Search results for: Relay Network
1820 Coverage and Capacity Performance Degradation on a Co-Located Network Involving CDMA2000 and WCDMA @1.9GH
Authors: O. C. Nosiri, V. E. Idigo, C. O. Ohaneme, K. A. Akpado
Abstract:
Coverage and capacity performance in a cellular network determines the system potentials. If the coverage radius is limited, end users suffer poor service quality, if the system capacity reduces, fewer subscribers will be accommodated. This paper investigated the performance effects of the noise rise caused by the spurious emission from a co-located jammer involving downlink frequency of CDMA2000 and uplink frequency of WCDMA operating at 1.9GHz. Measurements were carried out to evaluate the impact on the coverage radius and the system capacity.
Keywords: Capacity, Co-location, Coverage, Noise rise.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 19751819 Reverse Logistics Information Management Using Ontological Approach
Authors: F. Lhafiane, A. Elbyed, M. Bouchoum
Abstract:
Reverse Logistics (RL) Network is considered as complex and dynamic network that involves many stakeholders such as: suppliers, manufactures, warehouse, retails and costumers, this complexity is inherent in such process due to lack of perfect knowledge or conflicting information. Ontologies on the other hand can be considered as an approach to overcome the problem of sharing knowledge and communication among the various reverse logistics partners. In this paper we propose a semantic representation based on hybrid architecture for building the Ontologies in ascendant way, this method facilitates the semantic reconciliation between the heterogeneous information systems that support reverse logistics processes and product data.
Keywords: Reverse Logistics, information management, heterogeneity, Ontologies, semantic web.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 29661818 Performance Analysis of a WiMax/Wi-Fi System Whilst Streaming a Video Conference Application
Authors: Patrice Obinna Umenne, Marcel O. Odhiambo
Abstract:
WiMAX and Wi-Fi are considered as the promising broadband access solutions for wireless MAN’s and LANs, respectively. In the recent works WiMAX is considered suitable as a backhaul service to connect multiple dispersed Wi-Fi ‘hotspots’. Hence a new integrated WiMAX/Wi-Fi architecture has been proposed in literatures. In this paper the performance of an integrated WiMAX/Wi-Fi network has been investigated by streaming a video conference application. The difference in performance between the two protocols is compared with respect to video conferencing. The Heterogeneous network was simulated in the OPNET simulator.
Keywords: Throughput, delay, delay variance, packet loss, Quality of Service (QoS).
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 26491817 MinRoot and CMesh: Interconnection Architectures for Network-on-Chip Systems
Authors: Mohammad Ali Jabraeil Jamali, Ahmad Khademzadeh
Abstract:
The success of an electronic system in a System-on- Chip is highly dependent on the efficiency of its interconnection network, which is constructed from routers and channels (the routers move data across the channels between nodes). Since neither classical bus based nor point to point architectures can provide scalable solutions and satisfy the tight power and performance requirements of future applications, the Network-on-Chip (NoC) approach has recently been proposed as a promising solution. Indeed, in contrast to the traditional solutions, the NoC approach can provide large bandwidth with moderate area overhead. The selected topology of the components interconnects plays prime rule in the performance of NoC architecture as well as routing and switching techniques that can be used. In this paper, we present two generic NoC architectures that can be customized to the specific communication needs of an application in order to reduce the area with minimal degradation of the latency of the system. An experimental study is performed to compare these structures with basic NoC topologies represented by 2D mesh, Butterfly-Fat Tree (BFT) and SPIN. It is shown that Cluster mesh (CMesh) and MinRoot schemes achieves significant improvements in network latency and energy consumption with only negligible area overhead and complexity over existing architectures. In fact, in the case of basic NoC topologies, CMesh and MinRoot schemes provides substantial savings in area as well, because they requires fewer routers. The simulation results show that CMesh and MinRoot networks outperforms MESH, BFT and SPIN in main performance metrics.
Keywords: MinRoot, CMesh, NoC, Topology, Performance Evaluation
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 21271816 Recognition of Tifinagh Characters with Missing Parts Using Neural Network
Authors: El Mahdi Barrah, Said Safi, Abdessamad Malaoui
Abstract:
In this paper, we present an algorithm for reconstruction from incomplete 2D scans for tifinagh characters. This algorithm is based on using correlation between the lost block and its neighbors. This system proposed contains three main parts: pre-processing, features extraction and recognition. In the first step, we construct a database of tifinagh characters. In the second step, we will apply “shape analysis algorithm”. In classification part, we will use Neural Network. The simulation results demonstrate that the proposed method give good results.
Keywords: Tifinagh character recognition, Neural networks, Local cost computation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 12861815 Development of Energy Management System Based on Internet of Things Technique
Authors: Wen-Jye Shyr, Chia-Ming Lin, Hung-Yun Feng
Abstract:
The purpose of this study was to develop an energy management system for university campuses based on the Internet of Things (IoT) technique. The proposed IoT technique based on WebAccess is used via network browser Internet Explore and applies TCP/IP protocol. The case study of IoT for lighting energy usage management system was proposed. Structure of proposed IoT technique included perception layer, equipment layer, control layer, application layer and network layer.
Keywords: Energy management, IoT technique, Sensor, WebAccess
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 11391814 A Four Architectures to Locate Mobile Users using Statistical Mapping of WLANs in Indoorand Outdoor Environments-Loids
Authors: K. Krishna Naik, M. N. Giri Prasad
Abstract:
These days wireless local area networks has become very popular, when the initial IEEE802.11 is the standard for providing wireless connectivity to automatic machinery, equipment and stations that require rapid deployment, which may be portable, handheld or which may be mounted on moving vehicles within a local area. IEEE802.11 Wireless local area network is a sharedmedium communication network that transmits information over wireless links for all IEEE802.11 stations in its transmission range to receive. When a user is moving from one location to another, how the other user knows about the required station inside WLAN. For that we designed and implemented a system to locate a mobile user inside the wireless local area network based on RSSI with the help of four specially designed architectures. These architectures are based on statistical or we can say manual configuration of mapping and radio map of indoor and outdoor location with the help of available Sniffer based and cluster based techniques. We found a better location of a mobile user in WLAN. We tested this work in indoor and outdoor environments with different locations with the help of Pamvotis, a simulator for WLAN.Keywords: AP, RSSI, RPM, WLAN.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 13161813 Email Based Global Automation with Raspberry Pi and Control Circuit Module: Development of Smart Home Application
Authors: Lochan Basyal
Abstract:
Global Automation is an emerging technology of today’s era and is based on Internet of Things (IoT). Global automation deals with the controlling of electrical appliances throughout the world. The fabrication of this system has been carried out with interfacing an electrical control system module to Raspberry Pi. An electrical control system module includes a relay driver mechanism through which appliances are controlled automatically in respective condition. In this research project, one email ID has been assigned to Raspberry Pi, and the users from different location having different email ID can mail to Raspberry Pi on assigned email address “[email protected]” with subject heading “Device Control” with predefined command on compose email line. Also, a notification regarding current working condition of this system has been updated on respective user email ID. This approach is an innovative way of implementing smart automation system through which a user can control their electrical appliances like light, fan, television, refrigerator, etc. in their home with the use of email facility. The development of this project helps to enhance the concept of smart home application as well as industrial automation.Keywords: Control circuit, email, global automation, internet of things, Raspberry Pi.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 8411812 A Noble Flow Rate Control based on Leaky Bucket Method for Multi-Media OBS Networks
Authors: Kentaro Miyoko, Yoshihiko Mori, Yugo Ikeda, Yoshihiro Nishino, Yong-Bok Choi, Hiromi Okada
Abstract:
Optical burst switching (OBS) has been proposed to realize the next generation Internet based on the wavelength division multiplexing (WDM) network technologies. In the OBS, the burst contention is one of the major problems. The deflection routing has been designed for resolving the problem. However, the deflection routing becomes difficult to prevent from the burst contentions as the network load becomes high. In this paper, we introduce a flow rate control methods to reduce burst contentions. We propose new flow rate control methods based on the leaky bucket algorithm and deflection routing, i.e. separate leaky bucket deflection method, and dynamic leaky bucket deflection method. In proposed methods, edge nodes which generate data bursts carry out the flow rate control protocols. In order to verify the effectiveness of the flow rate control in OBS networks, we show that the proposed methods improve the network utilization and reduce the burst loss probability through computer simulations.Keywords: Optical burst switching, OBS, flow rate control.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 17061811 Improve of Evaluation Method for Information Security Levels of CIIP (Critical Information Infrastructure Protection)
Authors: Dong-Young Yoo, Jong-Whoi Shin, Gang Shin Lee, Jae-Il Lee
Abstract:
As the disfunctions of the information society and social development progress, intrusion problems such as malicious replies, spam mail, private information leakage, phishing, and pharming, and side effects such as the spread of unwholesome information and privacy invasion are becoming serious social problems. Illegal access to information is also becoming a problem as the exchange and sharing of information increases on the basis of the extension of the communication network. On the other hand, as the communication network has been constructed as an international, global system, the legal response against invasion and cyber-attack from abroad is facing its limit. In addition, in an environment where the important infrastructures are managed and controlled on the basis of the information communication network, such problems pose a threat to national security. Countermeasures to such threats are developed and implemented on a yearly basis to protect the major infrastructures of information communication. As a part of such measures, we have developed a methodology for assessing the information protection level which can be used to establish the quantitative object setting method required for the improvement of the information protection level.Keywords: Information Security Evaluation Methodology, Critical Information Infrastructure Protection.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16601810 Optimal DG Allocation in Distribution Network
Authors: A. Safari, R. Jahani, H. A. Shayanfar, J. Olamaei
Abstract:
This paper shows the results obtained in the analysis of the impact of distributed generation (DG) on distribution losses and presents a new algorithm to the optimal allocation of distributed generation resources in distribution networks. The optimization is based on a Hybrid Genetic Algorithm and Particle Swarm Optimization (HGAPSO) aiming to optimal DG allocation in distribution network. Through this algorithm a significant improvement in the optimization goal is achieved. With a numerical example the superiority of the proposed algorithm is demonstrated in comparison with the simple genetic algorithm.Keywords: Distributed Generation, Distribution Networks, Genetic Algorithm, Particle Swarm Optimization.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 27041809 Modelling a Hospital as a Queueing Network: Analysis for Improving Performance
Authors: Emad Alenany, M. Adel El-Baz
Abstract:
In this paper, the flow of different classes of patients into a hospital is modelled and analyzed by using the queueing network analyzer (QNA) algorithm and discrete event simulation. Input data for QNA are the rate and variability parameters of the arrival and service times in addition to the number of servers in each facility. Patient flows mostly match real flow for a hospital in Egypt. Based on the analysis of the waiting times, two approaches are suggested for improving performance: Separating patients into service groups, and adopting different service policies for sequencing patients through hospital units. The separation of a specific group of patients, with higher performance target, to be served separately from the rest of patients requiring lower performance target, requires the same capacity while improves performance for the selected group of patients with higher target. Besides, it is shown that adopting the shortest processing time and shortest remaining processing time service policies among other tested policies would results in, respectively, 11.47% and 13.75% reduction in average waiting time relative to first come first served policy.Keywords: Queueing network, discrete-event simulation, health applications, SPT.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15311808 Forecasting Tala-AUD and Tala-USD Exchange Rates with ANN
Authors: Shamsuddin Ahmed, M. G. M. Khan, Biman Prasad, Avlin Prasad
Abstract:
The focus of this paper is to construct daily time series exchange rate forecast models of Samoan Tala/USD and Tala/AUD during the year 2008 to 2012 with neural network The performance of the models was measured by using varies error functions such as Root Square mean error (RSME), Mean absolute error (MAE), and Mean absolute percentage error (MAPE). Our empirical findings suggest that AR (1) model is an effective tool to forecast the Tala/USD and Tala/AUD.Keywords: Neural Network Forecasting Model, Autoregressive time series, Exchange rate, Tala/AUD, winters model.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 24341807 Artificial Neural Networks Modeling in Water Resources Engineering: Infrastructure and Applications
Authors: M. R. Mustafa, M. H. Isa, R. B. Rezaur
Abstract:
The use of artificial neural network (ANN) modeling for prediction and forecasting variables in water resources engineering are being increasing rapidly. Infrastructural applications of ANN in terms of selection of inputs, architecture of networks, training algorithms, and selection of training parameters in different types of neural networks used in water resources engineering have been reported. ANN modeling conducted for water resources engineering variables (river sediment and discharge) published in high impact journals since 2002 to 2011 have been examined and presented in this review. ANN is a vigorous technique to develop immense relationship between the input and output variables, and able to extract complex behavior between the water resources variables such as river sediment and discharge. It can produce robust prediction results for many of the water resources engineering problems by appropriate learning from a set of examples. It is important to have a good understanding of the input and output variables from a statistical analysis of the data before network modeling, which can facilitate to design an efficient network. An appropriate training based ANN model is able to adopt the physical understanding between the variables and may generate more effective results than conventional prediction techniques.Keywords: ANN, discharge, modeling, prediction, sediment,
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 56851806 Cryptanalysis of Yang-Li-Liao’s Simple Three-Party Key Exchange (S-3PAKE) Protocol
Authors: Hae-Soon Ahn, Eun-Jun Yoon
Abstract:
Three-party password authenticated key exchange (3PAKE) protocols are widely deployed on lots of remote user authentication system due to its simplicity and convenience of maintaining a human-memorable password at client side to achieve secure communication within a hostile network. Recently, an improvement of 3PAKE protocol by processing a built-in data attached to other party for identity authentication to individual data was proposed by some researchers. However, this paper points out that the improved 3PAKE protocol is still vulnerable to undetectable on-line dictionary attack and off-line dictionary attack.
Keywords: Three-party key exchange, 3PAKE, Passwordauthenticated key exchange, Network security, Dictionary attack
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 21231805 Spatial Query Localization Method in Limited Reference Point Environment
Authors: Victor Krebss
Abstract:
Task of object localization is one of the major challenges in creating intelligent transportation. Unfortunately, in densely built-up urban areas, localization based on GPS only produces a large error, or simply becomes impossible. New opportunities arise for the localization due to the rapidly emerging concept of a wireless ad-hoc network. Such network, allows estimating potential distance between these objects measuring received signal level and construct a graph of distances in which nodes are the localization objects, and edges - estimates of the distances between pairs of nodes. Due to the known coordinates of individual nodes (anchors), it is possible to determine the location of all (or part) of the remaining nodes of the graph. Moreover, road map, available in digital format can provide localization routines with valuable additional information to narrow node location search. However, despite abundance of well-known algorithms for solving the problem of localization and significant research efforts, there are still many issues that currently are addressed only partially. In this paper, we propose localization approach based on the graph mapped distances on the digital road map data basis. In fact, problem is reduced to distance graph embedding into the graph representing area geo location data. It makes possible to localize objects, in some cases even if only one reference point is available. We propose simple embedding algorithm and sample implementation as spatial queries over sensor network data stored in spatial database, allowing employing effectively spatial indexing, optimized spatial search routines and geometry functions.Keywords: Intelligent Transportation System, Sensor Network, Localization, Spatial Query, GIS, Graph Embedding.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15371804 A Robust Adaptive Congestion Control Strategy for Large Scale Networks with Differentiated Services Traffic
Authors: R. R. Chen, K. Khorasani
Abstract:
In this paper, a robust decentralized congestion control strategy is developed for a large scale network with Differentiated Services (Diff-Serv) traffic. The network is modeled by a nonlinear fluid flow model corresponding to two classes of traffic, namely the premium traffic and the ordinary traffic. The proposed congestion controller does take into account the associated physical network resource limitations and is shown to be robust to the unknown and time-varying delays. Our proposed decentralized congestion control strategy is developed on the basis of Diff-Serv architecture by utilizing a robust adaptive technique. A Linear Matrix Inequality (LMI) condition is obtained to guarantee the ultimate boundedness of the closed-loop system. Numerical simulation implementations are presented by utilizing the QualNet and Matlab software tools to illustrate the effectiveness and capabilities of our proposed decentralized congestion control strategy.
Keywords: Congestion control, Large scale networks, Decentralized control, Differentiated services traffic, Time-delay systems.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 19891803 Application and Assessment of Artificial Neural Networks for Biodiesel Iodine Value Prediction
Authors: Raquel M. de Sousa, Sofiane Labidi, Allan Kardec D. Barros, Alex O. Barradas Filho, Aldalea L. B. Marques
Abstract:
Several parameters are established in order to measure biodiesel quality. One of them is the iodine value, which is an important parameter that measures the total unsaturation within a mixture of fatty acids. Limitation of unsaturated fatty acids is necessary since warming of higher quantity of these ones ends in either formation of deposits inside the motor or damage of lubricant. Determination of iodine value by official procedure tends to be very laborious, with high costs and toxicity of the reagents, this study uses artificial neural network (ANN) in order to predict the iodine value property as an alternative to these problems. The methodology of development of networks used 13 esters of fatty acids in the input with convergence algorithms of back propagation of back propagation type were optimized in order to get an architecture of prediction of iodine value. This study allowed us to demonstrate the neural networks’ ability to learn the correlation between biodiesel quality properties, in this caseiodine value, and the molecular structures that make it up. The model developed in the study reached a correlation coefficient (R) of 0.99 for both network validation and network simulation, with Levenberg-Maquardt algorithm.Keywords: Artificial Neural Networks, Biodiesel, Iodine Value, Prediction.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 23811802 Prioritization Method in the Fuzzy Analytic Network Process by Fuzzy Preferences Programming Method
Authors: Tarifa S. Almulhim, Ludmil Mikhailov, Dong-Ling Xu
Abstract:
In this paper, a method for deriving a group priority vector in the Fuzzy Analytic Network Process (FANP) is proposed. By introducing importance weights of multiple decision makers (DMs) based on their experiences, the Fuzzy Preferences Programming Method (FPP) is extended to a fuzzy group prioritization problem in the FANP. Additionally, fuzzy pair-wise comparison judgments are presented rather than exact numerical assessments in order to model the uncertainty and imprecision in the DMs- judgments and then transform the fuzzy group prioritization problem into a fuzzy non-linear programming optimization problem which maximize the group satisfaction. Unlike the known fuzzy prioritization techniques, the new method proposed in this paper can easily derive crisp weights from incomplete and inconsistency fuzzy set of comparison judgments and does not require additional aggregation producers. Detailed numerical examples are used to illustrate the implement of our approach and compare with the latest fuzzy prioritization method.
Keywords: Fuzzy Analytic Network Process (FANP), Fuzzy Non-linear Programming, Fuzzy Preferences Programming Method (FPP), Multiple Criteria Decision-Making (MCDM), Triangular Fuzzy Number.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 23871801 Detection of Black Holes in MANET Using Collaborative Watchdog with Fuzzy Logic
Authors: Y. Harold Robinson, M. Rajaram, E. Golden Julie, S. Balaji
Abstract:
Mobile ad hoc network (MANET) is a self-configuring network of mobile node connected without wires. A Fuzzy Logic Based Collaborative watchdog approach is used to reduce the detection time of misbehaved nodes and increase the overall truthfulness. This methodology will increase the secure efficient routing by detecting the Black Holes attacks. The simulation results proved that this method improved the energy, reduced the delay and also improved the overall performance of the detecting black hole attacks in MANET.
Keywords: MANET, collaborative watchdog, fuzzy logic, AODV.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 13511800 Interactive Effects in Blended Learning Mode: Exploring Hybrid Data Sources and Iterative Linkages
Authors: Hock Chuan, Lim
Abstract:
This paper presents an approach for identifying interactive effects using Network Science (NS) supported by Social Network Analysis (SNA) techniques. Based on general observations that learning processes and behaviors are shaped by the social relationships and influenced by learning environment, the central idea was to understand both the human and non-human interactive effects for a blended learning mode of delivery of computer science modules. Important findings include (a) the importance of non-human nodes to influence the centrality and transfer; (b) the degree of non-human and human connectivity impacts learning. This project reveals that the NS pattern and connectivity as measured by node relationships offer alternative approach for hypothesis generation and design of qualitative data collection. An iterative process further reinforces the analysis, whereas the experimental simulation option itself is an interesting alternative option, a hybrid combination of both experimental simulation and qualitative data collection presents itself as a promising and viable means to study complex scenario such as blended learning delivery mode. The primary value of this paper lies in the design of the approach for studying interactive effects of human (social nodes) and non-human (learning/study environment, Information and Communication Technologies (ICT) infrastructures nodes) components. In conclusion, this project adds to the understanding and the use of SNA to model and study interactive effects in blended social learning.
Keywords: Blended learning, network science, social learning, social network analysis, study environment.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 6601799 Advanced Convolutional Neural Network Paradigms-Comparison of VGG16 with Resnet50 in Crime Detection
Authors: Taiwo. M. Akinmuyisitan, John Cosmas
Abstract:
This paper practically demonstrates the theories and concepts of an Advanced Convolutional Neural Network in the design and development of a scalable artificial intelligence model for the detection of criminal masterminds. The technique uses machine vision algorithms to compute the facial characteristics of suspects and classify actors as criminal or non-criminal faces. The paper proceeds further to compare the results of the error accuracy of two popular custom convolutional pre-trained networks, VGG16 and Resnet50. The result shows that VGG16 is probably more efficient than ResNet50 for the dataset we used.
Keywords: Artificial intelligence, convolutional neural networks, Resnet50, VGG16.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2881798 Satellite Imagery Classification Based on Deep Convolution Network
Authors: Zhong Ma, Zhuping Wang, Congxin Liu, Xiangzeng Liu
Abstract:
Satellite imagery classification is a challenging problem with many practical applications. In this paper, we designed a deep convolution neural network (DCNN) to classify the satellite imagery. The contributions of this paper are twofold — First, to cope with the large-scale variance in the satellite image, we introduced the inception module, which has multiple filters with different size at the same level, as the building block to build our DCNN model. Second, we proposed a genetic algorithm based method to efficiently search the best hyper-parameters of the DCNN in a large search space. The proposed method is evaluated on the benchmark database. The results of the proposed hyper-parameters search method show it will guide the search towards better regions of the parameter space. Based on the found hyper-parameters, we built our DCNN models, and evaluated its performance on satellite imagery classification, the results show the classification accuracy of proposed models outperform the state of the art method.
Keywords: Satellite imagery classification, deep convolution network, genetic algorithm, hyper-parameter optimization.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 23481797 A New Approach to Predicting Physical Biometrics from Behavioural Biometrics
Authors: Raid R. O. Al-Nima, S. S. Dlay, W. L. Woo
Abstract:
A relationship between face and signature biometrics is established in this paper. A new approach is developed to predict faces from signatures by using artificial intelligence. A multilayer perceptron (MLP) neural network is used to generate face details from features extracted from signatures, here face is the physical biometric and signatures is the behavioural biometric. The new method establishes a relationship between the two biometrics and regenerates a visible face image from the signature features. Furthermore, the performance efficiencies of our new technique are demonstrated in terms of minimum error rates compared to published work.
Keywords: Behavioural biometric, Face biometric, Neural network, Physical biometric, Signature biometric.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16841796 Performance Assessment and Optimization of the After-Sale Networks
Authors: H. Izadbakhsh, M.Hour Ali, A. Amirkhani, A. Montazeri, M. Saberi
Abstract:
The after–sales activities are nowadays acknowledged as a relevant source of revenue, profit and competitive advantage in most manufacturing industries. Top and middle management, therefore, should focus on the definition of a structured business performance measurement system for the after-sales business. The paper aims at filling this gap, and presents an integrated methodology for the after-sales network performance measurement, and provides an empirical application to automotive case companies and their official service network. This is the first study that presents an integrated multivariate approach for total assessment and improvement of after-sale services.Keywords: Data Envelopment Analysis (DEA), Principal Component Analysis (PCA), Automotive companies, After-sale services.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 18851795 System Detecting Border Gateway Protocol Anomalies Using Local and Remote Data
Authors: A. Starczewska, A. Nawrat, K. Daniec, J. Homa, K. Hołda
Abstract:
Border Gateway Protocol (BGP) is the main routing protocol that enables routing establishment between all autonomous systems, which are the basic administrative units of the internet. Due to the poor protection of BGP, it is important to use additional BGP security systems. Many solutions to this problem have been proposed over the years, but none of them have been implemented on a global scale. This article describes a system capable of building images of real-time BGP network topology in order to detect BGP anomalies. Our proposal performs a detailed analysis of BGP messages that come into local network cards supplemented by information collected by remote collectors in different localizations.
Keywords: Border Gateway Protocol, BGP, BGP hijacking, cybersecurity, detection.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 941794 Distributed e-Learning System with Client-Server and P2P Hybrid Architecture
Authors: Kazunari Meguro, Shinichi Motomura, Takao Kawamura, Kazunori Sugahara
Abstract:
We have developed a distributed asynchronous Web based training system. In order to improve the scalability and robustness of this system, all contents and a function are realized on mobile agents. These agents are distributed to computers, and they can use a Peer to Peer network that modified Content-Addressable Network. In this system, all computers offer the function and exercise by themselves. However, the system that all computers do the same behavior is not realistic. In this paper, as a solution of this issue, we present an e-Learning system that is composed of computers of different participation types. Enabling the computer of different participation types will improve the convenience of the system.Keywords: Distributed Multimedia Systems, e-Learning, P2P, Mobile Agen
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 23391793 A Propose of Personnel Assessment Method Including a Two-Way Assessment for Evaluating Evaluators and Employees
Authors: Shunsuke Saito, Kazuho Yoshimoto, Shunichi Ohmori, Sirawadee Arunyanart
Abstract:
In this paper, we suggest a mechanism of assessment that rater and Ratee (or employees) to convince. There are many problems exist in the personnel assessment. In particular, we were focusing on the three. (1) Raters are not sufficiently recognized assessment point. (2) Ratee are not convinced by the mechanism of assessment. (3) Raters (or Evaluators) and ratees have empathy. We suggest 1: Setting of "understanding of the assessment points." 2: Setting of "relative assessment ability." 3: Proposal of two-way assessment mechanism to solve these problems. As a prerequisite, it is assumed that there are multiple raters. This is because has been a growing importance of multi-faceted assessment. In this model, it determines the weight of each assessment point evaluators by the degree of understanding and assessment ability of raters and ratee. We used the ANP (Analytic Network Process) is a theory that an extension of the decision-making technique AHP (Analytic Hierarchy Process). ANP can be to address the problem of forming a network and assessment of Two-Way is possible. We apply this technique personnel assessment, the weights of rater of each point can be reasonably determined. We suggest absolute assessment for Two-Way assessment by ANP. We have verified that the consent of the two approaches is higher than conventional mechanism. Also, human resources consultant we got a comment about the application of the practice.
Keywords: Personnel assessment, ANP (analytic network process), two-way.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 7911792 Seed-Based Region Growing (SBRG) vs Adaptive Network-Based Inference System (ANFIS) vs Fuzzyc-Means (FCM): Brain Abnormalities Segmentation
Authors: Shafaf Ibrahim, Noor Elaiza Abdul Khalid, Mazani Manaf
Abstract:
Segmentation of Magnetic Resonance Imaging (MRI) images is the most challenging problems in medical imaging. This paper compares the performances of Seed-Based Region Growing (SBRG), Adaptive Network-Based Fuzzy Inference System (ANFIS) and Fuzzy c-Means (FCM) in brain abnormalities segmentation. Controlled experimental data is used, which designed in such a way that prior knowledge of the size of the abnormalities are known. This is done by cutting various sizes of abnormalities and pasting it onto normal brain tissues. The normal tissues or the background are divided into three different categories. The segmentation is done with fifty seven data of each category. The knowledge of the size of the abnormalities by the number of pixels are then compared with segmentation results of three techniques proposed. It was proven that the ANFIS returns the best segmentation performances in light abnormalities, whereas the SBRG on the other hand performed well in dark abnormalities segmentation.
Keywords: Seed-Based Region Growing (SBRG), Adaptive Network-Based Fuzzy Inference System (ANFIS), Fuzzy c-Means (FCM), Brain segmentation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 23051791 Multiple Peaks Tracking Algorithm using Particle Swarm Optimization Incorporated with Artificial Neural Network
Authors: Mei Shan Ngan, Chee Wei Tan
Abstract:
Due to the non-linear characteristics of photovoltaic (PV) array, PV systems typically are equipped with the capability of maximum power point tracking (MPPT) feature. Moreover, in the case of PV array under partially shaded conditions, hotspot problem will occur which could damage the PV cells. Partial shading causes multiple peaks in the P-V characteristic curves. This paper presents a hybrid algorithm of Particle Swarm Optimization (PSO) and Artificial Neural Network (ANN) MPPT algorithm for the detection of global peak among the multiple peaks in order to extract the true maximum energy from PV panel. The PV system consists of PV array, dc-dc boost converter controlled by the proposed MPPT algorithm and a resistive load. The system was simulated using MATLAB/Simulink package. The simulation results show that the proposed algorithm performs well to detect the true global peak power. The results of the simulations are analyzed and discussed.Keywords: Photovoltaic (PV), Partial Shading, Maximum Power Point Tracking (MPPT), Particle Swarm Optimization (PSO) and Artificial Neural Network (ANN)
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3756