Search results for: wireless network
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 3100

Search results for: wireless network

2140 Video-On-Demand QoE Evaluation across Different Age-Groups and Its Significance for Network Capacity

Authors: Mujtaba Roshan, John A. Schormans

Abstract:

Quality of Experience (QoE) drives churn in the broadband networks industry, and good QoE plays a large part in the retention of customers. QoE is known to be affected by the Quality of Service (QoS) factors packet loss probability (PLP), delay and delay jitter caused by the network. Earlier results have shown that the relationship between these QoS factors and QoE is non-linear, and may vary from application to application. We use the network emulator Netem as the basis for experimentation, and evaluate how QoE varies as we change the emulated QoS metrics. Focusing on Video-on-Demand, we discovered that the reported QoE may differ widely for users of different age groups, and that the most demanding age group (the youngest) can require an order of magnitude lower PLP to achieve the same QoE than is required by the most widely studied age group of users. We then used a bottleneck TCP model to evaluate the capacity cost of achieving an order of magnitude decrease in PLP, and found it be (almost always) a 3-fold increase in link capacity that was required.

Keywords: Quality of experience, quality of service, packet loss probability, network capacity.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 940
2139 Optimization of the Input Layer Structure for Feed-Forward Narx Neural Networks

Authors: Zongyan Li, Matt Best

Abstract:

This paper presents an optimization method for reducing the number of input channels and the complexity of the feed-forward NARX neural network (NN) without compromising the accuracy of the NN model. By utilizing the correlation analysis method, the most significant regressors are selected to form the input layer of the NN structure. An application of vehicle dynamic model identification is also presented in this paper to demonstrate the optimization technique and the optimal input layer structure and the optimal number of neurons for the neural network is investigated.

Keywords: Correlation analysis, F-ratio, Levenberg-Marquardt, MSE, NARX, neural network, optimisation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2187
2138 Mobile Robot Path Planning in a 2-Dimentional Mesh

Authors: Doraid Dalalah

Abstract:

A topologically oriented neural network is very efficient for real-time path planning for a mobile robot in changing environments. When using a recurrent neural network for this purpose and with the combination of the partial differential equation of heat transfer and the distributed potential concept of the network, the problem of obstacle avoidance of trajectory planning for a moving robot can be efficiently solved. The related dimensional network represents the state variables and the topology of the robot's working space. In this paper two approaches to problem solution are proposed. The first approach relies on the potential distribution of attraction distributed around the moving target, acting as a unique local extreme in the net, with the gradient of the state variables directing the current flow toward the source of the potential heat. The second approach considers two attractive and repulsive potential sources to decrease the time of potential distribution. Computer simulations have been carried out to interrogate the performance of the proposed approaches.

Keywords: Mobile robot, Path Planning, Mesh, Potential field.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1925
2137 Spreading Dynamics of a Viral Infection in a Complex Network

Authors: Khemanand Moheeput, Smita S. D. Goorah, Satish K. Ramchurn

Abstract:

We report a computational study of the spreading dynamics of a viral infection in a complex (scale-free) network. The final epidemic size distribution (FESD) was found to be unimodal or bimodal depending on the value of the basic reproductive number R0 . The FESDs occurred on time-scales long enough for intermediate-time epidemic size distributions (IESDs) to be important for control measures. The usefulness of R0 for deciding on the timeliness and intensity of control measures was found to be limited by the multimodal nature of the IESDs and by its inability to inform on the speed at which the infection spreads through the population. A reduction of the transmission probability at the hubs of the scale-free network decreased the occurrence of the larger-sized epidemic events of the multimodal distributions. For effective epidemic control, an early reduction in transmission at the index cell and its neighbors was essential.

Keywords: Basic reproductive number, epidemic control, scalefree network, viral infection.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1719
2136 A Low-Cost Air Quality Monitoring Internet of Things Platform

Authors: Christos Spandonidis, Stefanos Tsantilas, Elias Sedikos, Nektarios Galiatsatos, Fotios Giannopoulos, Panagiotis Papadopoulos, Nikolaos Demagos, Dimitrios Reppas, Christos Giordamlis

Abstract:

In the present paper, a low cost, compact and modular Internet of Things (IoT) platform for air quality monitoring in urban areas is presented. This platform comprises of dedicated low cost, low power hardware and the associated embedded software that enable measurement of particles (PM2.5 and PM10), NO, CO, CO2 and O3 concentration in the air, along with relative temperature and humidity. This integrated platform acts as part of a greater air pollution data collecting wireless network that is able to monitor the air quality in various regions and neighborhoods of an urban area, by providing sensor measurements at a high rate that reaches up to one sample per second. It is therefore suitable for Big Data analysis applications such as air quality forecasts, weather forecasts and traffic prediction. The first real world test for the developed platform took place in Thessaloniki, Greece, where 16 devices were installed in various buildings in the city. In the near future, many more of these devices are going to be installed in the greater Thessaloniki area, giving a detailed air quality map of the city.

Keywords: Distributed sensor system, environmental monitoring, Internet of Things, IoT, Smart Cities.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 824
2135 A Data-Driven Approach for Studying the Washout Effects of Rain on Air Pollution

Authors: N. David, H. O. Gao

Abstract:

Air pollution is a serious environmental threat on a global scale and can cause harm to human health, morbidity and premature mortality. Reliable monitoring and control systems are therefore necessary to develop coping skills against the hazards associated with this phenomenon. However, existing environmental monitoring means often do not provide a sufficient response due to practical and technical limitations. Commercial microwave links that form the infrastructure for transmitting data between cell phone towers can be harnessed to map rain at high tempo-spatial resolution. Rainfall causes a decrease in the signal strength received by these wireless communication links allowing it to be used as a built-in sensor network to map the phenomenon. In this study, we point to the potential that lies in this system to indirectly monitor areas where air pollution is reduced. The relationship between pollutant wash-off and rainfall provides an opportunity to acquire important spatial information about air quality using existing cell-phone tower signals. Since the density of microwave communication networks is high relative to any dedicated sensor arrays, it could be possible to rely on this available observation tool for studying precipitation scavenging on air pollutants, for model needs and more.

Keywords: Air pollution, commercial microwave links, rainfall.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 902
2134 Anomaly Detection and Characterization to Classify Traffic Anomalies Case Study: TOT Public Company Limited Network

Authors: O. Siriporn, S. Benjawan

Abstract:

This paper represents four unsupervised clustering algorithms namely sIB, RandomFlatClustering, FarthestFirst, and FilteredClusterer that previously works have not been used for network traffic classification. The methodology, the result, the products of the cluster and evaluation of these algorithms with efficiency of each algorithm from accuracy are shown. Otherwise, the efficiency of these algorithms considering form the time that it use to generate the cluster quickly and correctly. Our work study and test the best algorithm by using classify traffic anomaly in network traffic with different attribute that have not been used before. We analyses the algorithm that have the best efficiency or the best learning and compare it to the previously used (K-Means). Our research will be use to develop anomaly detection system to more efficiency and more require in the future.

Keywords: Unsupervised, clustering, anomaly, machine learning.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2111
2133 Comparison of Artificial Neural Network and Multivariate Regression Methods in Prediction of Soil Cation Exchange Capacity

Authors: Ali Keshavarzi, Fereydoon Sarmadian

Abstract:

Investigation of soil properties like Cation Exchange Capacity (CEC) plays important roles in study of environmental reaserches as the spatial and temporal variability of this property have been led to development of indirect methods in estimation of this soil characteristic. Pedotransfer functions (PTFs) provide an alternative by estimating soil parameters from more readily available soil data. 70 soil samples were collected from different horizons of 15 soil profiles located in the Ziaran region, Qazvin province, Iran. Then, multivariate regression and neural network model (feedforward back propagation network) were employed to develop a pedotransfer function for predicting soil parameter using easily measurable characteristics of clay and organic carbon. The performance of the multivariate regression and neural network model was evaluated using a test data set. In order to evaluate the models, root mean square error (RMSE) was used. The value of RMSE and R2 derived by ANN model for CEC were 0.47 and 0.94 respectively, while these parameters for multivariate regression model were 0.65 and 0.88 respectively. Results showed that artificial neural network with seven neurons in hidden layer had better performance in predicting soil cation exchange capacity than multivariate regression.

Keywords: Easily measurable characteristics, Feed-forwardback propagation, Pedotransfer functions, CEC.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2210
2132 An Efficient Energy Adaptive Hybrid Error Correction Technique for Underwater Wireless Sensor Networks

Authors: Ammar Elyas babiker, M.Nordin B. Zakaria, Hassan Yosif, Samir B. Ibrahim

Abstract:

Variable channel conditions in underwater networks, and variable distances between sensors due to water current, leads to variable bit error rate (BER). This variability in BER has great effects on energy efficiency of error correction techniques used. In this paper an efficient energy adaptive hybrid error correction technique (AHECT) is proposed. AHECT adaptively changes error technique from pure retransmission (ARQ) in a low BER case to a hybrid technique with variable encoding rates (ARQ & FEC) in a high BER cases. An adaptation algorithm depends on a precalculated packet acceptance rate (PAR) look-up table, current BER, packet size and error correction technique used is proposed. Based on this adaptation algorithm a periodically 3-bit feedback is added to the acknowledgment packet to state which error correction technique is suitable for the current channel conditions and distance. Comparative studies were done between this technique and other techniques, and the results show that AHECT is more energy efficient and has high probability of success than all those techniques.

Keywords: Underwater communication, wireless sensornetworks, error correction technique, energy efficiency

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2150
2131 Toward Delegated Democracy: Vote by Yourself, or Trust Your Network

Authors: Hiroshi Yamakawa, Michiko Yoshida, Motohiro Tsuchiya

Abstract:

The recent development of Information and Communication Technology (ICT) enables new ways of "democratic" decision-making such as a page-ranking system, which estimates the importance of a web page based on indirect trust on that page shared by diverse group of unorganized individuals. These kinds of "democracy" have not been acclaimed yet in the world of real politics. On the other hand, a large amount of data about personal relations including trust, norms of reciprocity, and networks of civic engagement has been accumulated in a computer-readable form by computer systems (e.g., social networking systems). We can use these relations as a new type of social capital to construct a new democratic decision-making system based on a delegation network. In this paper, we propose an effective decision-making support system, which is based on empowering someone's vote whom you trust. For this purpose, we propose two new techniques: the first is for estimating entire vote distribution from a small number of votes, and the second is for estimating active voter choice to promote voting using a delegation network. We show that these techniques could increase the voting ratio and credibility of the whole decision by agent-based simulations.

Keywords: Delegation, network centrality, social network, voting ratio.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1785
2130 Big Data Strategy for Telco: Network Transformation

Authors: F. Amin, S. Feizi

Abstract:

Big data has the potential to improve the quality of services; enable infrastructure that businesses depend on to adapt continually and efficiently; improve the performance of employees; help organizations better understand customers; and reduce liability risks. Analytics and marketing models of fixed and mobile operators are falling short in combating churn and declining revenue per user. Big Data presents new method to reverse the way and improve profitability. The benefits of Big Data and next-generation network, however, are more exorbitant than improved customer relationship management. Next generation of networks are in a prime position to monetize rich supplies of customer information—while being mindful of legal and privacy issues. As data assets are transformed into new revenue streams will become integral to high performance.

Keywords: Big Data, Next Generation Networks, Network Transformation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2515
2129 Forecasting Optimal Production Program Using Profitability Optimization by Genetic Algorithm and Neural Network

Authors: Galal H. Senussi, Muamar Benisa, Sanja Vasin

Abstract:

In our business field today, one of the most important issues for any enterprises is cost minimization and profit maximization. Second issue is how to develop a strong and capable model that is able to give us desired forecasting of these two issues. Many researches deal with these issues using different methods. In this study, we developed a model for multi-criteria production program optimization, integrated with Artificial Neural Network.

The prediction of the production cost and profit per unit of a product, dealing with two obverse functions at same time can be extremely difficult, especially if there is a great amount of conflict information about production parameters.

Feed-Forward Neural Networks are suitable for generalization, which means that the network will generate a proper output as a result to input it has never seen. Therefore, with small set of examples the network will adjust its weight coefficients so the input will generate a proper output.

This essential characteristic is of the most important abilities enabling this network to be used in variety of problems spreading from engineering to finance etc.

From our results as we will see later, Feed-Forward Neural Networks has a strong ability and capability to map inputs into desired outputs.

Keywords: Project profitability, multi-objective optimization, genetic algorithm, Pareto set, Neural Networks.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2054
2128 Integrated Subset Split for Balancing Network Utilization and Quality of Routing

Authors: S. V. Kasmir Raja, P. Herbert Raj

Abstract:

The overlay approach has been widely used by many service providers for Traffic Engineering (TE) in large Internet backbones. In the overlay approach, logical connections are set up between edge nodes to form a full mesh virtual network on top of the physical topology. IP routing is then run over the virtual network. Traffic engineering objectives are achieved through carefully routing logical connections over the physical links. Although the overlay approach has been implemented in many operational networks, it has a number of well-known scaling issues. This paper proposes a new approach to achieve traffic engineering without full-mesh overlaying with the help of integrated approach and equal subset split method. Traffic engineering needs to determine the optimal routing of traffic over the existing network infrastructure by efficiently allocating resource in order to optimize traffic performance on an IP network. Even though constraint-based routing [1] of Multi-Protocol Label Switching (MPLS) is developed to address this need, since it is not widely tested or debugged, Internet Service Providers (ISPs) resort to TE methods under Open Shortest Path First (OSPF), which is the most commonly used intra-domain routing protocol. Determining OSPF link weights for optimal network performance is an NP-hard problem. As it is not possible to solve this problem, we present a subset split method to improve the efficiency and performance by minimizing the maximum link utilization in the network via a small number of link weight modifications. The results of this method are compared against results of MPLS architecture [9] and other heuristic methods.

Keywords: Constraint based routing, Link Utilization, Subsetsplit method and Traffic Engineering.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1394
2127 Classifying Students for E-Learning in Information Technology Course Using ANN

Authors: S. Areerachakul, N. Ployong, S. Na Songkla

Abstract:

This research’s objective is to select the model with most accurate value by using Neural Network Technique as a way to filter potential students who enroll in IT course by Electronic learning at Suan Suanadha Rajabhat University. It is designed to help students selecting the appropriate courses by themselves. The result showed that the most accurate model was 100 Folds Cross-validation which had 73.58% points of accuracy.

Keywords: Artificial neural network, classification, students.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1496
2126 Distributed Denial of Service Attacks in Mobile Adhoc Networks

Authors: Gurjinder Kaur, Yogesh Chaba, V. K. Jain

Abstract:

The aim of this paper is to explore the security issues that significantly affect the performance of Mobile Adhoc Networks (MANET)and limit the services provided to their intended users. The MANETs are more vulnerable to Distributed Denial of Service attacks (DDoS) because of their properties like shared medium, dynamic topologies etc. A DDoS attack is a coordinated attempt made by malicious users to flood the victim network with the large amount of data such that the resources of the victim network are exhausted resulting in the deterioration of the network performance. This paper highlights the effects of different types of DDoS attacks in MANETs and categorizes them according to their behavior.

Keywords: Distributed Denial, Mobile Adhoc Networks

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2434
2125 A Study on Neural Network Training Algorithm for Multiface Detection in Static Images

Authors: Zulhadi Zakaria, Nor Ashidi Mat Isa, Shahrel A. Suandi

Abstract:

This paper reports the study results on neural network training algorithm of numerical optimization techniques multiface detection in static images. The training algorithms involved are scale gradient conjugate backpropagation, conjugate gradient backpropagation with Polak-Riebre updates, conjugate gradient backpropagation with Fletcher-Reeves updates, one secant backpropagation and resilent backpropagation. The final result of each training algorithms for multiface detection application will also be discussed and compared.

Keywords: training algorithm, multiface, static image, neural network

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2570
2124 Network Analysis in a Natural Perturbed Ecosystem

Authors: Nelson F.F. Ebecken, Gilberto C. Pereira

Abstract:

The objective of this work is to explicit knowledge on the interactions between the chlorophyll-a and nine meroplankton larvae of epibenthonic fauna. The studied case is the Arraial do Cabo upwelling system, Southeastern of Brazil, which provides different environmental conditions. To assess this information a network approach based in probability estimative was used. Comparisons among the generated graphs are made in the light of different water masses, application of Shannon biodiversity index, and the closeness and betweenness centralities measurements. Our results show the main pattern among different water masses and how the core organisms belonging to the network skeleton are correlated to the main environmental variable. We conclude that the approach of complex networks is a promising tool for environmental diagnostic.

Keywords: Coastal upwelling, Ecological networks, Plankton - interactions, Environmental analysis.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1635
2123 Comparative Study of Bending Angle in Laser Forming Process Using Artificial Neural Network and Fuzzy Logic System

Authors: M. Hassani, Y. Hassani, N. Ajudanioskooei, N. N. Benvid

Abstract:

Laser Forming process as a non-contact thermal forming process is widely used to forming and bending of metallic and non-metallic sheets. In this process, according to laser irradiation along a specific path, sheet is bent. One of the most important output parameters in laser forming is bending angle that depends on process parameters such as physical and mechanical properties of materials, laser power, laser travel speed and the number of scan passes. In this paper, Artificial Neural Network and Fuzzy Logic System were used to predict of bending angle in laser forming process. Inputs to these models were laser travel speed and laser power. The comparison between artificial neural network and fuzzy logic models with experimental results has been shown both of these models have high ability to prediction of bending angles with minimum errors.

Keywords: Artificial neural network, bending angle, fuzzy logic, laser forming.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 959
2122 Reducing the Short Circuit Levels in Kuwait Transmission Network (A Case Study)

Authors: Mahmoud Gilany, Wael Al-Hasawi

Abstract:

Preliminary studies on Kuwait high voltage transmission system show significant increase in the short circuit level at some of the grid substations and some generating stations. This increase results from the growth in the power transmission systems in size and complexity. New generating stations are expected to be added to the system within the next few years. This paper describes the study analysis performed to evaluate the available and potential solutions to control SC levels in Kuwait power system. It also presents a modified planning of the transmission network in order to fulfill this task.

Keywords: Short circuit current, network splitting, fault current limiter, power transmission planning.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3416
2121 Self-evolving Neural Networks Based On PSO and JPSO Algorithms

Authors: Abdussamad Ismail, Dong-Sheng Jeng

Abstract:

A self-evolution algorithm for optimizing neural networks using a combination of PSO and JPSO is proposed. The algorithm optimizes both the network topology and parameters simultaneously with the aim of achieving desired accuracy with less complicated networks. The performance of the proposed approach is compared with conventional back-propagation networks using several synthetic functions, with better results in the case of the former. The proposed algorithm is also implemented on slope stability problem to estimate the critical factor of safety. Based on the results obtained, the proposed self evolving network produced a better estimate of critical safety factor in comparison to conventional BPN network.

Keywords: Neural networks, Topology evolution, Particle swarm optimization.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1805
2120 Comparing and Combining the Axial with the Network Maps for Analyzing Urban Street Pattern

Authors: Nophaket Napong

Abstract:

Rooted in the study of social functioning of space in architecture, Space Syntax (SS) and the more recent Network Pattern (NP) researches demonstrate the 'spatial structures' of city, i.e. the hierarchical patterns of streets, junctions and alley ends. Applying SS and NP models, planners can conceptualize the real city-s patterns. Although, both models yield the optimal path of the city their underpinning displays of the city-s spatial configuration differ. The Axial Map analyzes the topological non-distance-based connectivity structure, whereas, the Central-Node Map and the Shortcut-Path Map, in contrast, analyze the metrical distance-based structures. This research contrasts and combines them to understand various forms of city-s structures. It concludes that, while they reveal different spatial structures, Space Syntax and Network Pattern urban models support each the other. Combining together they simulate the global access and the locally compact structures namely the central nodes and the shortcuts for the city.

Keywords: Street pattern, space syntax, syntactic and metrical models, network pattern models.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1458
2119 View-Point Insensitive Human Pose Recognition using Neural Network

Authors: Sanghyeok Oh, Yunli Lee, Kwangjin Hong, Kirak Kim, Keechul Jung

Abstract:

This paper proposes view-point insensitive human pose recognition system using neural network. Recognition system consists of silhouette image capturing module, data driven database, and neural network. The advantages of our system are first, it is possible to capture multiple view-point silhouette images of 3D human model automatically. This automatic capture module is helpful to reduce time consuming task of database construction. Second, we develop huge feature database to offer view-point insensitivity at pose recognition. Third, we use neural network to recognize human pose from multiple-view because every pose from each model have similar feature patterns, even though each model has different appearance and view-point. To construct database, we need to create 3D human model using 3D manipulate tools. Contour shape is used to convert silhouette image to feature vector of 12 degree. This extraction task is processed semi-automatically, which benefits in that capturing images and converting to silhouette images from the real capturing environment is needless. We demonstrate the effectiveness of our approach with experiments on virtual environment.

Keywords: Computer vision, neural network, pose recognition, view-point insensitive.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1327
2118 Self-Organizing Map Network for Wheeled Robot Movement Optimization

Authors: Boguslaw Schreyer

Abstract:

The paper investigates the application of the Kohonen’s Self-Organizing Map (SOM) to the wheeled robot starting and braking dynamic states. In securing wheeled robot stability as well as minimum starting and braking time, it is important to ensure correct torque distribution as well as proper slope of braking and driving moments. In this paper, a correct movement distribution has been formulated, securing optimum adhesion coefficient and good transversal stability of a wheeled robot. A neural tuner has been proposed to secure the above properties, although most of the attention is attached to the SOM network application. If the delay of the torque application or torque release is not negligible, it is important to change the rising and falling slopes of the torque. The road/surface condition is also paramount in robot dynamic states control. As the road conditions may randomly change in time, application of the SOM network has been suggested in order to classify the actual road conditions.

Keywords: SOM network, torque distribution, torque slope, wheeled robots.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 589
2117 Ontology-Based Backpropagation Neural Network Classification and Reasoning Strategy for NoSQL and SQL Databases

Authors: Hao-Hsiang Ku, Ching-Ho Chi

Abstract:

Big data applications have become an imperative for many fields. Many researchers have been devoted into increasing correct rates and reducing time complexities. Hence, the study designs and proposes an Ontology-based backpropagation neural network classification and reasoning strategy for NoSQL big data applications, which is called ON4NoSQL. ON4NoSQL is responsible for enhancing the performances of classifications in NoSQL and SQL databases to build up mass behavior models. Mass behavior models are made by MapReduce techniques and Hadoop distributed file system based on Hadoop service platform. The reference engine of ON4NoSQL is the ontology-based backpropagation neural network classification and reasoning strategy. Simulation results indicate that ON4NoSQL can efficiently achieve to construct a high performance environment for data storing, searching, and retrieving.

Keywords: Hadoop, NoSQL, ontology, backpropagation neural network, and high distributed file system.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 998
2116 Throughput Analysis over Power Line Communication Channel in an Electric Noisy Scenario

Authors: Edward P. Guillen, Julián J. López, Cesar Y. Barahona

Abstract:

Powerline Communications –PLC– as an alternative method for broadband networking, has the advantage of transmitting over channels already used for electrical distribution or even transmission. But these channels have been not designed with usual wired channels requirements for broadband applications such as stable impedance or known attenuation, and the network have to reject noises caused by electrical appliances that share the same channel. Noise control standards are difficult to complain or simply do not exist on Latin-American environments. This paper analyzes PLC throughput for home connectivity by probing noisy channel scenarios in a PLC network and the statistical results are shown.

Keywords: Power Line Communications, OFDM, Noise Analysis, Throughput Analysis, PLC, Home Network.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2306
2115 MaxMin Share Based Medium Access for Attaining Fairness and Channel Utilization in Mobile Adhoc Networks

Authors: P. Priakanth, P. Thangaraj

Abstract:

Due to the complex network architecture, the mobile adhoc network-s multihop feature gives additional problems to the users. When the traffic load at each node gets increased, the additional contention due its traffic pattern might cause the nodes which are close to destination to starve the nodes more away from the destination and also the capacity of network is unable to satisfy the total user-s demand which results in an unfairness problem. In this paper, we propose to create an algorithm to compute the optimal MAC-layer bandwidth assigned to each flow in the network. The bottleneck links contention area determines the fair time share which is necessary to calculate the maximum allowed transmission rate used by each flow. To completely utilize the network resources, we compute two optimal rates namely, the maximum fair share and minimum fair share. We use the maximum fair share achieved in order to limit the input rate of those flows which crosses the bottleneck links contention area when the flows that are not allocated to the optimal transmission rate and calculate the following highest fair share. Through simulation results, we show that the proposed protocol achieves improved fair share and throughput with reduced delay.

Keywords: MAC-layer, MANETs, Multihop, optimal rate, Transmission.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1507
2114 Effect of Network Communication Overhead on the Performance of Adaptive Speculative Locking Protocol

Authors: Waqar Haque, Pai Qi

Abstract:

The speculative locking (SL) protocol extends the twophase locking (2PL) protocol to allow for parallelism among conflicting transactions. The adaptive speculative locking (ASL) protocol provided further enhancements and outperformed SL protocols under most conditions. Neither of these protocols consider the impact of network latency on the performance of the distributed database systems. We have studied the performance of ASL protocol taking into account the communication overhead. The results indicate that though system load can counter network latency, it can still become a bottleneck in many situations. The impact of latency on performance depends on many factors including the system resources. A flexible discrete event simulator was used as the testbed for this study.

Keywords: concurrency control, distributed database systems, speculative locking

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1696
2113 On the Use of Correlated Binary Model in Social Network Analysis

Authors: Elsayed A. Habib Elamir

Abstract:

In social network analysis the mean nodal degree and density of the graph can be considered as a measure of the activity of all actors in the network and this is an important property of a graph and for making comparisons among networks. Since subjects in a family or organization are subject to common environment factors, it is prime interest to study the association between responses. Therefore, we study the distribution of the mean nodal degree and density of the graph under correlated binary units. The cross product ratio is used to capture the intra-units association among subjects. Computer program and an application are given to show the benefits of the method.

Keywords: Correlated Binary data, cross product ratio, densityof the graph, multiplicative binomial distribution.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1450
2112 3D Network-on-Chip with on-Chip DRAM: An Empirical Analysis for Future Chip Multiprocessor

Authors: Thomas Canhao Xu, Bo Yang, Alexander Wei Yin, Pasi Liljeberg, Hannu Tenhunen

Abstract:

With the increasing number of on-chip components and the critical requirement for processing power, Chip Multiprocessor (CMP) has gained wide acceptance in both academia and industry during the last decade. However, the conventional bus-based onchip communication schemes suffer from very high communication delay and low scalability in large scale systems. Network-on-Chip (NoC) has been proposed to solve the bottleneck of parallel onchip communications by applying different network topologies which separate the communication phase from the computation phase. Observing that the memory bandwidth of the communication between on-chip components and off-chip memory has become a critical problem even in NoC based systems, in this paper, we propose a novel 3D NoC with on-chip Dynamic Random Access Memory (DRAM) in which different layers are dedicated to different functionalities such as processors, cache or memory. Results show that, by using our proposed architecture, average link utilization has reduced by 10.25% for SPLASH-2 workloads. Our proposed design costs 1.12% less execution cycles than the traditional design on average.

Keywords: 3D integration, network-on-chip, memory-on-chip, DRAM, chip multiprocessor.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2446
2111 Sensor and Actuator Fault Detection in Connected Vehicles under a Packet Dropping Network

Authors: Z. Abdollahi Biron, P. Pisu

Abstract:

Connected vehicles are one of the promising technologies for future Intelligent Transportation Systems (ITS). A connected vehicle system is essentially a set of vehicles communicating through a network to exchange their information with each other and the infrastructure. Although this interconnection of the vehicles can be potentially beneficial in creating an efficient, sustainable, and green transportation system, a set of safety and reliability challenges come out with this technology. The first challenge arises from the information loss due to unreliable communication network which affects the control/management system of the individual vehicles and the overall system. Such scenario may lead to degraded or even unsafe operation which could be potentially catastrophic. Secondly, faulty sensors and actuators can affect the individual vehicle’s safe operation and in turn will create a potentially unsafe node in the vehicular network. Further, sending that faulty sensor information to other vehicles and failure in actuators may significantly affect the safe operation of the overall vehicular network. Therefore, it is of utmost importance to take these issues into consideration while designing the control/management algorithms of the individual vehicles as a part of connected vehicle system. In this paper, we consider a connected vehicle system under Co-operative Adaptive Cruise Control (CACC) and propose a fault diagnosis scheme that deals with these aforementioned challenges. Specifically, the conventional CACC algorithm is modified by adding a Kalman filter-based estimation algorithm to suppress the effect of lost information under unreliable network. Further, a sliding mode observer-based algorithm is used to improve the sensor reliability under faults. The effectiveness of the overall diagnostic scheme is verified via simulation studies.

Keywords: Fault diagnostics, communication network, connected vehicles, packet drop out, platoon.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2000