Search results for: Fuzziness offuzzy sets Fuzzy
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 1445

Search results for: Fuzziness offuzzy sets Fuzzy

455 Orthogonal Polynomial Density Estimates: Alternative Representation and Degree Selection

Authors: Serge B. Provost, Min Jiang

Abstract:

The density estimates considered in this paper comprise a base density and an adjustment component consisting of a linear combination of orthogonal polynomials. It is shown that, in the context of density approximation, the coefficients of the linear combination can be determined either from a moment-matching technique or a weighted least-squares approach. A kernel representation of the corresponding density estimates is obtained. Additionally, two refinements of the Kronmal-Tarter stopping criterion are proposed for determining the degree of the polynomial adjustment. By way of illustration, the density estimation methodology advocated herein is applied to two data sets.

Keywords: kernel density estimation, orthogonal polynomials, moment-based methodologies, density approximation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2369
454 The Effect of Outliers on the Economic and Social Survey on Income and Living Conditions

Authors: Encarnación Álvarez, Rosa M. García-Fernández, Francisco J. Blanco-Encomienda, Juan F. Muñoz

Abstract:

The European Union Survey on Income and Living Conditions (EU-SILC) is a popular survey which provides information on income, poverty, social exclusion and living conditions of households and individuals in the European Union. The EU-SILC contains variables which may contain outliers. The presence of outliers can have an impact on the measures and indicators used by the EU-SILC. In this paper, we used data sets from various countries to analyze the presence of outliers. In addition, we obtain some indicators after removing these outliers, and a comparison between both situations can be observed. Finally, some conclusions are obtained.

Keywords: Headcount index, poverty line, risk of poverty, skewness coefficient.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2553
453 The Labeled Classification and its Application

Authors: M. Nemissi, H. Seridi, H. Akdag

Abstract:

This paper presents and evaluates a new classification method that aims to improve classifiers performances and speed up their training process. The proposed approach, called labeled classification, seeks to improve convergence of the BP (Back propagation) algorithm through the addition of an extra feature (labels) to all training examples. To classify every new example, tests will be carried out each label. The simplicity of implementation is the main advantage of this approach because no modifications are required in the training algorithms. Therefore, it can be used with others techniques of acceleration and stabilization. In this work, two models of the labeled classification are proposed: the LMLP (Labeled Multi Layered Perceptron) and the LNFC (Labeled Neuro Fuzzy Classifier). These models are tested using Iris, wine, texture and human thigh databases to evaluate their performances.

Keywords: Artificial neural networks, Fusion of neural networkfuzzysystems, Learning theory, Pattern recognition.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1410
452 Vibration Control of MDOF Structure under Earthquake Excitation using Passive Control and Active Control

Authors: M. Reza Bagerzadeh Karimi, M. Mahdi Bagerzadeh Karimi

Abstract:

In the present paper, active control system is used in different heights of the building and the most effective part was studied where the active control system is applied. The mathematical model of the building is established in MATLAB and in order to active control the system FLC method was used. Three different locations of the building are chosen to apply active control system, namely at the lowest story, the middle height of the building, and at the highest point of the building with TMD system. The equation of motion was written for high rise building and it was solved by statespace method. Also passive control was used with Tuned Mass Damper (TMD) at the top floor of the building to show the robustness of FLC method when compared with passive control system.

Keywords: Fuzzy Logic Controller (FLC), Tuned Mass Damper(TMD), Active control, passive control

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2716
451 SQL Generator Based On MVC Pattern

Authors: Chanchai Supaartagorn

Abstract:

Structured Query Language (SQL) is the standard de facto language to access and manipulate data in a relational database. Although SQL is a language that is simple and powerful, most novice users will have trouble with SQL syntax. Thus, we are presenting SQL generator tool which is capable of translating actions and displaying SQL commands and data sets simultaneously. The tool was developed based on Model-View-Controller (MVC) pattern. The MVC pattern is a widely used software design pattern that enforces the separation between the input, processing, and output of an application. Developers take full advantage of it to reduce the complexity in architectural design and to increase flexibility and reuse of code. In addition, we use White-Box testing for the code verification in the Model module.

Keywords: MVC, relational database, SQL, White-Box testing.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2031
450 Granulation using Clustering and Rough Set Theory and its Tree Representation

Authors: Girish Kumar Singh, Sonajharia Minz

Abstract:

Granular computing deals with representation of information in the form of some aggregates and related methods for transformation and analysis for problem solving. A granulation scheme based on clustering and Rough Set Theory is presented with focus on structured conceptualization of information has been presented in this paper. Experiments for the proposed method on four labeled data exhibit good result with reference to classification problem. The proposed granulation technique is semi-supervised imbibing global as well as local information granulation. To represent the results of the attribute oriented granulation a tree structure is proposed in this paper.

Keywords: Granular computing, clustering, Rough sets, datamining.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1719
449 Surface Roughness Analysis, Modelling and Prediction in Fused Deposition Modelling Additive Manufacturing Technology

Authors: Yusuf S. Dambatta, Ahmed A. D. Sarhan

Abstract:

Fused deposition modelling (FDM) is one of the most prominent rapid prototyping (RP) technologies which is being used to efficiently fabricate CAD 3D geometric models. However, the process is coupled with many drawbacks, of which the surface quality of the manufactured RP parts is among. Hence, studies relating to improving the surface roughness have been a key issue in the field of RP research. In this work, a technique of modelling the surface roughness in FDM is presented. Using experimentally measured surface roughness response of the FDM parts, an ANFIS prediction model was developed to obtain the surface roughness in the FDM parts using the main critical process parameters that affects the surface quality. The ANFIS model was validated and compared with experimental test results.

Keywords: Surface roughness, fused deposition modelling, adaptive neuro fuzzy inference system, ANFIS, orientation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1900
448 An Evolutionary Statistical Learning Theory

Authors: Sung-Hae Jun, Kyung-Whan Oh

Abstract:

Statistical learning theory was developed by Vapnik. It is a learning theory based on Vapnik-Chervonenkis dimension. It also has been used in learning models as good analytical tools. In general, a learning theory has had several problems. Some of them are local optima and over-fitting problems. As well, statistical learning theory has same problems because the kernel type, kernel parameters, and regularization constant C are determined subjectively by the art of researchers. So, we propose an evolutionary statistical learning theory to settle the problems of original statistical learning theory. Combining evolutionary computing into statistical learning theory, our theory is constructed. We verify improved performances of an evolutionary statistical learning theory using data sets from KDD cup.

Keywords: Evolutionary computing, Local optima, Over-fitting, Statistical learning theory

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1776
447 Urban Roads of Bhopal City

Authors: Anshu Gupta

Abstract:

Quality evaluation of urban environment is an integral part of efficient urban environment planning and management. The development of fuzzy set theory (FST) and the introduction of FST to the urban study field attempts to incorporate the gradual variation and avoid loss of information. Urban environmental quality assessment pertain to interpretation and forecast of the urban environmental quality according to the national regulation about the permitted content of contamination for the sake of protecting human health and subsistence environment . A strategic motor vehicle control strategy has to be proposed to mitigate the air pollution in the city. There is no well defined guideline for the assessment of urban air pollution and no systematic study has been reported so far for Indian cities. The methodology adopted may be useful in similar cities of India. Remote sensing & GIS can play significant role in mapping air pollution.

Keywords: GIS, Pollution, Remote Sensing, Urban.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2641
446 A Methodology for Creating a Conceptual Model Under Uncertainty

Authors: Bogdan Walek, Jiri Bartos, Cyril Klimes

Abstract:

This article deals with the conceptual modeling under uncertainty. First, the division of information systems with their definition will be described, focusing on those where the construction of a conceptual model is suitable for the design of future information system database. Furthermore, the disadvantages of the traditional approach in creating a conceptual model and database design will be analyzed. A comprehensive methodology for the creation of a conceptual model based on analysis of client requirements and the selection of a suitable domain model is proposed here. This article presents the expert system used for the construction of a conceptual model and is a suitable tool for database designers to create a conceptual model.

Keywords: Conceptual model, conceptual modeling, database, methodology, uncertainty, information system, entity, attribute, relationship, conceptual domain model, fuzzy.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1584
445 An Integrated DEMATEL-QFD Model for Medical Supplier Selection

Authors: Mehtap Dursun, Zeynep Şener

Abstract:

Supplier selection is considered as one of the most critical issues encountered by operations and purchasing managers to sharpen the company’s competitive advantage. In this paper, a novel fuzzy multi-criteria group decision making approach integrating quality function deployment (QFD) and decision making trial and evaluation laboratory (DEMATEL) method is proposed for supplier selection. The proposed methodology enables to consider the impacts of inner dependence among supplier assessment criteria. A house of quality (HOQ) which translates purchased product features into supplier assessment criteria is built using the weights obtained by DEMATEL approach to determine the desired levels of supplier assessment criteria. Supplier alternatives are ranked by a distance-based method.

Keywords: DEMATEL, Group decision making, QFD, Supplier selection.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2823
444 An Expert System Designed to Be Used with MOEAs for Efficient Portfolio Selection

Authors: K. Metaxiotis, K. Liagkouras

Abstract:

This study presents an Expert System specially designed to be used with Multiobjective Evolutionary Algorithms (MOEAs) for the solution of the portfolio selection problem. The validation of the proposed hybrid System is done by using data sets from Hang Seng 31 in Hong Kong, DAX 100 in Germany and FTSE 100 in UK. The performance of the proposed system is assessed in comparison with the Non-dominated Sorting Genetic Algorithm II (NSGAII). The evaluation of the performance is based on different performance metrics that evaluate both the proximity of the solutions to the Pareto front and their dispersion on it. The results show that the proposed hybrid system is efficient for the solution of this kind of problems.

Keywords: Expert Systems, Multiobjective optimization, Evolutionary Algorithms, Portfolio Selection.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1769
443 Toxic Effect of Sodium Nitrate on Germinating Seeds of Vigna radiata

Authors: Nilima D. Gajbhiye

Abstract:

Sodium nitrate has been used industrially in a number of work fields ranging from agriculture to food industry. Sodium nitrate and nitrite are associated with a higher risk of cancer in human beings. In present study, the effect of sodium nitrate on germinating seeds was studied. Two different sets of ungerminated Vigna radiata seeds were taken. In one set Vigna radiata seeds were soaked in distilled water for 4 hours and they were allowed to germinate in distilled water (Control) and 0.1 to 1% and 10% concentrations of sodium nitrate (NaNo3). In soaked seed set, on 2nd day radical developed in control and 0.1 to 1% concentrations of sodium nitrate. Seeds size was enlarged in 1% and 10% concentrations of sodium nitrate. On 3rd day in 0.1% sodium nitrate length of the radicle was 7.5cm with one leaf let and control sample showed 9cm with one leaflet. On 5th day in 0.1% sodium nitrate length of the radicle was 10 cm with one leaf let and control sample showed 11.5cm with one leaflet. No radicle developed in 1 and 10% NaNo3 concentrations. On 10th day all plants including control were dead. More number of mitotic cells was observed in apical root meristems of control germinating seeds and less mitotic cells were observed in 0.1% NaNo3 germinating seeds. But cells were elongated in 0.9%NaNo3 concentration and particles are deposited in the cells and no mitotic cells were observed. In other sets, dry seeds were allowed to germinate in Distilled water (control) and in 0.1 to 1% and 10% concentrations of sodium nitrate. In dry seed set, on 2nd day radicle developed from control set. In 0.1 to 1% concentrations of sodium nitration seed enlarged in size but but not allowed germination. But in 10% NaNo3 seeds coat colour was changed from dark green to brown. On 3rd day the radicle was developed in 0.1% concentration of NaNo3. No growth of radicle was observed in 0.3 to 10% concentrations of NaNo3 but plumule was observed in control plant. Seed coat color was changed from dark green to brown in color in 1% and 10% NaNo3. On 5th day in control seeds the radicle growth was 11cm and 0.1% NaNo3 concentration was 1.3 cm. On 10th day all plants including control were dead. More number of mitotic cells was observed in apical root meristems of control germinating seeds and less mitotic cells were observed in 0.1% NaNo3 germinating seeds. At higher concentrations of NaNo3 allowed seed germination in soaked seeds but produced radicle decay. In comparison to it, in dry seed set, germination of seeds observed only in 0.1% NaNo3 concentration. The inhibitory effect of NaNo3 on seed germination is due to reduction of water imbibition and mitotic activity.

Keywords: Germinating seeds, NaNo3, Vigna radiate, mitotic activity.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3110
442 Analyzing Multi-Labeled Data Based on the Roll of a Concept against a Semantic Range

Authors: Masahiro Kuzunishi, Tetsuya Furukawa, Ke Lu

Abstract:

Classifying data hierarchically is an efficient approach to analyze data. Data is usually classified into multiple categories, or annotated with a set of labels. To analyze multi-labeled data, such data must be specified by giving a set of labels as a semantic range. There are some certain purposes to analyze data. This paper shows which multi-labeled data should be the target to be analyzed for those purposes, and discusses the role of a label against a set of labels by investigating the change when a label is added to the set of labels. These discussions give the methods for the advanced analysis of multi-labeled data, which are based on the role of a label against a semantic range.

Keywords: Classification Hierarchies, Data Analysis, Multilabeled Data, Orders of Sets of Labels

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1208
441 The Model of Blended Learning and Its Use at Foreign Language Teaching

Authors: A. A. Kudysheva, A. N. Kudyshev

Abstract:

In present article the model of Blended Learning, its advantage at foreign language teaching, and also some problems that can arise during its use are considered. The Blended Learning is a special organization of learning, which allows to combine classroom work and modern technologies in electronic distance teaching environment. Nowadays a lot of European educational institutions and companies use such technology. Through this method: student gets the opportunity to learn in a group (classroom) with a teacher and additionally at home at a convenient time; student himself sets the optimal speed and intensity of the learning process; this method helps student to discipline himself and learn to work independently.

Keywords: Foreign language, information and communication technology (ICT), model of Blended Learning, virtual cool room, technophobia

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3393
440 De-noising Infrared Image Using OWA Based Filter

Authors: Ruchika, Munish Vashisht, S. Qamar

Abstract:

Detection of small ship is crucial task in many automatic surveillance systems which are employed for security of maritime boundaries of a country. To address this problem, image de-noising is technique to identify the target ship in between many other ships in the sea. Image de-noising technique needs to extract the ship’s image from sea background for the analysis as the ship’s image may submerge in the background and flooding waves. In this paper, a noise filter is presented that is based on fuzzy linguistic ‘most’ quantifier. Ordered weighted averaging (OWA) function is used to remove salt-pepper noise of ship’s image. Results obtained are in line with the results available by other well-known median filters and OWA based approach shows better performance.

Keywords: Linguistic quantifier, impulse noise, OWA filter, median filter.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 933
439 Stability of a Special Class of Switched Positive Systems

Authors: Xiuyong Ding, Lan Shu, Xiu Liu

Abstract:

This paper is concerned with the existence of a linear copositive Lyapunov function(LCLF) for a special class of switched positive linear systems(SPLSs) composed of continuousand discrete-time subsystems. Firstly, by using system matrices, we construct a special kind of matrices in appropriate manner. Secondly, our results reveal that the Hurwitz stability of these matrices is equivalent to the existence of a common LCLF for arbitrary finite sets composed of continuous- and discrete-time positive linear timeinvariant( LTI) systems. Finally, a simple example is provided to illustrate the implication of our results.

Keywords: Linear co-positive Lyapunov functions, positive systems, switched systems.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1519
438 Incremental Algorithm to Cluster the Categorical Data with Frequency Based Similarity Measure

Authors: S.Aranganayagi, K.Thangavel

Abstract:

Clustering categorical data is more complicated than the numerical clustering because of its special properties. Scalability and memory constraint is the challenging problem in clustering large data set. This paper presents an incremental algorithm to cluster the categorical data. Frequencies of attribute values contribute much in clustering similar categorical objects. In this paper we propose new similarity measures based on the frequencies of attribute values and its cardinalities. The proposed measures and the algorithm are experimented with the data sets from UCI data repository. Results prove that the proposed method generates better clusters than the existing one.

Keywords: Clustering, Categorical, Incremental, Frequency, Domain

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1820
437 Association Rules Mining and NOSQL Oriented Document in Big Data

Authors: Sarra Senhadji, Imene Benzeguimi, Zohra Yagoub

Abstract:

Big Data represents the recent technology of manipulating voluminous and unstructured data sets over multiple sources. Therefore, NOSQL appears to handle the problem of unstructured data. Association rules mining is one of the popular techniques of data mining to extract hidden relationship from transactional databases. The algorithm for finding association dependencies is well-solved with Map Reduce. The goal of our work is to reduce the time of generating of frequent itemsets by using Map Reduce and NOSQL database oriented document. A comparative study is given to evaluate the performances of our algorithm with the classical algorithm Apriori.

Keywords: Apriori, Association rules mining, Big Data, data mining, Hadoop, Map Reduce, MongoDB, NoSQL.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 694
436 Using Fuzzy Controller in Induction Motor Speed Control with Constant Flux

Authors: Hassan Baghgar Bostan Abad, Ali Yazdian Varjani, Taheri Asghar

Abstract:

Variable speed drives are growing and varying. Drives expanse depend on progress in different part of science like power system, microelectronic, control methods, and so on. Artificial intelligent contains hard computation and soft computation. Artificial intelligent has found high application in most nonlinear systems same as motors drive. Because it has intelligence like human but there are no sentimental against human like angriness and.... Artificial intelligent is used for various points like approximation, control, and monitoring. Because artificial intelligent techniques can use as controller for any system without requirement to system mathematical model, it has been used in electrical drive control. With this manner, efficiency and reliability of drives increase and volume, weight and cost of them decrease.

Keywords: Artificial intelligent, electrical motor, intelligent drive and control,

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2484
435 Analyzing the Factors Influencing Exclusive Breastfeeding Using the Generalized Poisson Regression Model

Authors: Cheika Jahangeer, Naushad Mamode Khan, Maleika Heenaye-Mamode Khan

Abstract:

Exclusive breastfeeding is the feeding of a baby on no other milk apart from breast milk. Exclusive breastfeeding during the first 6 months of life is of fundamental importance because it supports optimal growth and development during infancy and reduces the risk of obliterating diseases and problems. Moreover, in developed countries, exclusive breastfeeding has decreased the incidence and/or severity of diarrhea, lower respiratory infection and urinary tract infection. In this paper, we study the factors that influence exclusive breastfeeding and use the Generalized Poisson regression model to analyze the practices of exclusive breastfeeding in Mauritius. We develop two sets of quasi-likelihood equations (QLE)to estimate the parameters.

Keywords: Exclusive breastfeeding, Regression model, Quasilikelihood.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1800
434 Comparative Analysis of Classical and Parallel Inpainting Algorithms Based on Affine Combinations of Projections on Convex Sets

Authors: Irina Maria Artinescu, Costin Radu Boldea, Eduard-Ionut Matei

Abstract:

The paper is a comparative study of two classical vari-ants of parallel projection methods for solving the convex feasibility problem with their equivalents that involve variable weights in the construction of the solutions. We used a graphical representation of these methods for inpainting a convex area of an image in order to investigate their effectiveness in image reconstruction applications. We also presented a numerical analysis of the convergence of these four algorithms in terms of the average number of steps and execution time, in classical CPU and, alternativaly, in parallel GPU implementation.

Keywords: convex feasibility problem, convergence analysis, ınpainting, parallel projection methods

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 448
433 Zero Truncated Strict Arcsine Model

Authors: Y. N. Phang, E. F. Loh

Abstract:

The zero truncated model is usually used in modeling count data without zero. It is the opposite of zero inflated model. Zero truncated Poisson and zero truncated negative binomial models are discussed and used by some researchers in analyzing the abundance of rare species and hospital stay. Zero truncated models are used as the base in developing hurdle models. In this study, we developed a new model, the zero truncated strict arcsine model, which can be used as an alternative model in modeling count data without zero and with extra variation. Two simulated and one real life data sets are used and fitted into this developed model. The results show that the model provides a good fit to the data. Maximum likelihood estimation method is used in estimating the parameters.

Keywords: Hurdle models, maximum likelihood estimation method, positive count data.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1857
432 A Rough-set Based Approach to Design an Expert System for Personnel Selection

Authors: Ehsan Akhlaghi

Abstract:

Effective employee selection is a critical component of a successful organization. Many important criteria for personnel selection such as decision-making ability, adaptability, ambition, and self-organization are naturally vague and imprecise to evaluate. The rough sets theory (RST) as a new mathematical approach to vagueness and uncertainty is a very well suited tool to deal with qualitative data and various decision problems. This paper provides conceptual, descriptive, and simulation results, concentrating chiefly on human resources and personnel selection factors. The current research derives certain decision rules which are able to facilitate personnel selection and identifies several significant features based on an empirical study conducted in an IT company in Iran.

Keywords: Decision Making, Expert System, PersonnelSelection, Rough Set Theory

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2358
431 On the Prediction of Transmembrane Helical Segments in Membrane Proteins

Authors: Yu Bin, Zhang Yan

Abstract:

The prediction of transmembrane helical segments (TMHs) in membrane proteins is an important field in the bioinformatics research. In this paper, a method based on discrete wavelet transform (DWT) has been developed to predict the number and location of TMHs in membrane proteins. PDB coded as 1F88 was chosen as an example to describe the prediction of the number and location of TMHs in membrane proteins by using this method. One group of test data sets that contain total 19 protein sequences was utilized to access the effect of this method. Compared with the prediction results of DAS, PRED-TMR2, SOSUI, HMMTOP2.0 and TMHMM2.0, the obtained results indicate that the presented method has higher prediction accuracy.

Keywords: hydrophobicity, membrane protein, transmembranehelical segments, wavelet transform

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1582
430 An Engineering Approach to Forecast Volatility of Financial Indices

Authors: Irwin Ma, Tony Wong, Thiagas Sankar

Abstract:

By systematically applying different engineering methods, difficult financial problems become approachable. Using a combination of theory and techniques such as wavelet transform, time series data mining, Markov chain based discrete stochastic optimization, and evolutionary algorithms, this work formulated a strategy to characterize and forecast non-linear time series. It attempted to extract typical features from the volatility data sets of S&P100 and S&P500 indices that include abrupt drops, jumps and other non-linearity. As a result, accuracy of forecasting has reached an average of over 75% surpassing any other publicly available results on the forecast of any financial index.

Keywords: Discrete stochastic optimization, genetic algorithms, genetic programming, volatility forecast

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1630
429 Convergence and Divergence in Telephone Conversations: A Case of Persian

Authors: Anna Mirzaiyan, Vahid Parvaresh, Mahmoud Hashemian, Masoud Saeedi

Abstract:

People usually have a telephone voice, which means they adjust their speech to fit particular situations and to blend in with other interlocutors. The question is: Do we speak differently to different people? This possibility has been suggested by social psychologists within Accommodation Theory [1]. Converging toward the speech of another person can be regarded as a polite speech strategy while choosing a language not used by the other interlocutor can be considered as the clearest example of speech divergence [2]. The present study sets out to investigate such processes in the course of everyday telephone conversations. Using Joos-s [3] model of formality in spoken English, the researchers try to explore convergence to or divergence from the addressee. The results propound the actuality that lexical choice, and subsequently, patterns of style vary intriguingly in concordance with the person being addressed.

Keywords: Convergence, divergence, lexical formality, speechaccommodation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3517
428 New Robust Approach of Direct Field Oriented Control of Induction Motor

Authors: T. Benmiloud, A. Omari

Abstract:

This paper presents a new technique of compensation of the effect of variation parameters in the direct field oriented control of induction motor. The proposed method uses an adaptive tuning of the value of synchronous speed to obtain the robustness for the field oriented control. We show that this adaptive tuning allows having robustness for direct field oriented control to changes in rotor resistance, load torque and rotational speed. The effectiveness of the proposed control scheme is verified by numerical simulations. The numerical validation results of the proposed scheme have presented good performances compared to the usual direct-field oriented control.

Keywords: Induction motor, direct field-oriented control, compensation of variation parameters, fuzzy logic controller.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1862
427 Fast Segmentation for the Piecewise Smooth Mumford-Shah Functional

Authors: Yingjie Zhang

Abstract:

This paper is concerned with an improved algorithm based on the piecewise-smooth Mumford and Shah (MS) functional for an efficient and reliable segmentation. In order to speed up convergence, an additional force, at each time step, is introduced further to drive the evolution of the curves instead of only driven by the extensions of the complementary functions u + and u - . In our scheme, furthermore, the piecewise-constant MS functional is integrated to generate the extra force based on a temporary image that is dynamically created by computing the union of u + and u - during segmenting. Therefore, some drawbacks of the original algorithm, such as smaller objects generated by noise and local minimal problem also are eliminated or improved. The resulting algorithm has been implemented in Matlab and Visual Cµ, and demonstrated efficiently by several cases.

Keywords: Active contours, energy minimization, image segmentation, level sets.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1860
426 ANFIS Modeling of the Surface Roughness in Grinding Process

Authors: H. Baseri, G. Alinejad

Abstract:

The objective of this study is to design an adaptive neuro-fuzzy inference system (ANFIS) for estimation of surface roughness in grinding process. The Used data have been generated from experimental observations when the wheel has been dressed using a rotary diamond disc dresser. The input parameters of model are dressing speed ratio, dressing depth and dresser cross-feed rate and output parameter is surface roughness. In the experimental procedure the grinding conditions are constant and only the dressing conditions are varied. The comparison of the predicted values and the experimental data indicates that the ANFIS model has a better performance with respect to back-propagation neural network (BPNN) model which has been presented by the authors in previous work for estimation of the surface roughness.

Keywords: Grinding, ANFIS, Neural network, Disc dressing.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2415