Search results for: nonlinear model control
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 10685

Search results for: nonlinear model control

365 Factors in a Sustainability Assessment of New Types of Closed Cavity Façades

Authors: Zoran Veršić, Josip Galić, Marin Binički, Lucija Stepinac

Abstract:

With the current increase in CO2 emissions and global warming, the sustainability of both existing and new solutions must be assessed on a wide scale. As the implementation of closed cavity façades (CCF) is on the rise, various factors must be included in the analysis of new types of CCF. This paper aims to cover the relevant factors included in the sustainability assessment of new types of CCF. Several mathematical models are being used to describe the physical behavior of CCF. Depending on the type of CCF, they cover the main factors which affect the durability of the façade: thermal behavior of various elements in the façade, stress and deflection of the glass panels, pressure and the moisture control in the cavity. CCF itself represents a complex system in which all mentioned factors must be considered mutually. Still, the façade is only an envelope of a more complex system, the building. Choice of the façade dictates the heat loss and the heat gain, thermal comfort of inner space, natural lighting, and ventilation. Annual energy consumption for heating, cooling, lighting, and maintenance costs will present the operational advantages or disadvantages of the chosen façade system in economic and environmental aspects. Still, the only operational viewpoint is not all-inclusive. As the building codes constantly demand higher energy efficiency as well as transfer to renewable energy sources, the ratio of embodied and lifetime operational energy footprint of buildings is changing. With the drop in operational energy CO2 emissions, embodied energy emissions present a larger and larger share in the lifecycle emissions of the building. Taking all into account, the sustainability assessment of a façade, as well as other major building elements, should include all mentioned factors during the lifecycle of an element. The challenge of such an approach is a timescale. Depending on the climatic conditions on the building site, the expected lifetime of a glazed façade can exceed 25 years. In such a timespan, some of the factors can be estimated more precisely than the others. However, the ones depending on the socio-economic conditions are more likely to be harder to predict than the natural ones like the climatic load. This work recognizes and summarizes the relevant factors needed for the assessment of a new type of CCF, considering the entire lifetime of a façade element in an environmental aspect.

Keywords: Assessment, closed cavity façade, life cycle, sustainability.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 448
364 Modal Analysis of Machine Tool Column Using Finite Element Method

Authors: Migbar Assefa

Abstract:

The performance of a machine tool is eventually assessed by its ability to produce a component of the required geometry in minimum time and at small operating cost. It is customary to base the structural design of any machine tool primarily upon the requirements of static rigidity and minimum natural frequency of vibration. The operating properties of machines like cutting speed, feed and depth of cut as well as the size of the work piece also have to be kept in mind by a machine tool structural designer. This paper presents a novel approach to the design of machine tool column for static and dynamic rigidity requirement. Model evaluation is done effectively through use of General Finite Element Analysis software ANSYS. Studies on machine tool column are used to illustrate finite element based concept evaluation technique. This paper also presents results obtained from the computations of thin walled box type columns that are subjected to torsional and bending loads in case of static analysis and also results from modal analysis. The columns analyzed are square and rectangle based tapered open column, column with cover plate, horizontal partitions and with apertures. For the analysis purpose a total of 70 columns were analyzed for bending, torsional and modal analysis. In this study it is observed that the orientation and aspect ratio of apertures have no significant effect on the static and dynamic rigidity of the machine tool structure.

Keywords: Finite Element Modeling, Modal Analysis, Machine tool structure, Static Analysis.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 5039
363 Cascaded ANN for Evaluation of Frequency and Air-gap Voltage of Self-Excited Induction Generator

Authors: Raja Singh Khela, R. K. Bansal, K. S. Sandhu, A. K. Goel

Abstract:

Self-Excited Induction Generator (SEIG) builds up voltage while it enters in its magnetic saturation region. Due to non-linear magnetic characteristics, the performance analysis of SEIG involves cumbersome mathematical computations. The dependence of air-gap voltage on saturated magnetizing reactance can only be established at rated frequency by conducting a laboratory test commonly known as synchronous run test. But, there is no laboratory method to determine saturated magnetizing reactance and air-gap voltage of SEIG at varying speed, terminal capacitance and other loading conditions. For overall analysis of SEIG, prior information of magnetizing reactance, generated frequency and air-gap voltage is essentially required. Thus, analytical methods are the only alternative to determine these variables. Non-existence of direct mathematical relationship of these variables for different terminal conditions has forced the researchers to evolve new computational techniques. Artificial Neural Networks (ANNs) are very useful for solution of such complex problems, as they do not require any a priori information about the system. In this paper, an attempt is made to use cascaded neural networks to first determine the generated frequency and magnetizing reactance with varying terminal conditions and then air-gap voltage of SEIG. The results obtained from the ANN model are used to evaluate the overall performance of SEIG and are found to be in good agreement with experimental results. Hence, it is concluded that analysis of SEIG can be carried out effectively using ANNs.

Keywords: Self-Excited Induction Generator, Artificial NeuralNetworks, Exciting Capacitance and Saturated magnetizingreactance.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1693
362 Application of RS and GIS Technique for Identifying Groundwater Potential Zone in Gomukhi Nadhi Sub Basin, South India

Authors: Punitha Periyasamy, Mahalingam Sudalaimuthu, Sachikanta Nanda, Arasu Sundaram

Abstract:

India holds 17.5% of the world’s population but has only 2% of the total geographical area of the world where 27.35% of the area is categorized as wasteland due to lack of or less groundwater. So there is a demand for excessive groundwater for agricultural and non agricultural activities to balance its growth rate. With this in mind, an attempt is made to find the groundwater potential zone in Gomukhi Nadhi sub basin of Vellar River basin, TamilNadu, India covering an area of 1146.6 Sq.Km consists of 9 blocks from Peddanaickanpalayam to Virudhachalam in the sub basin. The thematic maps such as Geology, Geomorphology, Lineament, Landuse and Landcover and Drainage are prepared for the study area using IRS P6 data. The collateral data includes rainfall, water level, soil map are collected for analysis and inference. The digital elevation model (DEM) is generated using Shuttle Radar Topographic Mission (SRTM) and the slope of the study area is obtained. ArcGIS 10.1 acts as a powerful spatial analysis tool to find out the ground water potential zones in the study area by means of weighted overlay analysis. Each individual parameter of the thematic maps are ranked and weighted in accordance with their influence to increase the water level in the ground. The potential zones in the study area are classified viz., Very Good, Good, Moderate, Poor with its aerial extent of 15.67, 381.06, 575.38, 174.49 Sq.Km respectively.

Keywords: ArcGIS, DEM, Groundwater, Recharge, Weighted Overlay.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2996
361 Stages of Changes for Physical Activity among Iranian Adolescent Girls

Authors: Ashraf Pirasteh, Alireza Hidarnia, Ali Asghari, Soghrate Faghihzadeh, Fazlollah Ghofranipour

Abstract:

Background: Regular physical activity contributes positively to physical and psychological health. In the present study, the stages of change of physical activity and the total physical Aims: The aim of this study was to investigate the proportion of adolescent girls in each stages of change and the causative factors associated with physical activity such as the related social support and self efficacy in a sample of the high school students. Methods: In this study, Social Cognitive Theory (SCT) and the Transtheorical Model (TTM) guided instrument development. The data regarding the demographics, psychosocial determinants of physical activity, stage of change and physical activity was gathered by questionnaires. Several measures of psychosocial determinants of physical activity were translated from English into Persian using the back-translation technique. These translated measures were administered to 512 ninth and tenth-grade Iranian high school students for factor analysis. Results: The distribution of the stage of change for physical activity was as follow: 18/5% in precontemplation, 23.4% in contemplation, 38.2% in preparation, 4.6% in action and 15.3% in maintenance. They were in 80.1% pre-adoption stages (precontemplation stage, contemplation stage and preparation stage) and 19.9% post-adoption stages (action stage and maintenance stage) of physical activity. There was a significant relate between age and physical activity in adolescent girls (age-related decline of physical activity) p<0001. Conclusion: The findings of the present study can contribute to improve health behaviors and for administration of health promotion programs in the adolescent populations.

Keywords: Adolescent, Iranian girls, Physical activity, Stages of change

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1980
360 Sharing Tourism Experience through Social Media: Consumer's Behavioral Intention for Destination Choice

Authors: Mohammad Tipu Sultan, Farzana Sharmin, Ke Xue

Abstract:

Social media create a better opportunity for travelers to search for travel information, select destination and share their personal experiences of the travel. This study proposes a framework which describes the relationships between social media, and positive or negative tourism experience sharing impact on destination choice. To find out new trends of travelers behavioral intention, we propose an extended theoretical model, the Theory of Reasoned Action (TRA). We conducted a survey to analyze three external factors, subjective norms, and positive and negative experience influence on travel destination choice. Structural questionnaire analysis was employed to confirm the proposed research hypothesis within the relationship between consumer influences on the shared experience of social media. The results of the study confirm that sharing positive experiences influence the positive effect of destination choice, while negative experiences decrease the destination selection option. The results indicate that attitudes, subjective norms are passively influenced by shared experience. Moreover, we find that sharing live pictures of travel experiences through social media helps to reduce negative perceptions of the destination brand. This research contribution is useable to the research field as a new determination factor and the findings could be used by destination organization management (DMO) to enhancing their tourism promotion through social media.

Keywords: Destination choice, tourism experience sharing, Theory of Reasoned Action, social media.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2497
359 Numerical Analysis of the Effect of Geocell Reinforcement above Buried Pipes on Surface Settlement and Vertical Pressure

Authors: Waqed H. Almohammed, Mohammed Y. Fattah, Sajjad E. Rasheed

Abstract:

Dynamic traffic loads cause deformation of underground pipes, resulting in vehicle discomfort. This makes it necessary to reinforce the layers of soil above underground pipes. In this study, the subbase layer was reinforced. Finite element software (PLAXIS 3D) was used to in the simulation, which includes geocell reinforcement, vehicle loading, soil layers and Glass Fiber Reinforced Plastic (GRP) pipe. Geocell reinforcement was modeled using a geogrid element, which was defined as a slender structure element that has the ability to withstand axial stresses but not to resist bending. Geogrids cannot withstand compression but they can withstand tensile forces. Comparisons have been made between the numerical models and experimental works, and a good agreement was obtained. Using the mathematical model, the performance of three different pipes of diameter 600 mm, 800 mm, and 1000 mm, and three different vehicular speeds of 20 km/h, 40 km/h, and 60 km/h, was examined to determine their impact on surface settlement and vertical pressure at the pipe crown for two cases: with and without geocell reinforcement. The results showed that, for a pipe diameter of 600 mm under geocell reinforcement, surface settlement decreases by 94 % when the speed of the vehicle is 20 km/h and by 98% when the speed of the vehicle is 60 km/h. Vertical pressure decreases by 81 % when the diameter of the pipe is 600 mm, while the value decreases to 58 % for a pipe with diameter 1000 mm. The results show that geocell reinforcement causes a significant and positive reduction in surface settlement and vertical stress above the pipe crown, leading to an increase in pipe safety.

Keywords: Dynamic loading, geocell reinforcement, GRP pipe, PLAXIS 3D, surface settlement.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1555
358 Conjunctive Surface Runoff and Groundwater Management in Salinity Soils

Authors: S. Chuenchooklin, T. Ichikawa, P. Mekpruksawong

Abstract:

This research was conducted in the Lower Namkam Irrigation Project situated in the Namkam River Basin in Thailand. Degradation of groundwater quality in some areas is caused by saline soil spots beneath ground surface. However, the tail regulated gate structure on the Namkam River, a lateral stream of the Mekong River. It is aimed for maintaining water level in the river at +137.5 to +138.5 m (MSL) and flow to the irrigation canals based on a gravity system since July 2009. It might leach some saline soil spots from underground to soil surface if lack of understanding of the conjunctive surface water and groundwater behaviors. This research has been conducted by continuously the observing of both shallow and deep groundwater level and quality from existing observation wells. The simulation of surface water was carried out using a hydrologic modeling system (HEC-HMS) to compute the ungauged side flow catchments as the lateral flows for the river system model (HEC-RAS). The constant water levels in the upstream of the operated gate caused a slight rising up of shallow groundwater level when compared to the water table. However, the groundwater levels in the confined aquifers remained less impacted than in the shallow aquifers but groundwater levels in late of wet season in some wells were higher than the phreatic surface. This causes salinization of the groundwater at the soil surface and might affect some crops. This research aims for the balance of water stage in the river and efficient groundwater utilization in this area.

Keywords: Surface water, groundwater observation, irrigation, water balance.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1836
357 Mapping of Solar Radiation Anomalies Based on Climate Change

Authors: Elison Eduardo Jardim Bierhals, Claudineia Brazil, Francisco Pereira, Elton Rossini

Abstract:

The use of alternative energy sources to meet energy demand reduces environmental damage. To diversify an energy matrix and to minimize global warming, a solar energy is gaining space, being an important source of renewable energy, and its potential depends on the climatic conditions of the region. Brazil presents a great solar potential for a generation of electric energy, so the knowledge of solar radiation and its characteristics are fundamental for the study of energy use. Due to the above reasons, this article aims to verify the climatic variability corresponding to the variations in solar radiation anomalies, in the face of climate change scenarios. The data used in this research are part of the Intercomparison of Interconnected Models, Phase 5 (CMIP5), which contributed to the preparation of the fifth IPCC-AR5 report. The solar radiation data were extracted from The Australian Community Climate and Earth System Simulator (ACCESS) model using the RCP 4.5 and RCP 8.5 scenarios that represent an intermediate structure and a pessimistic framework, the latter being the most worrisome in all cases. In order to allow the use of solar radiation as a source of energy in a given location and/or region, it is important, first, to determine its availability, thus justifying the importance of the study. The results pointed out, for the 75-year period (2026-2100), based on a pessimistic scenario, indicate a drop in solar radiation of the approximately 12% in the eastern region of Rio Grande do Sul. Factors that influence the pessimistic prospects of this scenario should be better observed by the responsible authorities, since they can affect the possibility to produce electricity from solar radiation.

Keywords: Climate change, solar radiation, energy utilization.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 994
356 Nutritional Value Determination of Different Varieties of Oats and Barley Using Near-Infrared Spectroscopy Method for the Horses Nutrition

Authors: V. Viliene, V. Sasyte, A. Raceviciute-Stupeliene, R. Gruzauskas

Abstract:

In horse nutrition, the most suitable cereal for their rations composition could be defined as oats and barley. Oats have high nutritive value because it provides more protein, fiber, iron and zinc than other whole grains, has good taste, and an activity of stimulating metabolic changes in the body. Another cereal – barley is very similar to oats as a feed except for some characteristics that affect how it is used; however, barley is lower in fiber than oats and is classified as a "heavy" feed. The value of oats and barley grain, first of all is dependent on its composition. Near-infrared spectroscopy (NIRS) has long been considered and used as a significant method in component and quality analysis and as an emerging technology for authenticity applications for cereal quality control. This paper presents the chemical and amino acid composition of different varieties of barley and oats, also digestible energy of different cereals for horses. Ten different spring barley (n = 5) and oats (n = 5) varieties, grown in one location in Lithuania, were assayed for their chemical composition (dry matter, crude protein, crude fat, crude ash, crude fiber, starch) and amino acids content, digestible amino acids and amino acids digestibility. Also, the grains digestible energy for horses was calculated. The oats and barley samples reflectance spectra were measured by means of NIRS using Foss-Tecator DS2500 equipment. The chemical components: fat, crude protein, starch and fiber differed statistically (P<0.05) between the oats and barley varieties. The highest total amino acid content between oats was determined in variety Flamingsprofi (4.56 g/kg) and the lowest – variety Circle (3.57 g/kg), and between barley - respectively in varieties Publican (3.50 g/kg) and Sebastian (3.11 g/kg). The different varieties of oats digestible amino acid content varied from 3.11 g/kg to 4.07 g/kg; barley different varieties varied from 2.59 g/kg to 2.94 g/kg. The average amino acids digestibility of oats varied from 74.4% (Liz) to 95.6% (Fen) and in barley - from 75.8 % (Tre) to 89.6% (Fen). The amount of digestible energy in the analyzed varieties of oats and barley was an average compound 13.74 MJ/kg DM and 14.85 MJ/kg DM, respectively. An analysis of the results showed that different varieties of oats compared with barley are preferable for horse nutrition according to the crude fat, crude fiber, ash and separate amino acids content, but the analyzed barley varieties dominated the higher amounts of crude protein, the digestible Liz amount and higher DE content, and thus, could be recommended for making feed formulation for horses combining oats and barley, taking into account the chemical composition of using cereal varieties.

Keywords: Barley, digestive energy, horses, nutritional value, oats.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2257
355 The Greek Version of the Southampton Nostalgia Scale: Psychometric Properties in Young Adults and Associations with Life Satisfaction, Positive and Negative Emotions, Time Perspective and Wellbeing

Authors: Eirini Petratou, Pezirkianidis Christos, Anastassios Stalikas

Abstract:

Nostalgia is characterized as a mental state of human’s emotional longing for the past that activates both positive and negative emotions. The bittersweet emotions that are activated by nostalgia aid psychological functions to humans and are depended on the type of stimuli that evoke nostalgia but also on the nostalgia activation context. In general, despite that nostalgia can be activated and experienced by all people; however, it differs both in terms of nostalgia experience but also nostalgia frequency. As a matter of fact, nostalgia experience along with nostalgia frequency differs according to the level of the nostalgia proneness. People with high nostalgia proneness tend to experience nostalgia more intensely and frequently than people with low nostalgia proneness. Nostalgia proneness is considered as a basic individual difference that affects the experience of nostalgia, and it can be measured by the Southampton Nostalgia Scale (SNS); a psychometric instrument that measures human’s nostalgia proneness consisting of seven questions that assess a person’s attitude towards nostalgia, the degree of experience or tendency to nostalgic feelings and the nostalgia frequency. In the current study, we translated, validated and calibrated the SNS in Greek population (N = 267). For the calibration process, we used several scales relevant to positive dimensions, such as life satisfaction, positive and negative emotions, time perspective and wellbeing. A confirmatory factor analysis revealed the factors that provide a good Southampton Nostalgia Proneness model fit for young adult Greek population.

Keywords: Nostalgia proneness, nostalgia, psychometric instruments, positive emotions.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1361
354 A Propagator Method like Algorithm for Estimation of Multiple Real-Valued Sinusoidal Signal Frequencies

Authors: Sambit Prasad Kar, P.Palanisamy

Abstract:

In this paper a novel method for multiple one dimensional real valued sinusoidal signal frequency estimation in the presence of additive Gaussian noise is postulated. A computationally simple frequency estimation method with efficient statistical performance is attractive in many array signal processing applications. The prime focus of this paper is to combine the subspace-based technique and a simple peak search approach. This paper presents a variant of the Propagator Method (PM), where a collaborative approach of SUMWE and Propagator method is applied in order to estimate the multiple real valued sine wave frequencies. A new data model is proposed, which gives the dimension of the signal subspace is equal to the number of frequencies present in the observation. But, the signal subspace dimension is twice the number of frequencies in the conventional MUSIC method for estimating frequencies of real-valued sinusoidal signal. The statistical analysis of the proposed method is studied, and the explicit expression of asymptotic (large-sample) mean-squared-error (MSE) or variance of the estimation error is derived. The performance of the method is demonstrated, and the theoretical analysis is substantiated through numerical examples. The proposed method can achieve sustainable high estimation accuracy and frequency resolution at a lower SNR, which is verified by simulation by comparing with conventional MUSIC, ESPRIT and Propagator Method.

Keywords: Frequency estimation, peak search, subspace-based method without eigen decomposition, quadratic convex function.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1735
353 Pressure Relief in Prosthetic Sockets through Hole Implementation Using Different Materials

Authors: Gabi N. Nehme

Abstract:

Below-knee amputees commonly experience asymmetrical gait patterns. It is generally believed that ischemia is related to the formation of pressure sores due to uneven distribution of forces. Micro-vascular responses can reveal local malnutrition. Changes in local skin blood supply under various external loading conditions have been studied for a number of years. Radionuclide clearance, photo-plethysmography, trans-cutaneous oxygen tension along with other studies showed that the blood supply would be influenced by the epidermal forces, and the rate and the amount of blood supply would decrease with increased epidermal loads being shear forces or normal forces. Several cases of socket designs were investigated using Finite Element Model (FEM) and Design of Experiment (DOE) to increase flexibility and minimize the pressure at the limb/socket interface using ultra high molecular weight polyethylene (UHMWPE) and polyamide 6 (PA6) or Duraform. The pressure reliefs at designated areas where reducing thickness is involved are seen to be critical in determination of amputees’ comfort and are very important to clinical applications. Implementing a hole between the Patellar Tendon (PT) and Distal Tibia (DT) would decrease stiffness and increase prosthesis range of motion where flexibility is needed. In addition, displacement and prosthetic energy storage increased without compromising mechanical efficiency and prosthetic design integrity.

Keywords: Patellar tendon, distal tibia, prosthetic socket, relief areas, hole implementation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1798
352 To Cloudify or Not to Cloudify

Authors: Laila Yasir Al-Harthy, Ali H. Al-Badi

Abstract:

As an emerging business model, cloud computing has been initiated to satisfy the need of organizations and to push Information Technology as a utility. The shift to the cloud has changed the way Information Technology departments are managed traditionally and has raised many concerns for both, public and private sectors.

The purpose of this study is to investigate the possibility of cloud computing services replacing services provided traditionally by IT departments. Therefore, it aims to 1) explore whether organizations in Oman are ready to move to the cloud; 2) identify the deciding factors leading to the adoption or rejection of cloud computing services in Oman; and 3) provide two case studies, one for a successful Cloud provider and another for a successful adopter.

This paper is based on multiple research methods including conducting a set of interviews with cloud service providers and current cloud users in Oman; and collecting data using questionnaires from experts in the field and potential users of cloud services.

Despite the limitation of bandwidth capacity and Internet coverage offered in Oman that create a challenge in adopting the cloud, it was found that many information technology professionals are encouraged to move to the cloud while few are resistant to change.

The recent launch of a new Omani cloud service provider and the entrance of other international cloud service providers in the Omani market make this research extremely valuable as it aims to provide real-life experience as well as two case studies on the successful provision of cloud services and the successful adoption of these services.

Keywords: Cloud computing, cloud deployment models, cloud service models and deciding factors.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2294
351 A New High Speed Neural Model for Fast Character Recognition Using Cross Correlation and Matrix Decomposition

Authors: Hazem M. El-Bakry

Abstract:

Neural processors have shown good results for detecting a certain character in a given input matrix. In this paper, a new idead to speed up the operation of neural processors for character detection is presented. Such processors are designed based on cross correlation in the frequency domain between the input matrix and the weights of neural networks. This approach is developed to reduce the computation steps required by these faster neural networks for the searching process. The principle of divide and conquer strategy is applied through image decomposition. Each image is divided into small in size sub-images and then each one is tested separately by using a single faster neural processor. Furthermore, faster character detection is obtained by using parallel processing techniques to test the resulting sub-images at the same time using the same number of faster neural networks. In contrast to using only faster neural processors, the speed up ratio is increased with the size of the input image when using faster neural processors and image decomposition. Moreover, the problem of local subimage normalization in the frequency domain is solved. The effect of image normalization on the speed up ratio of character detection is discussed. Simulation results show that local subimage normalization through weight normalization is faster than subimage normalization in the spatial domain. The overall speed up ratio of the detection process is increased as the normalization of weights is done off line.

Keywords: Fast Character Detection, Neural Processors, Cross Correlation, Image Normalization, Parallel Processing.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1538
350 Unsteady Transonic Aerodynamic Analysis for Oscillatory Airfoils using Time Spectral Method

Authors: Mohamad Reza. Mohaghegh, Majid. Malek Jafarian

Abstract:

This research proposes an algorithm for the simulation of time-periodic unsteady problems via the solution unsteady Euler and Navier-Stokes equations. This algorithm which is called Time Spectral method uses a Fourier representation in time and hence solve for the periodic state directly without resolving transients (which consume most of the resources in a time-accurate scheme). Mathematical tools used here are discrete Fourier transformations. It has shown tremendous potential for reducing the computational cost compared to conventional time-accurate methods, by enforcing periodicity and using Fourier representation in time, leading to spectral accuracy. The accuracy and efficiency of this technique is verified by Euler and Navier-Stokes calculations for pitching airfoils. Because of flow turbulence nature, Baldwin-Lomax turbulence model has been used at viscous flow analysis. The results presented by the Time Spectral method are compared with experimental data. It has shown tremendous potential for reducing the computational cost compared to the conventional time-accurate methods, by enforcing periodicity and using Fourier representation in time, leading to spectral accuracy, because results verify the small number of time intervals per pitching cycle required to capture the flow physics.

Keywords: Time Spectral Method, Time-periodic unsteadyflow, Discrete Fourier transform, Pitching airfoil, Turbulence flow

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1771
349 Comparison of Different Gas Turbine Inlet Air Cooling Methods

Authors: Ana Paula P. dos Santos, Claudia R. Andrade, Edson L. Zaparoli

Abstract:

Gas turbine air inlet cooling is a useful method for increasing output for regions where significant power demand and highest electricity prices occur during the warm months. Inlet air cooling increases the power output by taking advantage of the gas turbine-s feature of higher mass flow rate when the compressor inlet temperature decreases. Different methods are available for reducing gas turbine inlet temperature. There are two basic systems currently available for inlet cooling. The first and most cost-effective system is evaporative cooling. Evaporative coolers make use of the evaporation of water to reduce the gas turbine-s inlet air temperature. The second system employs various ways to chill the inlet air. In this method, the cooling medium flows through a heat exchanger located in the inlet duct to remove heat from the inlet air. However, the evaporative cooling is limited by wet-bulb temperature while the chilling can cool the inlet air to temperatures that are lower than the wet bulb temperature. In the present work, a thermodynamic model of a gas turbine is built to calculate heat rate, power output and thermal efficiency at different inlet air temperature conditions. Computational results are compared with ISO conditions herein called "base-case". Therefore, the two cooling methods are implemented and solved for different inlet conditions (inlet temperature and relative humidity). Evaporative cooler and absorption chiller systems results show that when the ambient temperature is extremely high with low relative humidity (requiring a large temperature reduction) the chiller is the more suitable cooling solution. The net increment in the power output as a function of the temperature decrease for each cooling method is also obtained.

Keywords: Absorption chiller, evaporative cooling, gas turbine, turbine inlet cooling.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 7556
348 Numerical Modal Analysis of a Multi-Material 3D-Printed Composite Bushing and Its Application

Authors: Paweł Żur, Alicja Żur, Andrzej Baier

Abstract:

Modal analysis is a crucial tool in the field of engineering for understanding the dynamic behavior of structures. In this study, numerical modal analysis was conducted on a multi-material 3D-printed composite bushing, which comprised a polylactic acid (PLA) outer shell and a thermoplastic polyurethane (TPU) flexible filling. The objective was to investigate the modal characteristics of the bushing and assess its potential for practical applications. The analysis involved the development of a finite element model of the bushing, which was subsequently subjected to modal analysis techniques. Natural frequencies, mode shapes, and damping ratios were determined to identify the dominant vibration modes and their corresponding responses. The numerical modal analysis provided valuable insights into the dynamic behavior of the bushing, enabling a comprehensive understanding of its structural integrity and performance. Furthermore, the study expanded its scope by investigating the entire shaft mounting of a small electric car, incorporating the 3D-printed composite bushing. The shaft mounting system was subjected to numerical modal analysis to evaluate its dynamic characteristics and potential vibrational issues. The results of the modal analysis highlighted the effectiveness of the 3D-printed composite bushing in minimizing vibrations and optimizing the performance of the shaft mounting system. The findings contribute to the broader field of composite material applications in automotive engineering and provide valuable insights for the design and optimization of similar components.

Keywords: 3D printing, composite bushing, modal analysis, multi-material.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 67
347 A Multigranular Linguistic Additive Ratio Assessment Model in Group Decision Making

Authors: Wiem Daoud Ben Amor, Luis Martínez López, Jr., Hela Moalla Frikha

Abstract:

Most of the multi-criteria group decision making (MCGDM) problems dealing with qualitative criteria require consideration of the large background of expert information. It is common that experts have different degrees of knowledge for giving their alternative assessments according to criteria. So, it seems logical that they use different evaluation scales to express their judgment, i.e., multi granular linguistic scales. In this context, we propose the extension of the classical additive ratio assessment (ARAS) method to the case of a hierarchical linguistics term for managing multi granular linguistic scales in uncertain context where uncertainty is modeled by means in linguistic information. The proposed approach is called the extended hierarchical linguistics-ARAS method (ELH-ARAS). Within the ELH-ARAS approach, the decision maker (DMs) can diagnose the results (the ranking of the alternatives) in a decomposed style i.e., not only at one level of the hierarchy but also at the intermediate ones. Also, the developed approach allows a feedback transformation i.e., the collective final results of all experts are able to be transformed at any level of the extended linguistic hierarchy that each expert has previously used. Therefore, the ELH-ARAS technique makes it easier for decision-makers to understand the results. Finally, an MCGDM case study is given to illustrate the proposed approach.

Keywords: Additive ratio assessment, extended hierarchical linguistic, multi-criteria group decision making problems, multi granular linguistic contexts.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 364
346 Coupling Heat and Mass Transfer for Hydrogen-Assisted Self-Ignition Behaviors of Propane-Air Mixtures in Catalytic Micro-Channels

Authors: Junjie Chen, Deguang Xu

Abstract:

Transient simulation of the hydrogen-assisted self-ignition of propane-air mixtures were carried out in platinum-coated micro-channels from ambient cold-start conditions, using a two-dimensional model with reduced-order reaction schemes, heat conduction in the solid walls, convection and surface radiation heat transfer. The self-ignition behavior of hydrogen-propane mixed fuel is analyzed and compared with the heated feed case. Simulations indicate that hydrogen can successfully cause self-ignition of propane-air mixtures in catalytic micro-channels with a 0.2 mm gap size, eliminating the need for startup devices. The minimum hydrogen composition for propane self-ignition is found to be in the range of 0.8-2.8% (on a molar basis), and increases with increasing wall thermal conductivity, and decreasing inlet velocity or propane composition. Higher propane-air ratio results in earlier ignition. The ignition characteristics of hydrogen-assisted propane qualitatively resemble the selectively inlet feed preheating mode. Transient response of the mixed hydrogen- propane fuel reveals sequential ignition of propane followed by hydrogen. Front-end propane ignition is observed in all cases. Low wall thermal conductivities cause earlier ignition of the mixed hydrogen-propane fuel, subsequently resulting in low exit temperatures. The transient-state behavior of this micro-scale system is described, and the startup time and minimization of hydrogen usage are discussed.

Keywords: Micro-combustion, Self-ignition, Hydrogen addition, Heat transfer, Catalytic combustion, Transient simulation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1886
345 Evaluating Emission Reduction Due to a Proposed Light Rail Service: A Micro-Level Analysis

Authors: Saeid Eshghi, Neeraj Saxena, Abdulmajeed Alsultan

Abstract:

Carbon dioxide (CO2) alongside other gas emissions in the atmosphere cause a greenhouse effect, resulting in an increase of the average temperature of the planet. Transportation vehicles are among the main contributors of CO2 emission. Stationary vehicles with initiated motors produce more emissions than mobile ones. Intersections with traffic lights that force the vehicles to become stationary for a period of time produce more CO2 pollution than other parts of the road. This paper focuses on analyzing the CO2 produced by the traffic flow at Anzac Parade Road - Barker Street intersection in Sydney, Australia, before and after the implementation of Light rail transport (LRT). The data are gathered during the construction phase of the LRT by collecting the number of vehicles on each path of the intersection for 15 minutes during the evening rush hour of 1 week (6-7 pm, July 04-31, 2018) and then multiplied by 4 to calculate the flow of vehicles in 1 hour. For analyzing the data, the microscopic simulation software “VISSIM” has been used. Through the analysis, the traffic flow was processed in three stages: before and after implementation of light rail train, and one during the construction phase. Finally, the traffic results were input into another software called “EnViVer”, to calculate the amount of CO2 during 1 h. The results showed that after the implementation of the light rail, CO2 will drop by a minimum of 13%. This finding provides an evidence that light rail is a sustainable mode of transport.

Keywords: Carbon dioxide, emission modeling, light rail, microscopic model, traffic flow.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 951
344 Molecular Dynamics Simulation of the Effect of the Solid Gas Interface Nanolayer on Enhanced Thermal Conductivity of Copper-CO2 Nanofluid

Authors: Zeeshan Ahmed, Ajinkya Sarode, Pratik Basarkar, Atul Bhargav, Debjyoti Banerjee

Abstract:

The use of CO2 in oil recovery and in CO2 capture and storage is gaining traction in recent years. These applications involve heat transfer between CO2 and the base fluid, and hence, there arises a need to improve the thermal conductivity of CO2 to increase the process efficiency and reduce cost. One way to improve the thermal conductivity is through nanoparticle addition in the base fluid. The nanofluid model in this study consisted of copper (Cu) nanoparticles in varying concentrations with CO2 as a base fluid. No experimental data are available on thermal conductivity of CO2 based nanofluid. Molecular dynamics (MD) simulations are an increasingly adopted tool to perform preliminary assessments of nanoparticle (NP) fluid interactions. In this study, the effect of the formation of a nanolayer (or molecular layering) at the gas-solid interface on thermal conductivity is investigated using equilibrium MD simulations by varying NP diameter and keeping the volume fraction (1.413%) of nanofluid constant to check the diameter effect of NP on the nanolayer and thermal conductivity. A dense semi-solid fluid layer was seen to be formed at the NP-gas interface, and the thickness increases with increase in particle diameter, which also moves with the NP Brownian motion. Density distribution has been done to see the effect of nanolayer, and its thickness around the NP. These findings are extremely beneficial, especially to industries employed in oil recovery as increased thermal conductivity of CO2 will lead to enhanced oil recovery and thermal energy storage.

Keywords: Copper-CO2 nanofluid, molecular interfacial layer, thermal conductivity, molecular dynamic simulation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1113
343 Urban Air Pollution – Trend and Forecasting of Major Pollutants by Timeseries Analysis

Authors: A.L. Seetharam, B.L. Udaya Simha

Abstract:

The Bangalore City is facing the acute problem of pollution in the atmosphere due to the heavy increase in the traffic and developmental activities in recent years. The present study is an attempt in the direction to assess trend of the ambient air quality status of three stations, viz., AMCO Batteries Factory, Mysore Road, GRAPHITE INDIA FACTORY, KHB Industrial Area, Whitefield and Ananda Rao Circle, Gandhinagar with respect to some of the major criteria pollutants such as Total Suspended particular matter (SPM), Oxides of nitrogen (NOx), and Oxides of sulphur (SO2). The sites are representative of various kinds of growths viz., commercial, residential and industrial, prevailing in Bangalore, which are contributing to air pollution. The concentration of Sulphur Dioxide (SO2) at all locations showed a falling trend due to use of refined petrol and diesel in the recent years. The concentration of Oxides of nitrogen (NOx) showed an increasing trend but was within the permissible limits. The concentration of the Suspended particular matter (SPM) showed the mixed trend. The correlation between model and observed values is found to vary from 0.4 to 0.7 for SO2, 0.45 to 0.65 for NOx and 0.4 to 0.6 for SPM. About 80% of data is observed to fall within the error band of ±50%. Forecast test for the best fit models showed the same trend as actual values in most of the cases. However, the deviation observed in few cases could be attributed to change in quality of petro products, increase in the volume of traffic, introduction of LPG as fuel in many types of automobiles, poor condition of roads, prevailing meteorological conditions, etc.

Keywords: Bangalore, urban air pollution, time series analysis.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2011
342 Applicability of Overhangs for Energy Saving in Existing High-Rise Housing in Different Climates

Authors: Qiong He, S. Thomas Ng

Abstract:

Upgrading the thermal performance of building envelope of existing residential buildings is an effective way to reduce heat gain or heat loss. Overhang device is a common solution for building envelope improvement as it can cut down solar heat gain and thereby can reduce the energy used for space cooling in summer time. Despite that, overhang can increase the demand for indoor heating in winter due to its function of lowering the solar heat gain. Obviously, overhang has different impacts on energy use in different climatic zones which have different energy demand. To evaluate the impact of overhang device on building energy performance under different climates of China, an energy analysis model is built up in a computer-based simulation program known as DesignBuilder based on the data of a typical high-rise residential building. The energy simulation results show that single overhang is able to cut down around 5% of the energy consumption of the case building in the stand-alone situation or about 2% when the building is surrounded by other buildings in regions which predominantly rely on space cooling though it has no contribution to energy reduction in cold region. In regions with cold summer and cold winter, adding overhang over windows can cut down around 4% and 1.8% energy use with and without adjoining buildings, respectively. The results indicate that overhang might not an effective shading device to reduce the energy consumption in the mixed climate or cold regions.

Keywords: Overhang, energy analysis, computer-based simulation, high-rise residential building, mutual shading, climate.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1448
341 Modeling Non-Darcy Natural Convection Flow of a Micropolar Dusty Fluid with Convective Boundary Condition

Authors: F. M. Hady, A. Mahdy, R. A. Mohamed, Omima A. Abo Zaid

Abstract:

A numerical approach of the effectiveness of numerous parameters on magnetohydrodynamic (MHD) natural convection heat and mass transfer problem of a dusty micropolar fluid in a non-Darcy porous regime is prepared in the current paper. In addition, a convective boundary condition is scrutinized into the micropolar dusty fluid model. The governing boundary layer equations are converted utilizing similarity transformations to a system of dimensionless equations to be convenient for numerical treatment. The resulting equations for fluid phase and dust phases of momentum, angular momentum, energy, and concentration with the appropriate boundary conditions are solved numerically applying the Runge-Kutta method of fourth-order. In accordance with the numerical study, it is obtained that the magnitude of the velocity of both fluid phase and particle phase reduces with an increasing magnetic parameter, the mass concentration of the dust particles, and Forchheimer number. While rises due to an increment in convective parameter and Darcy number. Also, the results refer that high values of the magnetic parameter, convective parameter, and Forchheimer number support the temperature distributions. However, deterioration occurs as the mass concentration of the dust particles and Darcy number increases. The angular velocity behavior is described by progress when studying the effect of the magnetic parameter and microrotation parameter.

Keywords: Micropolar dusty fluid, convective heating, natural convection, MHD, porous media.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 944
340 Structural Damage Detection via Incomplete Modal Data Using Output Data Only

Authors: Ahmed Noor Al-Qayyim, Barlas Ozden Caglayan

Abstract:

Structural failure is caused mainly by damage that often occurs on structures. Many researchers focus on to obtain very efficient tools to detect the damage in structures in the early state. In the past decades, a subject that has received considerable attention in literature is the damage detection as determined by variations in the dynamic characteristics or response of structures. The study presents a new damage identification technique. The technique detects the damage location for the incomplete structure system using output data only. The method indicates the damage based on the free vibration test data by using ‘Two Points Condensation (TPC) technique’. This method creates a set of matrices by reducing the structural system to two degrees of freedom systems. The current stiffness matrices obtain from optimization the equation of motion using the measured test data. The current stiffness matrices compare with original (undamaged) stiffness matrices. The large percentage changes in matrices’ coefficients lead to the location of the damage. TPC technique is applied to the experimental data of a simply supported steel beam model structure after inducing thickness change in one element, where two cases consider. The method detects the damage and determines its location accurately in both cases. In addition, the results illustrate these changes in stiffness matrix can be a useful tool for continuous monitoring of structural safety using ambient vibration data. Furthermore, its efficiency proves that this technique can be used also for big structures.

Keywords: Damage detection, two points–condensation, structural health monitoring, signals processing, optimization.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2701
339 Evaluation of Residual Stresses in Human Face as a Function of Growth

Authors: M. A. Askari, M. A. Nazari, P. Perrier, Y. Payan

Abstract:

Growth and remodeling of biological structures have gained lots of attention over the past decades. Determining the response of living tissues to mechanical loads is necessary for a wide range of developing fields such as prosthetics design or computerassisted surgical interventions. It is a well-known fact that biological structures are never stress-free, even when externally unloaded. The exact origin of these residual stresses is not clear, but theoretically, growth is one of the main sources. Extracting body organ’s shapes from medical imaging does not produce any information regarding the existing residual stresses in that organ. The simplest cause of such stresses is gravity since an organ grows under its influence from birth. Ignoring such residual stresses might cause erroneous results in numerical simulations. Accounting for residual stresses due to tissue growth can improve the accuracy of mechanical analysis results. This paper presents an original computational framework based on gradual growth to determine the residual stresses due to growth. To illustrate the method, we apply it to a finite element model of a healthy human face reconstructed from medical images. The distribution of residual stress in facial tissues is computed, which can overcome the effect of gravity and maintain tissues firmness. Our assumption is that tissue wrinkles caused by aging could be a consequence of decreasing residual stress and thus not counteracting gravity. Taking into account these stresses seems therefore extremely important in maxillofacial surgery. It would indeed help surgeons to estimate tissues changes after surgery.

Keywords: Finite element method, growth, residual stress, soft tissue.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1686
338 Cercarial Diversity in Freshwater Snails from Selected Freshwater Bodies and Its Implication for Veterinary and Public Health in Kaduna State, Nigeria

Authors: Fatima Muhammad Abdulkadir, D. B. Maikaje, Y. A. Umar

Abstract:

A study conducted to determine cercariae diversity and prevalence of trematode infection in freshwater snails from six freshwater bodies selected by systematic random sampling in Kaduna State was carried from January 2013 to December 2013. Freshwater snails and cercariae harvested from the study sites were morphologically identified. A total of 23,823 freshwater snails were collected from the six freshwater bodies: Bagoma dam, Gimbawa dam, Kangimi dam, Kubacha dam, Manchok water intake and Saminaka water intake. The observed freshwater snail species were: Melanoides tuberculata, Biomphalaria pfeifferi, Bulinus globosus, Lymnaea natalensis, Physa sp., Cleopatra bulimoides, Bellamya unicolor and Lanistes varicus. The freshwater snails were exposed to artificial bright light from a 100 Watt electric bulb in the laboratory to induce cercarial shedding. Of the total freshwater snails collected, 10.55% released one or more types of cercariae. Seven morphological types of cercariae were shed by six freshwater snail species namely: Brevifurcate-apharyngeate distome, Amphistome, Gymnocephalus, Longifurcate-pharyngeate monostome, Longifurcate-pharyngeate distome, Echinostome and Xiphidio cercariae. Infection was monotype in most of the freshwater snails collected; however, Physa species presented a mixed infection with Gymnocephalus and Longifurcate-pharyngeate distome cercariae. B. globosus and B. pfeifferi were the most preferred intermediate hosts with the prevalence of 13.48% and 13.46%, respectively. The diversity and prevalence of cercariae varied among the six freshwater bodies with Manchok water intake having the highest infestation (14.3%) and the least recorded in Kangimi dam (3.9%). There was a correlation trend between the number of freshwater snails and trematode infection with Manchok exhibiting the highest and Bagoma none. The highest cercarial diversity was observed in B. pfeifferi and B. globosus with four morphotypes each, and the lowest was in M. tuberculata with one morphotype. The general distribution of freshwater snails and the trematode cercariae they shed suggests the risk of human and animals to trematodiasis in Manchok community. Public health education to raise awareness on individual and communal action that may control snail breeding sites, prevent transmission and provide access to treatment should be intensified.

Keywords: Cercariae, diversity, freshwater snails, prevalence, trematodiasis.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1551
337 The Influence of Step and Fillet Shape on Nozzle Endwall Heat Transfer

Authors: JeongJu Kim, Heeyoon Chung, DongHo Rhee, HyungHee Cho

Abstract:

There is a gap at combustor-turbine interface where leakage flow comes out to prevent hot gas ingestion into the gas turbine nozzle platform. The leakage flow protects the nozzle endwall surface from the hot gas coming from combustor exit. For controlling flow’s stream, the gap’s geometry is transformed by changing fillet radius size. During the operation, step configuration is occurred that was unintended between combustor-turbine platform interface caused by thermal expansion or mismatched assembly. In this study, CFD simulations were performed to investigate the effect of the fillet and step on heat transfer and film cooling effectiveness on the nozzle platform. The Reynolds-averaged Navier-stokes equation was solved with turbulence model, SST k-omega. With the fillet configuration, predicted film cooling effectiveness results indicated that fillet radius size influences to enhance film cooling effectiveness. Predicted film cooling effectiveness results at forward facing step configuration indicated that step height influences to enhance film cooling effectiveness. We suggested that designer change a combustor-turbine interface configuration which was varied by fillet radius size near endwall gap when there was a step at combustor-turbine interface. Gap shape was modified by increasing fillet radius size near nozzle endwall. Also, fillet radius and step height were interacted with the film cooling effectiveness and heat transfer on endwall surface.

Keywords: Gas turbine, film cooling effectiveness, endwall, fillet.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1547
336 Developing Laser Spot Position Determination and PRF Code Detection with Quadrant Detector

Authors: Mohamed Fathy Heweage, Xiao Wen, Ayman Mokhtar, Ahmed Eldamarawy

Abstract:

In this paper, we are interested in modeling, simulation, and measurement of the laser spot position with a quadrant detector. We enhance detection and tracking of semi-laser weapon decoding system based on microcontroller. The system receives the reflected pulse through quadrant detector and processes the laser pulses through a processing circuit, a microcontroller decoding laser pulse reflected by the target. The seeker accuracy will be enhanced by the decoding system, the laser detection time based on the receiving pulses number is reduced, a gate is used to limit the laser pulse width. The model is implemented based on Pulse Repetition Frequency (PRF) technique with two microcontroller units (MCU). MCU1 generates laser pulses with different codes. MCU2 decodes the laser code and locks the system at the specific code. The codes EW selected based on the two selector switches. The system is implemented and tested in Proteus ISIS software. The implementation of the full position determination circuit with the detector is produced. General system for the spot position determination was performed with the laser PRF for incident radiation and the mechanical system for adjusting system at different angles. The system test results show that the system can detect the laser code with only three received pulses based on the narrow gate signal, and good agreement between simulation and measured system performance is obtained.

Keywords: 4-quadrant detector, pulse code detection, laser guided weapons, pulse repetition frequency, ATmega 32 microcontrollers.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1540