

Abstract—UML is a collection of notations for capturing a

software system specification. These notations have a specific
syntax defined by the Object Management Group (OMG), but
many of their constructs only present informal semantics. They are
primarily graphical, with textual annotation. The inadequacies of
standard UML as a vehicle for complete specification and
implementation of real-time embedded systems has led to a variety
of competing and complementary proposals. The Real-time UML
profile (UML-RT), developed and standardized by OMG, defines a
unified framework to express the time, scheduling and
performance aspects of a system. We present in this paper a
framework approach aimed at deriving a complete specification of
a real-time system. Therefore, we combine two methods, a semi-
formal one, UML-RT, which allows the visual modeling of a real-
time system and a formal one, CSP+T, which is a design language
including the specification of real-time requirements. As to show
the applicability of the approach, a correct design of a real-time
system with hard real time constraints by applying a set of
mapping rules is obtained.

Keywords—CSP+T, formal software specification, process
algebras, real-time systems, Unified Modeling Language.

I. INTRODUCTION
ML-RT [1] is an industrial standard used to model real-
time systems but its modeling entities and syntactic

constructions lack of a defined syntax and a precise
semantics. In order to unambiguously specify the behavior
of a reactive system, we have established a mapping that
gives to UML-RT entities a defined meaning according to
the semantic domain discussed in the following text. This
work is aimed at obtaining a systematic, formal oriented,
analysis and design method, which also includes temporal
specifications. A set of rules allows us to systematically
deriving a verifiable design of a real-time system from a
semi-formal system requirements UML-RT model.

CSP+T [2], which is an extension of CSP [3], [4], is a
good candidate to give a precise semantics to UML-RT

Manuscript received received July 15, 2005. This work is supported in

part by the Spanish Ministry of Education and Science under Grant
MAT2004-06872-C03-03.

Kawtar Benghazi Akhlaki is a PhD candidate in the Departamento de
Lenguajes y Sistemas Informáticos. Universidad de Granada, Granada
18071, Spain; e-mail: kawtar@ correo.ugr.es.

Manuel I. Capel, is in the Universidad de Granada, where he studied
Physics, obtained the MSC degree in 1982 and the PhD in Computer
Science in 1992. He worked in the Universidad de Murcia before moving in
1989 to the Universidad de Granada where he is now leading a research
group in the field of Concurrent Systems. His e-mail address is:
mcapel@ugr.es and his Web-page can be found at http://lsi.ugr.es/~mcapel
(Ph: 0034958242816, Fax: 0034958243179).

analysis entities. On one part, UML-RT provides a visual
system description of each object within the analysis model
as well as its behaviour, which is diagrammatically
represented by a Statecharts diagram [5]. On the other part,
CSP+T complements the dynamic description of the target
system by introducing timed events, which are used to
specify timing constraints on events and actions which
occur during the execution of processes in real-time
systems. Following the work [6]-[8] already done to
translate state diagrams into CSP process terms, we can
establish a new set of mapping rules between UML-RT
entities and CSP+T terms and operators in order to allow the
specification of complex temporal dependences between
real-time processes.

System structural aspects are specified by constructing
class diagrams [9], which describe the system composition
and associations between its objects. Thereby, we can obtain
a specification of all aspects regarding functionality,
behaviour and some key temporal properties of any real-
time system under development.

As to show the applicability of the method, we have used
it to carry out the software development of a basic
component of a manufacturing industry paradigmatic case:
the “Production Cell”. The rest of this paper is structured as
follows: section 2 provides an overview on UML-RT and
the UML diagrams used in our approach, section 3 explains
the system specification method that we propose here. In
section 4, using the example of the Production Cell, we
present a complete system specification of one of its robot
arm controllers. The article ends up with some conclusions
and references.

II. UML FOR REAL-TIME SYSTEMS
UML-RT extends the basic UML [9] analysis entities

with constructs to facilitate the design of complex
embedded real-time software systems [10]. The origin of the
UML-RT modeling notation is the real-time specific
modeling language ROOM [11], which has been modified
to follow the UML standardized framework. The language
focuses primarily on the specification of the architecture of
software systems, i.e., their major components, the
externally visible properties of these, and the
communication between them. The importance of the
software architecture definition in the development cycle is
argued by considering that decisions made during the
architectural design will have a very important impact on
the later system design, being also this phase which can
profit the most from a good modeling language.

Combining the Description Features of UML-
RT and CSP+T Specifications Applied to a

Complete Design of Real-Time Systems
Kawtar Benghazi Akhlaki, and Manuel I. Capel-Tuñón

U

World Academy of Science, Engineering and Technology
International Journal of Computer and Systems Engineering

 Vol:1, No:7, 2007

1069International Scholarly and Scientific Research & Innovation 1(7) 2007 ISNI:0000000091950263

O
pe

n
Sc

ie
nc

e
In

de
x,

 C
om

pu
te

r
an

d
Sy

st
em

s
E

ng
in

ee
ri

ng
 V

ol
:1

, N
o:

7,
 2

00
7

pu
bl

ic
at

io
ns

.w
as

et
.o

rg
/1

87
6.

pd
f

A. Basic concepts
UML-RT adds four new building blocks to the standard

UML meta-model. Three of them (capsules, ports and
connectors) are used to model the structure of the system,
and the fourth (protocols) models the communications
within the system. The behavior of system components is
modeled using Statecharts. These diagrams contain state
variables and describe the changes to the states by syntactic
expressions in some programming language. Capsules
model complex software components that could be
concurrent and physically distributed. The internal structure
of the components is described by sub-capsules and the
connections between these. A component interacts with its
surroundings, and with its sub-capsules, through a set of
ports which are the only parts of a component that are
visible to other objects. The ports can be connected either to
a Statecharts diagram defining the functionality of the
component, or to the port of a sub-capsule. Therefore, a
message sent to a port can be handled directly by the
capsule, or forwarded to a suitable sub-component. Fig. 1
shows an example depicting a simple UML-RT component
architecture that includes these concepts.

Fig. 1 An example of UML-RT concepts

The port p1 of the capsule CapA is connected to a

Statecharts diagram, while p2 is connected to the sub-
capsule CapB. In addition, the capsule has an internal port
p3, i.e., the one which is only visible inside the capsule,
connecting a port of the sub-capsule with a Statecharts
diagram. A protocol defines a number of participating roles
and the signals sent and received by each role. It can also
contain a specification of the valid sequences of signals,
which are encoded as in Statecharts. If no such specification
is given, any sequence is considered valid. Connectors are
used to model communication channels between two or
more ports, the later ones must realize different roles of their
mutual protocol. The protocols and connectors define the
behavior of the system at the architectural level. UML-RT
serves to model real-time systems and compared to standard
UML, it provides some additional support when modeling
the architecture of interactive systems, nevertheless it does
not provide support for modeling timing issues. Only are
timeouts allowed as time structures in a UML-RT model to
introduce timing constraints in the system specification, but
they are not supported by the modeling language itself.
Consequently, UML-RT does not facilitate reasoning about
the temporal properties of the system model. In reference
[12] UML-RT is alternatively defined by giving a formal
semantics of its entities, being the structural and behavioral
parts of a UML-RT model semantically defined in terms of
flow-graphs. This approach could be considered close to

ours but it does not address concurrency issues as we do by
using the programming notation CSP+T.

B. UML profile for Schedulability, Performance and
Time
In 1999, OMG issued a request for proposals regarding a

new UML profile addressing specific problems related to
the development of real-time systems [13]. The main aim of
the profile is to allow the exchange of models between
different modeling tools, and between tools for modeling
and analysis. It is also supposed to support essentially any
type of analysis method, including many schedulability and
performance analysis methods. These two requirements are
somewhat contradictory, since schedulability and
performance analysis methods typically consider only a
particular domain, thus making assumptions about the
underlying models of time, concurrency, etc. Thus, to
include a new analysis method to the profile framework, the
method provider must define the attributes that are essential
of his method, and connects them to the appropriate models
of resources and time. On the other part, when applying the
method to a model, the developer may need to iteratively
transform the latter one into an analyzable format containing
all the information appropriate for the method. In order for
the method to be useful, much of this transformation should
be done automatically.

C. Modeling Time
The profile distinguishes between two types of time

metric: physical and simulated. Physical time is considered
to be continuous, dense, unbounded and fully ordered, while
simulated time models the timing concepts as visible entities
from a system viewpoint. Time can be discrete or dense, and
possibly non-monotonic. Simulated time can be associated
with physical time by means of periodic reference clocks,
which group temporally close physical time instants and
associates their occurrence to the same clock tick, according
to some given time granularity. To allow simulated time to
be used in models, the UML-RT profile contains definitions
of timers and clocks. A timer generates a certain timeout
event when a specified time instant is reached, while clocks
periodically generate clock tick events. A clock or timer is
always associated with a reference clock that provides the
(simulated) time. They also have a number of attributes in
common, such as resolution and drift.

D. Modeling Schedulability
The UML-RT profile describes a set of common

scheduling annotations, which are sufficient to perform
basic schedulability of real-time tasks. It is expected that
individual tool vendors provide specialized annotations to
allow for more extensive analysis. The annotations defined
by the profile include priority, absolute and relative
deadlines, and worst-case completion time.

III. FORMAL SPECIFICATION AND TRANSFORMATION
METHODOLOGY FROM UML-RT

We are interested in systematically performing the
specification of the behavioral and structural aspects of a
real-time system. These two “different” specifications are
usually attained in UML by respectively using class
diagrams and Statecharts diagrams. Our aim is to give a
precise semantics to the system interactions (process

World Academy of Science, Engineering and Technology
International Journal of Computer and Systems Engineering

 Vol:1, No:7, 2007

1070International Scholarly and Scientific Research & Innovation 1(7) 2007 ISNI:0000000091950263

O
pe

n
Sc

ie
nc

e
In

de
x,

 C
om

pu
te

r
an

d
Sy

st
em

s
E

ng
in

ee
ri

ng
 V

ol
:1

, N
o:

7,
 2

00
7

pu
bl

ic
at

io
ns

.w
as

et
.o

rg
/1

87
6.

pd
f

communications, event occurrence, etc.) and its main
operations related to time. We can do it by constructing a
model of the system interactive behaviour as well as
modeling its timing constraints. CSP+T is a real time
specification language, which adds expressive power to
some of the sequential aspects of CSP and allows the

description of complex timing constraints and temporal
dependencies among real-time processes. CSP+T describes
a set of deterministic processes with time constrained
behaviour, which constitutes a formal specification
language of use for the design of the majority of real-time
systems.

TABLE I

MAPPING RULES FROM UML-RT TO CSP+T
 StateChart Diagram + Class Diagram Description CSP+T Model
1.

Initial State

Sys = 0.∗ →A
(∗: instantiation event)

2.

Transition from State A
to State B triggered by a
marker event e

A = e >< me→ B

3.

(e1,e2) two successive
events, e1 is a marker
event and e2 is its
restricted event

A = e1>< me1 → B

B = (I(e1). e2→ C | Timeout) → Skip.
With the enabling interval I defined as:
I (e1) = [me1, me1+ T], T∈ R+.

4.1

4.2

External choice:

Internal choice:

The choice of which
branch to take depends
on the trigger event
occurring upon exiting
from the current state

The decision on which
branch to take depends
on the prior action
within the same
execution step

A= (e1&b1→B □ e2&b2→C)

If (e1≠ e2) we can write :
A= (e1&b1→B | e2&b2→C)
Operator □ represents non-deterministic
and operator | represents deterministic
choice.

A= (I1.e 1→ B) п (I2.e2→C)
With the enabling intervals defined as:
I1 = [0, T1), T1> 0 &
I2 = [T1, T1+T2] T2> 0.

5.

Association between
two capsules sharing a
protocol

Sys = {A//B}\ {Ep}

Ep: a set of protocol operations

6.

Caps B Caps A

Pro A-B Pro A-C

Caps C

Sys

Association between
more than two capsules

Sys = {A//B}\ {EAB}
The protocol common to capsules A and
B is hidden from the environment

Sys1={Sys//C}\{EAC}

A series of transformation rules, already discussed in [6],
will allow us to create a CSP+T model from the UML
analysis model of a real-time system. These transformation
rules can be considered the core of our complete top down
systematic specification technique. Each object in a class
diagram is defined by a process which behaviour is
described by a Statecharts diagram. In general, we will
follow a transformation process that consists of the
following steps:

1. First of all, we define the dynamic behaviour of all
components in the system using Statecharts, then, for all the
active objects, we define:

a. Initial State, the starting point of the system
b. All the states which an object passes through
c. For all events and actions triggering state transitions of
objects, do the following steps:

i. Find the marker events and the restricted ones
ii. Assign a special function gettime() to the marker
event, so the occurrence instant is obtained
iii. Assign an enabling interval to the restricted event

A B
e

e1 e2
A B C

Timeout

e1[b1]

e2[b2]

I1.e1

I2.e2

World Academy of Science, Engineering and Technology
International Journal of Computer and Systems Engineering

 Vol:1, No:7, 2007

1071International Scholarly and Scientific Research & Innovation 1(7) 2007 ISNI:0000000091950263

O
pe

n
Sc

ie
nc

e
In

de
x,

 C
om

pu
te

r
an

d
Sy

st
em

s
E

ng
in

ee
ri

ng
 V

ol
:1

, N
o:

7,
 2

00
7

pu
bl

ic
at

io
ns

.w
as

et
.o

rg
/1

87
6.

pd
f

d. Identify all the transitions triggered by a special
timeout event, which serves to model the situation in
which a restricted event e2 does not occur within the
enabling interval. See rule 3 of Table I as an example of
this scenario

2. Transform each Statechart diagram into a CSP+T process.
a. Map each state into a CSP+T process, the initial state is
assigned to a process term that includes the instantiation
event (rule 1), which gives the global time origin
b. Transition from P to Q triggered by a marker event e is
translated into the CSP+T process P= e><te → Q, being
te the instant of the event occurrence, this mapping is
summarized as rule (2)
c. There are two possible representations of choices: a
choice state (represented as a diamond shape) or a normal
state with more than one outgoing transitions. In the
choice state, the decision on which branch to take next
depends on the prior actions performed by the process
within the same execution step. In a normal state, the
chioce depends on the trigger event that occurs upon
exiting from the current state (rule 4)

3. Create a class diagram for modeling the whole system to
show the relation between system components:

a. Model all system components as capsules
b. Model capsules interaction as protocols
c. Capsule operations are private and protocol operations
are public

4. To combine the individual processes obtained in step 2,
we transform the system class diagram into CSP+T
processes,

a. Treat each capsule as a CSP+T process
b. Capsule operations become the internal events of the
process
c. Protocol operation denotes the communication between
two capsules, or in other case the signals shared between
two processes
d. Two associated capsules are presented as two
processes composed in parallel with all the events in their
common protocol hidden (rule 5)
e. Processes associated to the classes are progressively
composed in parallel and the operations appearing in the
associated protocol become hidden (rule 6)
f. The transformation finishes when all the classes are
composed and all internal event (private operations) are
hidden.

A. Example1
We give a simple example to provide the insight of these

last steps (4.e-f):
Caps A interact with Cap B within a protocol Pro A-B, and
with Caps C within a protocol ProA-C.

Fig. 2 Connection diagram of UML-RT capsules

Let Sys be the process that models the system composed

by two capsules, CapsA and CapsB: Sys= {CapsA //

CapsB} \{EventsProt A-B}, and let Sys1 be the process
that models the system composed by Sys and CapsC: Sys1=
{Sys // CapsC} \{EventsProt A-C}. Therefore, the
method is compositional, i.e., the two subsystems
represented as processes are encapsulated in the process
term Sys1.

B. Timing Constraints
For two successive marker events (e1, e2), we assign to

e1 (the preceding event) a marker variable v to record the
time at which the event occurs and to e2 (the successor
event) an enabling interval I [v, v+ T], with T being a time
interval which takes enough time so that the event can occur
(rules 3 and 4), meaning that the occurrence of e2 is
restricted to the time T from the occurrence of event e1; or
otherwise if the event does not occur within the enabling
interval, a special event timeout is triggered to bring the
system state to a null state (skip). In [6] can be seen the
complete definition of marker events, variables and enabling
intervals.

C. Modeling Class Diagrams
- Modeling Protocol: Each two capsules associated

within a class diagram exchange a sequence of signals
defined in protocol Pt (CN, Ep) , being CN a pair of the
form (c1, c2) in which c1, c2∈ CS (set of capsules) and
c1≠c2, and Ep is a set of events shared between two
capsules.

- Modeling Associations in Class Diagrams: an
association in a class diagram is modeled as a parallel
composition in CSP+T made up of two capsules, having
turned the events of its associated protocol into hidden
events.

IV. THE PRODUCTION CELL CASE STUDY
The case study [14] presents a realistic industry-oriented

problem, where safety requirements play a significant role
and can be met by the application of formal methods. The
manageable size of the Production Cell (PC) design task
allows for experimenting with several approaches.

The PC processes metal blanks which are conveyed to a
press by a feed belt. A robot arms takes each blank from the
feed belt and places it on the press, then the robot arm
withdraws from the press proximity, the press processes the
metal blank and opens again. Finally, another robot arm
takes the forged metal plate out of the press and puts it on a
deposit belt (see Fig. 3).

Fig. 3.Production Cell

This basic sequence is complicated by further details:

• To enhance the utilization of the press, the robot is fitted
with two arms; thus, making it possible for the first arm to
pick up a blank while the press is forging another plate.

Caps B Caps A Caps C

Prot A-B Prot A-C

World Academy of Science, Engineering and Technology
International Journal of Computer and Systems Engineering

 Vol:1, No:7, 2007

1072International Scholarly and Scientific Research & Innovation 1(7) 2007 ISNI:0000000091950263

O
pe

n
Sc

ie
nc

e
In

de
x,

 C
om

pu
te

r
an

d
Sy

st
em

s
E

ng
in

ee
ri

ng
 V

ol
:1

, N
o:

7,
 2

00
7

pu
bl

ic
at

io
ns

.w
as

et
.o

rg
/1

87
6.

pd
f

• The robot arms are placed on different horizontal planes,
and they are not vertically mobile. This explains why an
elevating rotary table has to be put in between the feed belt
and the robot.
• Another consequence of the fact that the two robot arms
are at different levels is that the press has three states: (1)
open and prepared to be unloaded by the lower arm, (2)
open to be loaded with a metal plate by the upper arm, and
(3) closed while pressing.

A. Modeling the Robot
The robot comprises two orthogonal arms. For technical

reasons, the arms are set at two different levels. Each arm
can retract or extend horizontally. Both arms rotate jointly.
Mobility on the horizontal plane is necessary, since
elevating rotary table, press, and deposit belt are all placed
at different distances from the robot’s turning center.

Fig. 4 Robot and press (top view)

The end of each robot arm is fitted with an electromagnet

that allows the arm to pick up metal plates. The robot’s arm
task consists in taking metal blanks from the elevating
rotary table to the press and transporting forged plates from
the press to the deposit belt.

A normal work cycle of the robot can be described in four
main steps:
1. The robot rotates clockwise until Arm 1 is faced to the
table, then Arm 1 extends and picks up a metal blank from
the table.
2. The robot rotates counterclockwise until Arm 2 points
towards the press, then Arm 2 extends and picks up a forged
piece from the press.
3. The robot rotates counterclockwise until Arm 2 points
towards the deposit belt, then Arm2 extends and drops the
piece into the belt.
4. The robot rotates counterclockwise until Arm 1 points
towards the press, then Arm 1 extends and places the blank
on the press.

The Robot Class Diagram, Fig. 5, shows the robot
architecture, the interaction between the robot controller and
the two arms of the robot. Its shows the structure of the
robot, its classes and their associations, but it does not
describe the behavior of the class instances. We use UML
Statecharts to model the behavior of the robot controller and
the 2 robot arms.

Fig. 5 The Robot component class

By applying some of the mapping rules in Table I to a

Robot Statecharts diagram we obtain the interactive and
temporal behaviour specification of the Robot-controller,
specified as a CSP+T process term.

Processes Robot Controller and Arm1(which represents
the capsule that hides the robot arm hardware) are
composed in parallel, hiding the protocol operations in
PArm1 (the protocol with the signals shared between the
two capsules):
RobotController-Arm1 =
(Robot controller // Arm1) \ {A1Extend,
A1Retract, A1Load, A1Unload, A1Stop}
By composing in parallel the processes RobotController-

Arm1 with Arm2 we obtain the Robot process structure:
Robot =
(Robotcontroller-Arm1 // Arm2) \ {A2Extend,
A2Retract, A2Load, A2Unload, A21Stop}
To avoid collision between arms and other PC

components (press, belts, etc.), some of which have to be to
loaded or unloaded, we store in a variable tposx the time at
which the robot arrived to an given position in each
composite state of the robot. We assign an interval I[tposx,
tposx+TCL/U] to the event which warns the controller that
the component is ready to be loaded or unloaded by the
robot arm. The arm can extend only if the event occur
within the enabling interval, or otherwise the timeout event
is triggered and the robot exits the actual state and turns
towards another position to complete its task. To allow safe
rotation, the arm must be retracted before the robot can turn.
The robot Statechart diagram in Fig. 6 shows the integration
of these concepts, needed to describe the PC safety
requirements.

B. Production Cell Diagram
The Production Cell Class Diagram (Fig. 7) shows the

association between the objects and the events shared
between any two objects communicating in the PC protocol.

We recursively compose the translated CSP+T terms in
parallel, which correspond to the classes of the diagram, and
hide the messages of the protocol that are only used to
connect two capsules at every composition step:
Robot-Press = (Robot // Press) \
{PressReadyLoad, PressReady Unloaded,
forge}
DB-Robot-Press = (Robot-Press // DB) \
{Place, DBEmpty}
Tabe-DB-Robot-Press = (DB-Robot-Press //
table) // {TableReady, Unloaded}
FB-Table-DB-Robot-Press = (Table-DB-Robot-
Press // FB) \ {FBReadyLoad, Loaded,
UnLoaded}

<<capsule>>
Arm2

Extend2
+Retract2
+Load2
+Unload2
+Stop2

<<protocol>>
PArm2

<<capsule>>
RobotController

GetPosition
-Turn

<<protocol>>
PArm1

Extend1
+Retract1
+Load1
+Unload1
+Stop1

<<capsule>>
Arm1

World Academy of Science, Engineering and Technology
International Journal of Computer and Systems Engineering

 Vol:1, No:7, 2007

1073International Scholarly and Scientific Research & Innovation 1(7) 2007 ISNI:0000000091950263

O
pe

n
Sc

ie
nc

e
In

de
x,

 C
om

pu
te

r
an

d
Sy

st
em

s
E

ng
in

ee
ri

ng
 V

ol
:1

, N
o:

7,
 2

00
7

pu
bl

ic
at

io
ns

.w
as

et
.o

rg
/1

87
6.

pd
f

CW

Waiting for Table Waiting for Arm1
to extend

Waiting for Arm1
to retract

TableReady ^a1.Extend

Ttr= gettime

Start

a1extended ^ a1.Stop ^ a1.Load ^ retract

tex=gettime tload=gettime

I.a1retracted ^ a1.Stop ^Table.unloaded

Tu
rn

(R
ig

ht
)

Waiting for Press
Unloading

Waiting for Arm2
to extend

Waiting for Arm2
to retract

PRUnload ^a2.Extend

tpu =gettime()
a2extended ^ a2.Stop ^ a2.Load ^ retract

tex=gettime tload=gettime

I.a2retracted ^ a2.Stop
^press.unloaded

Po
s

1
^

Tu
rn

(S
to

p)
tp

os
1=

 g
et

tim
e(

)

CWW

Waiting for Press
Looading

Waiting for Arm1
to extend

Waiting for Arm1
to retract

PRLoad ^a1.Extend

ttr =gettime()

a1extended ^ a1.Stop ^ a1unload ^ retract

tex=gettime tunload=gettime

I.a1retracted ^ a1.Stop ^press.forge

Waiting for Belt Waiting for Arm2
to extend

Waiting for Arm2
to retract

DBEmpty ^a2.Extend

tdbe =gettime()

a2extended ^ a2.Stop ^ a2.unLoad ^ retract

tex=gettime tunload=gettime

I.a2retracted ^ a2.Stop ^DepositBelt.Place

turn

Pos 2 ^ Turn(Stop)

Pos 3 ^ Turn(Stop)

Pos 4 ^ Turn(Stop)

Turn(Left)t

Turn(Left)

t - now > tpos1 + T1

t - now > tpos4 + T4

t - now > tpos3 + T3

t - now > tpos2 + T2

tpos2= gettime() tpos4= gettime()

tpos3= gettime()

Fig. 6 Robot Controller Statecharts diagram

The bottom-up design is completed by defining the

following instantiated CSP + T process that models the
whole system and which is derived from the previous FB-
Table- DB-Robot-Press term,
Production_Cell_ Context = PCC
PCC = 0. → (FB- Table- DB-Robot-Press)\
{GetPosition, Turn(Left) Turn(Right)
Turn(Stop),Engine, PressTop, PressMiddle,
PressLower TableMove, tableTurn, TableStop}

The hidden events, in the above specification, correspond

to the private operations appearing in the corresponding
class diagram.

<<capsule>>

Robot

<<capsule>>

Press

<<capsule>>

FeedBelt

<<capsule>>

Table

<<Protocole>>

P - R

<<Protocole>>

P - T

<<Protocole>>

DB - R

<<Protocole>>

DB - R

<<capsule>>

DepositBelt

<<capsule>>

DepositBelt

<<Protocole>>

FB - T

+ Place

+ Dbeltempty + PRdyLoad
+ PRdyUload
+ Forge

+Tableready

+Unloaded+ FBReadyLoad

+ Loaded

+unloaded

- Engine
- PressTop
- PressMiddle
- PressLower

- TableTurn
- Tablemove
- Stop

-GetPosition
-Turn(Right)
-Turn(Left)
-turn(Stop)

Fig. 7 Cell Production diagram

V. CONCLUSION
In this paper, we describe a systematic method to derive a

correct system specification of the “Production Cell”,
starting from a semi-formal system user requirements
specification model in UML-RT. Our approach combines
UML-RT with CSP+T to overcome imprecision that UML

models present in describing real-time systems. The future
and ongoing work in our project is aimed to use the
proposed method for automatic code generation of
embedded control real-time systems and to attain integration
and interoperability with state-of-the-art UML-RT software
tools, such as the ObjectTime [10] one.

ACKNOWLEDGMENT
The authors thank Anna Grimán Padua (Departmento de

Procesos y Sistemas, Universidad Simón Bolívar, Caracas,
Venezuela) for her help with the first draft of this work.

REFERENCES
[1] B.Selic and J.Rumbaugh, “UML for modeling complex real-time

systems”. Technical report, ObjectTime, 1998.
[2] John J.Zic, “Timed constrained buffer specifications in CSP + T and

timed CSP”. ACM Transaction on Programming Languages and
Systems, vol.16, 6, 1994, pp. 1661-1674.

[3] A.W.Roscoe. “The theory and practice of concurrency”. Prentice Hall,
1997.

[4] C.A.R. Hoare, “Communicating Sequential Processes”, Prentice- Hall,
1978.

[5] D. Harel and A. Naamad, “The statemate semantics of Statecharts”.
ACM Transactions of Software Engineering and Methodology, vol.5,
4, October 1996, pp.293-333.

[6] M. I. Capel, J. A. Holgado, “Transforming SA/RT Graphical
Specifications into CSP+T Formalism - Obtaining a Formal
Specification from Semi-Formal SA/RT Essential Models”, ICEIS
2005, vol.3, Proceedings of the Seventh International Conference on
Enterprise Information Systems, Miami, USA, May 25-28, pp.65-72.

[7] M. I. Capel, J. A. Holgado, A. Escámez, “An Integration Scheme for
CPN and Process Algebra Applied to a Manufacturing Industry
Case”, Modelling, Simulation, Verification and Validation of
Enterprise Information Systems, Proceedings of the 3rd International
Workshop on Modelling, Simulation, Verification and Validation of
Enterprise Information Systems, MSVVEIS 2005, Miami, FL, USA,
INSTICC Press, 2005, pp. 39-48.

[8] M.Y.Ng and M. Butler, “Tool Support for Visualizing CSP in UML”,
in Proceedings of International Conference on Formal Engineering
Methods(ICFEM), Shanghai, China, 2002, pp. 287-298.

[9] G. Booch, J. Rumbaugh, and I. Jacobson, “The Unified Modeling
Language User Guide”, Addison-Wesley, Reading, Massachusetts,
USA, 1999.

[10] B. Selic, “Using UML for modeling complex real-time systems”.
Lecture Notes in Computer Science, 1474, Springer-Verlag, 1998,
pp.250–260.

[11] B. Selic, G. Gullekson, J. McGee, and I. Engelberg, “ROOM: An
object-oriented methodology for developing real-time systems”, in
Proceedings 5th Int. Work. Computer-Aided Software Engineering,
July 1992, pp. 230–240.

[12] R. Grosu, M. Broy, B. Selic, and Gh. Stefanescu, “Towards a calculus
for UML-RT specifications”, in Proceedings Seventh OOPSLA
Workshop on Behavioral Semantics of OO Business and System
Specifications, Vancouver, Canada, October 1998.

[13] OMG, “Response to the OMG RFP for schedulability, performance,
and time”, June 2001. Available: OMG document number: ad/ 2001-
06-14, http://www.omg.org/cgi-bin/doc?ad/2001-06-14.

[14] C. Lewerentz and T. Lindert, “Formal Development of reactive
Systems: Case Study Production Cell”. Lecture Notes in Computer
Science, S 891, Springer-Verlag, Heidelberg, 1995.

[15] P.Welch, “Process Oriented Design for Java: Concurrency for All”, in
Computational Science - ICCS 2002, Lecture Notes in Computer
Science, 2330, Springer-Verlag, April 2002 (Keynote Tutorial), pp.
687-687.

World Academy of Science, Engineering and Technology
International Journal of Computer and Systems Engineering

 Vol:1, No:7, 2007

1074International Scholarly and Scientific Research & Innovation 1(7) 2007 ISNI:0000000091950263

O
pe

n
Sc

ie
nc

e
In

de
x,

 C
om

pu
te

r
an

d
Sy

st
em

s
E

ng
in

ee
ri

ng
 V

ol
:1

, N
o:

7,
 2

00
7

pu
bl

ic
at

io
ns

.w
as

et
.o

rg
/1

87
6.

pd
f

