Search results for: neutrosophic logic decision making
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 2538

Search results for: neutrosophic logic decision making

1488 An Overview of Handoff Techniques in Cellular Networks

Authors: Nasıf Ekiz, Tara Salih, Sibel Küçüköner, Kemal Fidanboylu

Abstract:

Continuation of an active call is one of the most important quality measurements in the cellular systems. Handoff process enables a cellular system to provide such a facility by transferring an active call from one cell to another. Different approaches are proposed and applied in order to achieve better handoff service. The principal parameters used to evaluate handoff techniques are: forced termination probability and call blocking probability. The mechanisms such as guard channels and queuing handoff calls decrease the forced termination probability while increasing the call blocking probability. In this paper we present an overview about the issues related to handoff initiation and decision and discuss about different types of handoff techniques available in the literature.

Keywords: Handoff, Forced Termination Probability, Blocking probability, Handoff Initiation, Handoff Decision, Handoff Prioritization Schemes.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 6615
1487 A Two-Stage Multi-Agent System to Predict the Unsmoothed Monthly Sunspot Numbers

Authors: Mak Kaboudan

Abstract:

A multi-agent system is developed here to predict monthly details of the upcoming peak of the 24th solar magnetic cycle. While studies typically predict the timing and magnitude of cycle peaks using annual data, this one utilizes the unsmoothed monthly sunspot number instead. Monthly numbers display more pronounced fluctuations during periods of strong solar magnetic activity than the annual sunspot numbers. Because strong magnetic activities may cause significant economic damages, predicting monthly variations should provide different and perhaps helpful information for decision-making purposes. The multi-agent system developed here operates in two stages. In the first, it produces twelve predictions of the monthly numbers. In the second, it uses those predictions to deliver a final forecast. Acting as expert agents, genetic programming and neural networks produce the twelve fits and forecasts as well as the final forecast. According to the results obtained, the next peak is predicted to be 156 and is expected to occur in October 2011- with an average of 136 for that year.

Keywords: Computational techniques, discrete wavelet transformations, solar cycle prediction, sunspot numbers.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1328
1486 Application of Ant Colony Optimization for Multi-objective Production Problems

Authors: Teerapun Saeheaw, Nivit Charoenchai, Wichai Chattinnawat

Abstract:

This paper proposes a meta-heuristic called Ant Colony Optimization to solve multi-objective production problems. The multi-objective function is to minimize lead time and work in process. The problem is related to the decision variables, i.e.; distance and process time. According to decision criteria, the mathematical model is formulated. In order to solve the model an ant colony optimization approach has been developed. The proposed algorithm is parameterized by the number of ant colonies and the number of pheromone trails. One example is given to illustrate the effectiveness of the proposed model. The proposed formulations; Max-Min Ant system are then used to solve the problem and the results evaluate the performance and efficiency of the proposed algorithm using simulation.

Keywords: Ant colony optimization, multi-objective problems.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1898
1485 Procedure Model for Data-Driven Decision Support Regarding the Integration of Renewable Energies into Industrial Energy Management

Authors: M. Graus, K. Westhoff, X. Xu

Abstract:

The climate change causes a change in all aspects of society. While the expansion of renewable energies proceeds, industry could not be convinced based on general studies about the potential of demand side management to reinforce smart grid considerations in their operational business. In this article, a procedure model for a case-specific data-driven decision support for industrial energy management based on a holistic data analytics approach is presented. The model is executed on the example of the strategic decision problem, to integrate the aspect of renewable energies into industrial energy management. This question is induced due to considerations of changing the electricity contract model from a standard rate to volatile energy prices corresponding to the energy spot market which is increasingly more affected by renewable energies. The procedure model corresponds to a data analytics process consisting on a data model, analysis, simulation and optimization step. This procedure will help to quantify the potentials of sustainable production concepts based on the data from a factory. The model is validated with data from a printer in analogy to a simple production machine. The overall goal is to establish smart grid principles for industry via the transformation from knowledge-driven to data-driven decisions within manufacturing companies.

Keywords: Data analytics, green production, industrial energy management, optimization, renewable energies, simulation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1736
1484 Solving Partially Monotone Problems with Neural Networks

Authors: Marina Velikova, Hennie Daniels, Ad Feelders

Abstract:

In many applications, it is a priori known that the target function should satisfy certain constraints imposed by, for example, economic theory or a human-decision maker. Here we consider partially monotone problems, where the target variable depends monotonically on some of the predictor variables but not all. We propose an approach to build partially monotone models based on the convolution of monotone neural networks and kernel functions. The results from simulations and a real case study on house pricing show that our approach has significantly better performance than partially monotone linear models. Furthermore, the incorporation of partial monotonicity constraints not only leads to models that are in accordance with the decision maker's expertise, but also reduces considerably the model variance in comparison to standard neural networks with weight decay.

Keywords: Mixture models, monotone neural networks, partially monotone models, partially monotone problems.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1620
1483 Performance Improvement of Information System of a Banking System Based on Integrated Resilience Engineering Design

Authors: S. H. Iranmanesh, L. Aliabadi, A. Mollajan

Abstract:

Integrated resilience engineering (IRE) is capable of returning banking systems to the normal state in extensive economic circumstances. In this study, information system of a large bank (with several branches) is assessed and optimized under severe economic conditions. Data envelopment analysis (DEA) models are employed to achieve the objective of this study. Nine IRE factors are considered to be the outputs, and a dummy variable is defined as the input of the DEA models. A standard questionnaire is designed and distributed among executive managers to be considered as the decision-making units (DMUs). Reliability and validity of the questionnaire is examined based on Cronbach's alpha and t-test. The most appropriate DEA model is determined based on average efficiency and normality test. It is shown that the proposed integrated design provides higher efficiency than the conventional RE design. Results of sensitivity and perturbation analysis indicate that self-organization, fault tolerance, and reporting culture respectively compose about 50 percent of total weight.

Keywords: Banking system, data envelopment analysis, DEA, integrated resilience engineering, IRE, performance evaluation, perturbation analysis.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 842
1482 Integrated Grey Rational Analysis-Standard Deviation Method for Handover in Heterogeneous Networks

Authors: Mohanad Alhabo, Naveed Nawaz, Mahmoud Al-Faris

Abstract:

The dense deployment of small cells is a promising solution to enhance the coverage and capacity of the heterogeneous networks (HetNets). However, the unplanned deployment could bring new challenges to the network ranging from interference, unnecessary handovers and handover failures. This will cause a degradation in the quality of service (QoS) delivered to the end user. In this paper, we propose an integrated Grey Rational Analysis Standard Deviation based handover method (GRA-SD) for HetNet. The proposed method integrates the Standard Deviation (SD) technique to acquire the weight of the handover metrics and the GRA method to select the best handover base station. The performance of the GRA-SD method is evaluated and compared with the traditional Multiple Attribute Decision Making (MADM) methods including Simple Additive Weighting (SAW) and VIKOR methods. Results reveal that the proposed method has outperformed the other methods in terms of minimizing the number of frequent unnecessary handovers and handover failures, in addition to improving the energy efficiency.

Keywords: Energy efficiency, handover, HetNets, MADM, small cells.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 496
1481 The Role of Female Population as a Consumer in Modern Marketing Strategy and Management

Authors: Jana Aleksić, Marijana Petković

Abstract:

Female population has an increasing role when it comes to purchase. Consequently, the female population has a greater role in modern marketing. Although it is thought that women buy more than men, marketing strategy was not directed specifically towards women. The thing that has changed regarding women’s role in modern marketing is the fact that the female population has a leading position when it comes to decision making in various fields and various sectors, which was not the case in the past. Marketing should be directed towards women but it should be done in the right way. Compared to men, women buy in a different way, and they look for more various advantages in the product itself, than men do. This paper aims to show the importance of the female role in the modern marketing and management and to redirect marketing in some way towards female population through new marketing strategies and management systems. Hypothesis is that women have an important role in marketing, and marketing strategy of modern society could and should be based on and directed towards female population and their tastes when it comes to purchasing. It is necessary and desirable to apply marketing strategy with a special strategy that has an emphasis on women and their purchase or in a word to apply WS- woman strategy. This research was carried out as a random sample research, where were obtained 212 valid surveys whose results serve as a basis for drawing conclusions about the research as well as to verify the formulated hypotheses. The research was carried out during 2011 and 2012. The study has shown a significant role of the female population in the marketing process.

Keywords: Marketing, management, female, purchase, strategy.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1381
1480 Predictive Analysis for Big Data: Extension of Classification and Regression Trees Algorithm

Authors: Ameur Abdelkader, Abed Bouarfa Hafida

Abstract:

Since its inception, predictive analysis has revolutionized the IT industry through its robustness and decision-making facilities. It involves the application of a set of data processing techniques and algorithms in order to create predictive models. Its principle is based on finding relationships between explanatory variables and the predicted variables. Past occurrences are exploited to predict and to derive the unknown outcome. With the advent of big data, many studies have suggested the use of predictive analytics in order to process and analyze big data. Nevertheless, they have been curbed by the limits of classical methods of predictive analysis in case of a large amount of data. In fact, because of their volumes, their nature (semi or unstructured) and their variety, it is impossible to analyze efficiently big data via classical methods of predictive analysis. The authors attribute this weakness to the fact that predictive analysis algorithms do not allow the parallelization and distribution of calculation. In this paper, we propose to extend the predictive analysis algorithm, Classification And Regression Trees (CART), in order to adapt it for big data analysis. The major changes of this algorithm are presented and then a version of the extended algorithm is defined in order to make it applicable for a huge quantity of data.

Keywords: Predictive analysis, big data, predictive analysis algorithms. CART algorithm.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1075
1479 Observations of Conformity in the Health Professions

Authors: Tanya N. Beran, Michelle A. Drefs, Ghazwan Altabbaa, Nouf Al Harbi, Noof Al Baz, Elizabeth Oddone Paolucci

Abstract:

Although interprofessional practice is a collaborative approach for problem solving among health professionals, its implementation can present challenges to its team members. In particular, they may feel pressured to agree with or conform to other members who share information that is contrary to their own understanding. Obtaining evidence of this phenomenon is challenging, as team members may underreport their conformity behaviors due to reasons such as social desirability. In this paper, a series of studies are reviewed in which several approaches to assessing conformity in the health care professions are tested. Simulations, questionnaires, and behavior checklists can be used to measure conformity behaviors. Insights from these studies show that a significant proportion of people conform either in the presence or absence of others, express a variety of verbal and nonverbal behaviors when considering whether to conform to others, may shift between conforming and moments later not conforming (and vice versa), and may not accurately report whether they conformed. A method of measuring conformity using the implicit bias test is also discussed. People at all levels in the healthcare system are encouraged to develop both formal and informal strategies to manage the conformity pressures that people face.

Keywords: Conformity, decision-making, interprofessional teams, medical simulation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 434
1478 Automatic Authentication of Handwritten Documents via Low Density Pixel Measurements

Authors: Abhijit Mitra, Pranab Kumar Banerjee, C. Ardil

Abstract:

We introduce an effective approach for automatic offline au- thentication of handwritten samples where the forgeries are skillfully done, i.e., the true and forgery sample appearances are almost alike. Subtle details of temporal information used in online verification are not available offline and are also hard to recover robustly. Thus the spatial dynamic information like the pen-tip pressure characteristics are considered, emphasizing on the extraction of low density pixels. The points result from the ballistic rhythm of a genuine signature which a forgery, however skillful that may be, always lacks. Ten effective features, including these low density points and den- sity ratio, are proposed to make the distinction between a true and a forgery sample. An adaptive decision criteria is also derived for better verification judgements.

Keywords: Handwritten document verification, Skilled forgeries, Low density pixels, Adaptive decision boundary.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1715
1477 A Car Parking Monitoring System Using Wireless Sensor Networks

Authors: Jung-Ho Moon, Tae Kwon Ha

Abstract:

This paper presents a car parking monitoring system using wireless sensor networks. Multiple sensor nodes and a sink node, a gateway, and a server constitute a wireless network for monitoring a parking lot. Each of the sensor nodes is equipped with a 3-axis AMR sensor and deployed in the center of a parking space. Each sensor node reads its sensor values periodically and transmits the data to the sink node if the current and immediate past sensor values show a difference exceeding a threshold value. The sensor nodes and sink node use the 448 MHz band for wireless communication. Since RF transmission only occurs when sensor values show abrupt changes, the number of RF transmission operations is reduced and battery power can be conserved. The data from the sensor nodes reach the server via the sink node and gateway. The server determines which parking spaces are taken by cars based upon the received sensor data and reference values. The reference values are average sensor values measured by each sensor node when the corresponding parking spot is not occupied by a vehicle. Because the decision making is done by the server, the computational burden of the sensor node is relieved, which helps reduce the duty cycle of the sensor node.

Keywords: Car parking monitoring, magnetometer, sensor node, wireless sensor network.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 8177
1476 Research on Rail Safety Security System

Authors: Cai Guoqiang, Jia Limin, Zhou Liming, Liang yu, Li xi

Abstract:

This paper analysis the integrated use of safety monitoring with the domestic and international latest research on rail safety protection system, and focus on the implementation of an organic whole system, with the monitoring and early warning, risk assessment, predictive control and emergency rescue system. The system framework, contents and system structure of Security system is proposed completely. It-s pointed out that the Security system is a negative feedback system composed of by safety monitoring and warning system, risk assessment and emergency rescue system. Safety monitoring and warning system focus on the monitoring target monitoring, early warning, tracking, integration of decision-making, for objective and subjective risks factors. Risk assessment system analysis the occurrence of a major Security risk mechanism, determines the standard of the future short, medium and long term safety conditions, and give prop for development of safety indicators, accident analysis and safety standards. Emergency rescue system is with the goal of rapid and effective rescue work for accident, to minimize casualties and property losses.

Keywords: rail safety protection, monitoring and early warning, risk assessment, emergency rescue.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3147
1475 Exploiting Machine Learning Techniques for the Enhancement of Acceptance Sampling

Authors: Aikaterini Fountoulaki, Nikos Karacapilidis, Manolis Manatakis

Abstract:

This paper proposes an innovative methodology for Acceptance Sampling by Variables, which is a particular category of Statistical Quality Control dealing with the assurance of products quality. Our contribution lies in the exploitation of machine learning techniques to address the complexity and remedy the drawbacks of existing approaches. More specifically, the proposed methodology exploits Artificial Neural Networks (ANNs) to aid decision making about the acceptance or rejection of an inspected sample. For any type of inspection, ANNs are trained by data from corresponding tables of a standard-s sampling plan schemes. Once trained, ANNs can give closed-form solutions for any acceptance quality level and sample size, thus leading to an automation of the reading of the sampling plan tables, without any need of compromise with the values of the specific standard chosen each time. The proposed methodology provides enough flexibility to quality control engineers during the inspection of their samples, allowing the consideration of specific needs, while it also reduces the time and the cost required for these inspections. Its applicability and advantages are demonstrated through two numerical examples.

Keywords: Acceptance Sampling, Neural Networks, Statistical Quality Control.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1695
1474 Synthetic Aperture Radar Remote Sensing Classification Using the Bag of Visual Words Model to Land Cover Studies

Authors: Reza Mohammadi, Mahmod R. Sahebi, Mehrnoosh Omati, Milad Vahidi

Abstract:

Classification of high resolution polarimetric Synthetic Aperture Radar (PolSAR) images plays an important role in land cover and land use management. Recently, classification algorithms based on Bag of Visual Words (BOVW) model have attracted significant interest among scholars and researchers in and out of the field of remote sensing. In this paper, BOVW model with pixel based low-level features has been implemented to classify a subset of San Francisco bay PolSAR image, acquired by RADARSAR 2 in C-band. We have used segment-based decision-making strategy and compared the result with the result of traditional Support Vector Machine (SVM) classifier. 90.95% overall accuracy of the classification with the proposed algorithm has shown that the proposed algorithm is comparable with the state-of-the-art methods. In addition to increase in the classification accuracy, the proposed method has decreased undesirable speckle effect of SAR images.

Keywords: Bag of Visual Words, classification, feature extraction, land cover management, Polarimetric Synthetic Aperture Radar.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 774
1473 A Constructivist Approach and Tool for Autonomous Agent Bottom-up Sequential Learning

Authors: Jianyong Xue, Olivier L. Georgeon, Salima Hassas

Abstract:

During the initial phase of cognitive development, infants exhibit amazing abilities to generate novel behaviors in unfamiliar situations, and explore actively to learn the best while lacking extrinsic rewards from the environment. These abilities set them apart from even the most advanced autonomous robots. This work seeks to contribute to understand and replicate some of these abilities. We propose the Bottom-up hiErarchical sequential Learning algorithm with Constructivist pAradigm (BEL-CA) to design agents capable of learning autonomously and continuously through interactions. The algorithm implements no assumption about the semantics of input and output data. It does not rely upon a model of the world given a priori in the form of a set of states and transitions as well. Besides, we propose a toolkit to analyze the learning process at run time called GAIT (Generating and Analyzing Interaction Traces). We use GAIT to report and explain the detailed learning process and the structured behaviors that the agent has learned on each decision making. We report an experiment in which the agent learned to successfully interact with its environment and to avoid unfavorable interactions using regularities discovered through interaction.

Keywords: Cognitive development, constructivist learning, hierarchical sequential learning, self-adaptation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 533
1472 A Fuzzy Model and Tool to Analyze SIVD Diseases Using TMS

Authors: A. Faro, D. Giordano, M. Pennisi, G. Scarciofalo, C. Spampinato, F. Tramontana

Abstract:

The paper proposes a methodology to process the signals coming from the Transcranial Magnetic Stimulation (TMS) in order to identify the pathology and evaluate the therapy to treat the patients affected by demency diseases. In particular, a fuzzy model is developed to identify the demency of the patients affected by Subcortical Ischemic Vascular Dementia and to measure the positive effect, if any, of a repetitive TMS on their motor performances. A tool is also presented to support the mentioned analysis.

Keywords: TMS, SIVD, Electromiography , Fuzzy Logic.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1574
1471 Computation of Probability Coefficients using Binary Decision Diagram and their Application in Test Vector Generation

Authors: Ashutosh Kumar Singh, Anand Mohan

Abstract:

This paper deals with efficient computation of probability coefficients which offers computational simplicity as compared to spectral coefficients. It eliminates the need of inner product evaluations in determination of signature of a combinational circuit realizing given Boolean function. The method for computation of probability coefficients using transform matrix, fast transform method and using BDD is given. Theoretical relations for achievable computational advantage in terms of required additions in computing all 2n probability coefficients of n variable function have been developed. It is shown that for n ≥ 5, only 50% additions are needed to compute all probability coefficients as compared to spectral coefficients. The fault detection techniques based on spectral signature can be used with probability signature also to offer computational advantage.

Keywords: Binary Decision Diagrams, Spectral Coefficients, Fault detection

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1465
1470 Scenario and Decision Analysis for Solar Energy in Egypt by 2035 Using Dynamic Bayesian Network

Authors: Rawaa H. El-Bidweihy, Hisham M. Abdelsalam, Ihab A. El-Khodary

Abstract:

Bayesian networks are now considered to be a promising tool in the field of energy with different applications. In this study, the aim was to indicate the states of a previous constructed Bayesian network related to the solar energy in Egypt and the factors affecting its market share, depending on the followed data distribution type for each factor, and using either the Z-distribution approach or the Chebyshev’s inequality theorem. Later on, the separate and the conditional probabilities of the states of each factor in the Bayesian network were derived, either from the collected and scrapped historical data or from estimations and past studies. Results showed that we could use the constructed model for scenario and decision analysis concerning forecasting the total percentage of the market share of the solar energy in Egypt by 2035 and using it as a stable renewable source for generating any type of energy needed. Also, it proved that whenever the use of the solar energy increases, the total costs decreases. Furthermore, we have identified different scenarios, such as the best, worst, 50/50, and most likely one, in terms of the expected changes in the percentage of the solar energy market share. The best scenario showed an 85% probability that the market share of the solar energy in Egypt will exceed 10% of the total energy market, while the worst scenario showed only a 24% probability that the market share of the solar energy in Egypt will exceed 10% of the total energy market. Furthermore, we applied policy analysis to check the effect of changing the controllable (decision) variable’s states acting as different scenarios, to show how it would affect the target nodes in the model. Additionally, the best environmental and economical scenarios were developed to show how other factors are expected to be, in order to affect the model positively. Additional evidence and derived probabilities were added for the weather dynamic nodes whose states depend on time, during the process of converting the Bayesian network into a dynamic Bayesian network.

Keywords: Bayesian network, Chebyshev, decision variable, dynamic Bayesian network, Z-distribution

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 504
1469 Fast Lines at Theme Parks

Authors: G. Hernandez-Maskivker, G. Ryan, M. Blazey, M. Pàmies

Abstract:

Waiting times and queues are a daily problem for theme parks. Fast lines or priority queues appear as a solution for a specific segment of customers, that is, tourists who are willing to pay to avoid waiting. This paper analyzes the fast line system and explores the factors that affect the decision to purchase a fast line pass. A greater understanding of these factors may help companies to design appropriate products and services. This conceptual paper was based on a literature review in marketing and consumer behavior. Additional research was identified in related disciplines such as leisure studies, psychology, and sociology. A conceptual framework of the factors influencing the decision to purchase a fast line pass is presented.

Keywords: Tourist behavior, fast lines, theme park, willing to pay.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 4478
1468 A Multi-Objective Methodology for Selecting Lean Initiatives in Modular Construction Companies

Authors: Saba Shams Bidhendi, Steven Goh, Andrew Wandel

Abstract:

The implementation of lean manufacturing initiatives has produced significant impacts in improving operational performance and reducing manufacturing wastes in the production process. However, selecting an appropriate set of lean strategies is critical to avoid misapplication of the lean manufacturing techniques and consequential increase in non-value-adding activities. To the author’s best knowledge, there is currently no methodology to select lean strategies that considers their impacts on manufacturing wastes and performance metrics simultaneously. In this research, a multi-objective methodology is proposed that suggests an appropriate set of lean initiatives based on their impacts on performance metrics and manufacturing wastes and within manufacturers’ resource limitation. The proposed methodology in this research suggests the best set of lean initiatives for implementation that have highest impacts on identified critical performance metrics and manufacturing wastes. Therefore, manufacturers can assure that implementing suggested lean tools improves their production performance and reduces manufacturing wastes at the same time. A case study was conducted to show the effectiveness and validate the proposed model and methodologies.

Keywords: Lean manufacturing, Lean strategies, manufacturing wastes, manufacturing performance metrics, decision making, optimisation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 794
1467 Atmospheric Fluid Bed Gasification of Different Biomass Fuels

Authors: Martin Lisý, Marek Baláš, Michal Špiláček, Zdeněk Skála

Abstract:

This paper shortly describes various types of biomass and a growing number of facilities utilizing the biomass in the Czech Republic. The considerable part of this paper deals with energy parameters of the most frequently used types of biomass and results of their gasification testing. Sixteen most used "Czech" woody plants and grasses were selected; raw, element and biochemical analyses were performed and basic calorimetric values, ash composition, and ash characteristic temperatures were identified. Later, each biofuel was tested in a fluidized bed gasifier. The essential part of this paper provides results of the gasification of selected biomass types. Operating conditions are described in detail with a focus on individual fuels properties. Gas composition and impurities content are also identified. In terms of operating conditions and gas quality, the essential difference occurred mainly between woody plants and grasses. The woody plants were evaluated as more suitable fuels for fluidized bed gasifiers. Testing results significantly help with a decision-making process regarding suitability of energy plants for growing and with a selection of optimal biomass-treatment technology.

Keywords: Biomass Growing, Biomass Types, Gasification.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1923
1466 Exploring the Challenges to Usage of Building and Construction Cost Indices in Ghana

Authors: J. J. Gyimah, E. Kissi, S. Osei-Tutu, C. D. Adobor, T. Adjei-Kumi, E. Osei-Tutu

Abstract:

Price fluctuation contract is imperative and of paramount essence in the construction industry as it provides adequate relief and cushioning for changes in the prices of input resources during construction. As a result, several methods have been devised to better help in arriving at fair recompense in the event of price changes. However, stakeholders often appear not to be satisfied with the existing methods of fluctuation evaluation, ostensibly because of the challenges associated with them. The aim of this study was to identify the challenges to usage of building construction cost indices in Ghana. Data were gathered from contractors and quantity surveying firms. The study utilized survey questionnaire approach to elicit responses from the contractors and the consultants. Data gathered were analyzed scientifically, using the Relative Importance Index (RII) to rank the problems associated with the existing methods. The findings revealed the following among others: late release of data; inadequate recovery of costs; and work items of interest not included in the published indices as the main challenges of the existing methods. Findings provided useful lessons for policy makers and practitioners in decision making towards the usage and improvement of available indices.

Keywords: Building construction cost indices, challenges, usage, Ghana.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 625
1465 Discovery and Capture of Organizational Knowledge from Unstructured Information

Authors: J. Gu, W.B. Lee, C.F. Cheung, E. Tsui, W.M. Wang

Abstract:

Knowledge of an organization does not merely reside in structured form of information and data; it is also embedded in unstructured form. The discovery of such knowledge is particularly difficult as the characteristic is dynamic, scattered, massive and multiplying at high speed. Conventional methods of managing unstructured information are considered too resource demanding and time consuming to cope with the rapid information growth. In this paper, a Multi-faceted and Automatic Knowledge Elicitation System (MAKES) is introduced for the purpose of discovery and capture of organizational knowledge. A trial implementation has been conducted in a public organization to achieve the objective of decision capture and navigation from a number of meeting minutes which are autonomously organized, classified and presented in a multi-faceted taxonomy map in both document and content level. Key concepts such as critical decision made, key knowledge workers, knowledge flow and the relationship among them are elicited and displayed in predefined knowledge model and maps. Hence, the structured knowledge can be retained, shared and reused. Conducting Knowledge Management with MAKES reduces work in searching and retrieving the target decision, saves a great deal of time and manpower, and also enables an organization to keep pace with the knowledge life cycle. This is particularly important when the amount of unstructured information and data grows extremely quickly. This system approach of knowledge management can accelerate value extraction and creation cycles of organizations.

Keywords: Knowledge-Based System, Knowledge Elicitation, Knowledge Management, Taxonomy, Unstructured Information Management

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1841
1464 Land Suitability Analysis for Maize Production in Egbeda Local Government Area of Oyo State Using GIS Techniques

Authors: Abegunde Linda, Adedeji Oluwatola, Tope-Ajayi Opeyemi

Abstract:

Maize constitutes a major agrarian production for use by the vast population but despite its economic importance; it has not been produced to meet the economic needs of the country. Achieving optimum yield in maize can meaningfully be supported by land suitability analysis in order to guarantee self-sufficiency for future production optimization. This study examines land suitability for maize production through the analysis of the physicochemical variations in soil properties and other land attributes over space using a Geographic Information System (GIS) framework. Physicochemical parameters of importance selected include slope, landuse, physical and chemical properties of the soil, and climatic variables. Landsat imagery was used to categorize the landuse, Shuttle Radar Topographic Mapping (SRTM) generated the slope and soil samples were analyzed for its physical and chemical components. Suitability was categorized into highly, moderately and marginally suitable based on Food and Agricultural Organisation (FAO) classification, using the Analytical Hierarchy Process (AHP) technique of GIS. This result can be used by small scale farmers for efficient decision making in the allocation of land for maize production.

Keywords: AHP, GIS, MCE, Suitability, Zea mays.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3889
1463 A Fuzzy Mathematical Model for Order Acceptance and Scheduling Problem

Authors: E. Koyuncu

Abstract:

The problem of Order Acceptance and Scheduling (OAS) is defined as a joint decision of which orders to accept for processing and how to schedule them. Any linear programming model representing real-world situation involves the parameters defined by the decision maker in an uncertain way or by means of language statement. Fuzzy data can be used to incorporate vagueness in the real-life situation. In this study, a fuzzy mathematical model is proposed for a single machine OAS problem, where the orders are defined by their fuzzy due dates, fuzzy processing times, and fuzzy sequence dependent setup times. The signed distance method, one of the fuzzy ranking methods, is used to handle the fuzzy constraints in the model.

Keywords: Fuzzy mathematical programming, fuzzy ranking, order acceptance, single machine scheduling.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1283
1462 Performance Verification of Seismic Design Codes for RC Frames

Authors: Payam Asadi, Ali Bakhshi

Abstract:

In this study, a frame work for verification of famous seismic codes is utilized. To verify the seismic codes performance, damage quantity of RC frames is compared with the target performance. Due to the randomness property of seismic design and earthquake loads excitation, in this paper, fragility curves are developed. These diagrams are utilized to evaluate performance level of structures which are designed by the seismic codes. These diagrams further illustrate the effect of load combination and reduction factors of codes on probability of damage exceedance. Two types of structures; very high important structures with high ductility and medium important structures with intermediate ductility are designed by different seismic codes. The Results reveal that usually lower damage ratio generate lower probability of exceedance. In addition, the findings indicate that there are buildings with higher quantity of bars which they have higher probability of damage exceedance. Life-cycle cost analysis utilized for comparison and final decision making process.

Keywords: RC frame, fragility curve, performance-base design, life-cycle cost analyses, seismic design codes.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1939
1461 Trends, Problems and Needs of Urban Housing in Malaysia

Authors: Salfarina A.G., Nor Malina M., Azrina H.

Abstract:

The right to housing is a basic need while good quality and affordable housing is a reflection of a high quality of life. However, housing remains a major problem for most, especially for the bottom billions. Satisfaction on housing and neighbourhood conditions are one of the important indicators that reflect quality of life. These indicators are also important in the process of evaluating housing policy with the objective to increase the quality of housing and neighbourhood. The research method is purely based on a quantitative method, using a survey. The findings show that housing purchasing trend in urban Malaysia is determined by demographic profiles, mainly by education level, age, gender and income. The period of housing ownership also influenced the socio-cultural interactions and satisfaction of house owners with their neighbourhoods. The findings also show that the main concerns for house buyers in urban areas are price and location of the house. Respondents feel that houses in urban Malaysia is too expensive and beyond their affordability. Location of houses and distance from work place are also regarded as the main concern. However, respondents are fairly satisfied with religious and socio-cultural facilities in the housing areas and most importantly not many regard ethnicity as an issue in their decision-making, when buying a house.

Keywords: Housing, Urban Housing, Malaysia

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 7347
1460 A Propose of Personnel Assessment Method Including a Two-Way Assessment for Evaluating Evaluators and Employees

Authors: Shunsuke Saito, Kazuho Yoshimoto, Shunichi Ohmori, Sirawadee Arunyanart

Abstract:

In this paper, we suggest a mechanism of assessment that rater and Ratee (or employees) to convince. There are many problems exist in the personnel assessment. In particular, we were focusing on the three. (1) Raters are not sufficiently recognized assessment point. (2) Ratee are not convinced by the mechanism of assessment. (3) Raters (or Evaluators) and ratees have empathy. We suggest 1: Setting of "understanding of the assessment points." 2: Setting of "relative assessment ability." 3: Proposal of two-way assessment mechanism to solve these problems. As a prerequisite, it is assumed that there are multiple raters. This is because has been a growing importance of multi-faceted assessment. In this model, it determines the weight of each assessment point evaluators by the degree of understanding and assessment ability of raters and ratee. We used the ANP (Analytic Network Process) is a theory that an extension of the decision-making technique AHP (Analytic Hierarchy Process). ANP can be to address the problem of forming a network and assessment of Two-Way is possible. We apply this technique personnel assessment, the weights of rater of each point can be reasonably determined. We suggest absolute assessment for Two-Way assessment by ANP. We have verified that the consent of the two approaches is higher than conventional mechanism. Also, human resources consultant we got a comment about the application of the practice.

Keywords: Personnel assessment, ANP (analytic network process), two-way.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 789
1459 Predicting Shot Making in Basketball Learnt from Adversarial Multiagent Trajectories

Authors: Mark Harmon, Abdolghani Ebrahimi, Patrick Lucey, Diego Klabjan

Abstract:

In this paper, we predict the likelihood of a player making a shot in basketball from multiagent trajectories. To approach this problem, we present a convolutional neural network (CNN) approach where we initially represent the multiagent behavior as an image. To encode the adversarial nature of basketball, we use a multichannel image which we then feed into a CNN. Additionally, to capture the temporal aspect of the trajectories we use “fading.” We find that this approach is superior to a traditional FFN model. By using gradient ascent, we were able to discover what the CNN filters look for during training. Last, we find that a combined FFN+CNN is the best performing network with an error rate of 39%.

Keywords: basketball, computer vision, image processing, convolutional neural network

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 705