulation, formal verification, z notation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1385
307 Novel Security Strategy for Real Time Digital Videos

Authors: Prakash Devale, R. S. Prasad, Amol Dhumane, Pritesh Patil

Abstract:

Now a days video data embedding approach is a very challenging and interesting task towards keeping real time video data secure. We can implement and use this technique with high-level applications. As the rate-distortion of any image is not confirmed, because the gain provided by accurate image frame segmentation are balanced by the inefficiency of coding objects of arbitrary shape, with a lot factors like losses that depend on both the coding scheme and the object structure. By using rate controller in association with the encoder one can dynamically adjust the target bitrate. This paper discusses about to keep secure videos by mixing signature data with negligible distortion in the original video, and to keep steganographic video as closely as possible to the quality of the original video. In this discussion we propose the method for embedding the signature data into separate video frames by the use of block Discrete Cosine Transform. These frames are then encoded by real time encoding H.264 scheme concepts. After processing, at receiver end recovery of original video and the signature data is proposed.

Keywords: Data Hiding, Digital Watermarking, video coding H.264, Rate Control, Block DCT.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1561