Search results for: Mixed Green water
2438 Analysis of Three-Dimensional Longitudinal Rolls Induced by Double Diffusive Poiseuille-Rayleigh-Benard Flows in Rectangular Channels
Authors: O. Rahli, N. Mimouni, R. Bennacer, K. Bouhadef
Abstract:
This numerical study investigates the travelling wave’s appearance and the behavior of Poiseuille-Rayleigh-Benard (PRB) flow induced in 3D thermosolutale mixed convection (TSMC) in horizontal rectangular channels. The governing equations are discretized by using a control volume method with third order Quick scheme in approximating the advection terms. Simpler algorithm is used to handle coupling between the momentum and continuity equations. To avoid the excessively high computer time, full approximation storage (FAS) with full multigrid (FMG) method is used to solve the problem. For a broad range of dimensionless controlling parameters, the contribution of this work is to analyzing the flow regimes of the steady longitudinal thermoconvective rolls (noted R//) for both thermal and mass transfer (TSMC). The transition from the opposed volume forces to cooperating ones, considerably affects the birth and the development of the longitudinal rolls. The heat and mass transfers distribution are also examined.Keywords: Heat and mass transfer, mixed convection, Poiseuille-Rayleigh-Benard flow, rectangular duct.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 10912437 Isolation and Identification of an Acetobacter Strain from Iranian White-Red Cherry with High Acetic Acid Productivity as a Potential Strain for Cherry Vinegar Production in Foodand Agriculture Biotechnology
Authors: K. Beheshti Maal, R. Shafiee
Abstract:
According to FDA (Food and Drug Administration of the United States), vinegar is definedas a sour liquid containing at least 4 grams acetic acid in 100 cubic centimeter (4% solution of acetic acid) of solution that is produced from sugary materials by alcoholic fermentation. In the base of microbial starters, vinegars could be contained of more than 50 types of volatile and aromatic substances that responsible for their sweet taste and smelling. Recently the vinegar industry has a great proportion in agriculture, food and microbial biotechnology. The acetic acid bacteria are from the family Acetobacteraceae. Regarding to the latest version of Bergy-s Mannual of Systematic Bacteriology that has categorized bacteria in the base of their 16s RNA differences, the most important acetic acid genera are included Acetobacter (genus I), Gluconacetobacter (genus VIII) and Gluconobacter (genus IX). The genus Acetobacter that is primarily used in vinegar manufacturing plants is a gram negative, obligate aerobe coccus or rod shaped bacterium with the size 0.6 - 0.8 X 1.0 - 4.0 μm, nonmotile or motile with peritrichous flagella and catalase positive – oxidase negative biochemically. Some strains are overoxidizer that could convert acetic acid to carbon dioxide and water.In this research one Acetobacter native strain with high acetic acid productivity was isolated from Iranian white – red cherry. We used two specific culture media include Carr medium [yeast extract, 3%; ethanol, 2% (v/v); bromocresol green, 0.002%; agar, 2% and distilled water, 1000 ml], Frateur medium [yeast extract, 10 g/l; CaCO3, 20 g/l; ethanol, 20 g/l; agar, 20 g/l and distilled water, 1000 ml] and an industrial culture medium. In addition to high acetic acid production and high growth rate, this strain had a good tolerance against ethanol concentration that was examined using modified Carr media with 5%, 7% and 9% ethanol concentrations. While the industrial strains of acetic acid bacteria grow in the thermal range of 28 – 30 °C, this strain was adapted for growth in 34 – 36 °C after 96 hours incubation period. These dramatic characteristics suggest a potential biotechnological strain in production of cherry vinegar with a sweet smell and different nutritional properties in comparison to recent vinegar types. The lack of growth after 24, 48 and 72 hours incubation at 34 – 36 °C and the growth after 96 hours indicates a good and fast thermal flexibility of this strain as a significant characteristic of biotechnological and industrial strains.
Keywords: Acetobacte, acetic acid bacteria, white – red cherry, food and agriculture biotechnology, industrial fermentation, vinegar
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 50352436 Environmental Study on Urban Disinfection Using an On-site Generation System
Authors: Víctor Martínez del Rey, Kourosh Nasr Esfahani, Amir Masoud Samani Majd
Abstract:
In this experimental study, the behaviors of Mixed Oxidant solution components (MOS) and sodium hypochlorite (HYPO) as the most commonly applied surface disinfectant were compared through the effectiveness of chlorine disinfection as a function of the contact time and residual chlorine. In this regard, the variation of pH, free available chlorine (FAC) concentration, and electric conductivity (EC) of disinfection solutions in different concentrations were monitored over 48 h contact time. In parallel, the plant stress activated by chlorine-based disinfectants was assessed by comparing MOS and HYPO. The elements of pH and EC in the plant-soil and their environmental impacts, spread by disinfection solutions were analyzed through several concentrations of FAC including 500 mg/L, 1000 mg/L, and 5000 mg/L in irrigated water. All the experiments were carried out at the service station of Sant Cugat, Spain. The outcomes indicated lower pH and higher durability of MOS than HYPO at the same concentration of FAC which resulted in promising stability of FAC within MOS. Furthermore, the pH and EC value of plant-soil irrigated by NaOCl solution were higher than that of MOS solution at the same FAC concentration. On-site generation of MOS as a safe chlorination option might be considered an imaginary future of smart cities.
Keywords: Disinfection, free available chlorine, on-site generation, sodium hypochlorite.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 5092435 Seasonal Variation of the Impact of Mining Activities on Ga-Selati River in Limpopo Province, South Africa
Authors: Joshua N. Edokpayi, John O. Odiyo, Patience P. Shikwambana
Abstract:
Water is a very rare natural resource in South Africa. Ga-Selati River is used for both domestic and industrial purposes. This study was carried out in order to assess the quality of Ga-Selati River in a mining area of Limpopo Province-Phalaborwa. The pH, Electrical Conductivity (EC) and Total Dissolved Solids (TDS) were determined using a Crinson multimeter while turbidity was measured using a Labcon Turbidimeter. The concentrations of Al, Ca, Cd, Cr, Fe, K, Mg, Mn, Na and Pb were analysed in triplicate using a Varian 520 flame atomic absorption spectrometer (AAS) supplied by PerkinElmer, after acid digestion with nitric acid in a fume cupboard. The average pH of the river from eight different sampling sites was 8.00 and 9.38 in wet and dry season respectively. Higher EC values were determined in the dry season (138.7 mS/m) than in the wet season (96.93 mS/m). Similarly, TDS values were higher in dry (929.29 mg/L) than in the wet season (640.72 mg/L) season. These values exceeded the recommended guideline of South Africa Department of Water Affairs and Forestry (DWAF) for domestic water use (70 mS/m) and that of the World Health Organization (WHO) (600 mS/m), respectively. Turbidity varied between 1.78-5.20 and 0.95-2.37 NTU in both wet and dry seasons. Total hardness of 312.50 mg/L and 297.75 mg/L as the concentration of CaCO3 was computed for the river in both the wet and the dry seasons and the river water was categorised as very hard. Mean concentration of the metals studied in both the wet and the dry seasons are: Na (94.06 mg/L and 196.3 mg/L), K (11.79 mg/L and 13.62 mg/L), Ca (45.60 mg/L and 41.30 mg/L), Mg (48.41 mg/L and 44.71 mg/L), Al (0.31 mg/L and 0.38 mg/L), Cd (0.01 mg/L and 0.01 mg/L), Cr (0.02 mg/L and 0.09 mg/L), Pb (0.05 mg/L and 0.06 mg/L), Mn (0.31 mg/L and 0.11 mg/L) and Fe (0.76 mg/L and 0.69 mg/L). Results from this study reveal that most of the metals were present in concentrations higher than the recommended guidelines of DWAF and WHO for domestic use and the protection of aquatic life.Keywords: Contamination, mining activities, surface water, trace metals.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 19972434 Gypseous Soil Improvement using Fuel Oil
Authors: Hussein Yousif Aziz, Jianlin Ma
Abstract:
This research investigates the suitability of fuel oil in improving gypseous soil. A detailed laboratory tests were carried-out on two soils (soil I with 51.6% gypsum content, and soil II with 26.55%), where the two soils were obtained from Al-Therthar site (Al-Anbar Province-Iraq). This study examines the improvement of soil properties using the gypsum material which is locally available with low cost to minimize the effect of moisture on these soils by using the fuel oil. This study was conducted on two models of the soil gypsum, from the Tharthar area. The first model was sandy soil with Gypsum content of (51.6%) and the second is clayey soil and the content of Gypsum is (26.55%). The program included tests measuring the permeability and compressibility of the soil and their collapse properties. The shear strength of the soil and the amounts of weight loss of fuel oil due to drying had been found. These tests have been conducted on the treated and untreated soils to observe the effect of soil treatment on the engineering properties when mixed with varying degrees of fuel oil with the equivalent of the water content. The results showed that fuel oil is a good material to modify the basic properties of the gypseous soil of collapsibility and permeability, which are the main problems of this soil and retained the soil by an appropriate amount of the cohesion suitable for carrying the loads from the structure.Keywords: Collapsibility, Enhancement of Gypseous Soils, Geotechnical Engineering, Gypseous soil, Shear Strength.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 26472433 Effect of Domestic Treated Wastewater use on Three Varieties of Quinoa (Chenopodium quinoa) under Semi Arid Conditions
Authors: El Youssfi L., Choukr-Allah R., Zaafrani M., Mediouni T., Ba Samba M., Hirich A
Abstract:
The purpose of this work was to study the effect of the irrigation using waste water with various electric conductivities (T(0,92ds/m), EC3 (3ds/m) and EC6 (6ds/m) on three varieties of quinoa cultivated in a field south of Morocco. The follow up of the evolution of the chemical and agronomic parameters throughout the culture made it possible to determine the responses to the saline stress in arid conditions. Results showed that the salinity caused the depression of plant-s height, and reduced the fresh and dry weight in the different parts of the three varieties plants. The increase of the irrigation water EC didn-t affect the yield for the varieties. Thus, quinoa resisted to salinity and proved a behavior of a facultative halophyte crop. In fact, the cultivation of this using treated wastewater is feasible especially in arid areas for a sustainable use of water resources.Keywords: Quinoa, salinity, semi-arid, treated wastewater.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 19152432 Studies on Seasonal Variations of Physico- Chemical Parameters of Fish Farm at Govt. Nursery Unit, Muzaffargarh, Punjab, Pakistan
Authors: Muhammad Naeem, Abdus Salam, Muhammad Ashraf, Muhammad Imran, Mehtab Ahmad, Muhammad Jamshed Khan, Muhammad Mazhar Ayaz, Muzaffar Ali, Arshad Ali, Memoona Qayyum Abir Ishtiaq
Abstract:
The present study was designed to demonstrate the seasonal variations in physico-chemical parameters of fish farm at Govt. Nursery Unit, Muzaffargarh, Department of Fisheries Govt. of Punjab, Pakistan for a period of eight months from January to August 2008. Water samples were collected on fifteen days basis and have been analyzed for estimation of Air temperature, Water temperature, Light penetration, pH, Total dissolved oxygen, Clouds, Carbonates, Bicarbonates, Total carbonates, Total dissolved solids, Chlorides, Calcium and Hardness. Seasonal fluctuations were observed in all the physico-chemical parameters of fish farm. The overall physicochemical parameters of fish pond water remained within the tolerable range throughout the study period.
Keywords: Freshwater, Fish farm, Water quality, Seasonal variation, Chemical factor
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 21852431 Mechanical and Chemical Reliability Assessment of Silica Optical Fibres
Authors: Irina Severin, M. Caramihai, K. Chung, G. Tasca, T. Park
Abstract:
The current study has investigated the ageing phenomena of silica optical fibres in relation to water activity which might be accelerated when exposed to a supplementary energy, such as microwaves. A controlled stress by winding fibres onto accurate diameter mandrel was applied. Taking into account that normally a decrease in fibre strength is induced in time by chemical action of water, the effects of cumulative reagents such as: water, applied stress and supplementary energy (microwave) in some cases acted in the opposite manner. The microwave effect as a structural relaxation catalyst appears unexpected, even if the overall gain in fibre strength is not high, but the stress corrosion factor revealed significant increase in certain simulation conditions.Keywords: optical fibres, mechanical testing, aging, microwave, structural relaxation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16342430 Radon Concentration in the Water Samples of Hassan District, Karnataka, India
Authors: T. S. Shashikumar
Abstract:
Radon is a radioactive gas emitted from radium, a daughter product of uranium that occurs naturally in rocks and soil. Radon, together with its decay products, emits alpha particles that can damage lung tissue. The activity concentration of 222Ra has been analyzed in water samples collected from borewells and rivers in and around Hassan city, Karnataka State, India. The measurements were performed by Emanometry technique. The concentration of 222Rn in borewell waters varies from 18.49±1.89 to 397.26±12.3 Bql-1 with geometric mean 120.48±12.87 Bql-1 and in river waters it varies from 92.63±9.31 to 93.98±9.51 Bql-1 with geometric mean of 93.16±9.33 Bql-1. In the present study, the radon concentrations are higher in Adarshanagar and Viveka Nagar which are found to be 397.26±12.3 Bql-1 and 325.78±32.56 Bql-1. Most of the analysed samples show a 222Rn concentration more than 100 Bql-1 and this can be attributed to the geology of the area where the ground waters are located, which is predominantly of granitic characteristic. The average inhalation dose and ingestion dose in the borewell water are found to be 0.405 and 0.033 µSvy-1; and in river water it is found to be 0.234 and 0.019 µSvy-1, respectively. The average total effective dose rate in borewell waters and river waters are found to be 0.433 and 0.253 µSvy-1, which does not cause any health risk to the population of Hassan region.
Keywords: Borewell, effective dose, emanometry, 222Rn.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15172429 Wind Energy Development in the African Great Lakes Region to Supplement the Hydroelectricity in the Locality: A Case Study from Tanzania
Authors: R.M. Kainkwa
Abstract:
The African Great Lakes Region refers to the zone around lakes Victoria, Tanganyika, Albert, Edward, Kivu, and Malawi. The main source of electricity in this region is hydropower whose systems are generally characterized by relatively weak, isolated power schemes, poor maintenance and technical deficiencies with limited electricity infrastructures. Most of the hydro sources are rain fed, and as such there is normally a deficiency of water during the dry seasons and extended droughts. In such calamities fossil fuels sources, in particular petroleum products and natural gas, are normally used to rescue the situation but apart from them being nonrenewable, they also release huge amount of green house gases to our environment which in turn accelerates the global warming that has at present reached an amazing stage. Wind power is ample, renewable, widely distributed, clean, and free energy source that does not consume or pollute water. Wind generated electricity is one of the most practical and commercially viable option for grid quality and utility scale electricity production. However, the main shortcoming associated with electric wind power generation is fluctuation in its output both in space and time. Before making a decision to establish a wind park at a site, the wind speed features there should therefore be known thoroughly as well as local demand or transmission capacity. The main objective of this paper is to utilise monthly average wind speed data collected from one prospective site within the African Great Lakes Region to demonstrate that the available wind power there is high enough to generate electricity. The mean monthly values were calculated from records gathered on hourly basis for a period of 5 years (2001 to 2005) from a site in Tanzania. The documentations that were collected at a height of 2 m were projected to a height of 50 m which is the standard hub height of wind turbines. The overall monthly average wind speed was found to be 12.11 m/s whereas June to November was established to be the windy season as the wind speed during the session is above the overall monthly wind speed. The available wind power density corresponding to the overall mean monthly wind speed was evaluated to be 1072 W/m2, a potential that is worthwhile harvesting for the purpose of electric generation.Keywords: Hydro power, windy season, available wind powerdensity.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16382428 Liquid-Liquid Equilibria for Ternary Mixtures of (Water + Carboxylic Acid+ MIBK), Experimental, Simulation, and Optimization
Authors: D. Laiadi, A. Hasseine, A. Merzougui
Abstract:
In this work, Experimental tie-line results and solubility (binodal) curves were obtained for the ternary systems (water + acetic acid + methyl isobutyl ketone (MIBK)), (water + lactic acid+ methyl isobutyl ketone) at T = 294.15K and atmospheric pressure. The consistency of the values of the experimental tie-lines was determined through the Othmer-Tobias and Hands correlations. For the extraction effectiveness of solvents, the distribution and selectivity curves were plotted. In addition, these experimental tieline data were also correlated with NRTL model. The interaction parameters for the NRTL model were retrieved from the obtained experimental results by means of a combination of the homotopy method and the genetic algorithms.Keywords: Liquid-liquid equilibria, homotopy methods, carboxylic acid, NRTL.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 56312427 Mechanical and Hydric Properties of High- Performance Concrete Containing Natural Zeolites
Authors: E. Vejmelková, M. Ondráček, R. Černý
Abstract:
Mechanical and water transport properties of high performance concrete (HPC) containing natural zeolite as partial replacement of Portland cement are studied. Experimental results show that in the investigated mixes the use of natural zeolite leads to an increase of porosity, decrease of compressive strength and increase of moisture diffusivity and water vapor diffusion coefficient, as compared with the reference HPC. However, for the replacement level up to 20% of the mass of Portland cement the concretes still maintain their high performance character and exhibit acceptable water transport properties. Therefore, natural zeolite can be considered an environmental friendly binder with a potential to replace a part of Portland cement in concrete in building industry.Keywords: Natural zeolites, high-performance concrete; hydric properties, mechanical properties
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 19222426 Influence of Watertable Depth on Soil Sodicity and Salinity
Authors: F.A. Chandio-A.G. Soomro, A.H. Memon, M.A.Talpur
Abstract:
In order to monitor the water table depth on soil profile salinity buildup, a field study was carried out during 2006-07. Wheat (Rabi) and Sorghum (Kharif) fodder were sown in with three treatments. The results showed that watertable depth lowered from 1.15m to 2.89 m depth at the end of experiment. With lower of watertable depth, pH, ECe and SAR decreased under crops both without and with gypsum and increased in fallowing. Soil moisture depletion was directly proportional to lowering of watertable. With the application of irrigation water (58cm) pH, ECe and SAR were reduced in cropped plots, reduction was higher in gypsum applied plots than non-gypsum plots. In case of fallowing, there was increase in pH, EC, while slight reduction occurred in SAR values. However, soil salinity showed an increasing upward trend under fallowing and its value in 0-30 cm soil layer was the highest amongst the treatments.Keywords: Aquifer, Soil Salinity, Soil sodicity, Water table
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 17912425 Variability of Hydrological Modeling of the Blue Nile
Authors: Abeer Samy, Oliver C. Saavedra Valeriano, Abdelazim Negm
Abstract:
The Blue Nile Basin is the most important tributary of the Nile River. Egypt and Sudan are almost dependent on water originated from the Blue Nile. This multi-dependency creates conflicts among the three countries Egypt, Sudan, and Ethiopia making the management of these conflicts as an international issue. Good assessment of the water resources of the Blue Nile is an important to help in managing such conflicts. Hydrological models are good tool for such assessment. This paper presents a critical review of the nature and variability of the climate and hydrology of the Blue Nile Basin as a first step of using hydrological modeling to assess the water resources of the Blue Nile. Many several attempts are done to develop basin-scale hydrological modeling on the Blue Nile. Lumped and semi distributed models used averages of meteorological inputs and watershed characteristics in hydrological simulation, to analyze runoff for flood control and water resource management. Distributed models include the temporal and spatial variability of catchment conditions and meteorological inputs to allow better representation of the hydrological process. The main challenge of all used models was to assess the water resources of the basin is the shortage of the data needed for models calibration and validation. It is recommended to use distributed model for their higher accuracy to cope with the great variability and complexity of the Blue Nile basin and to collect sufficient data to have more sophisticated and accurate hydrological modeling.
Keywords: Blue Nile Basin, Climate Change, Hydrological Modeling, Watershed.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 30792424 Development of 3D Coordinates and Damaged Point Detection System for Ducts using IMU
Authors: Ki-Tae Park, Young-Joon Yu, Chin-Hyung Lee, Woosang Lee
Abstract:
Recently, as the scale of construction projects has increases, more ground excavation for foundations is carried out than ever before. Consequently, damage to underground ducts (gas, water/sewage or oil pipelines, communication cables or power cable ducts) or superannuated pipelines frequently cause serious accidents resulting in damage to life and property. (In Korea, the total length of city water pipelines was approximately 2,000 km as of the end of 2009.) In addition, large amounts of damage caused by fractures, water and gas leakage caused by superannuation or damage to underground ducts in construction has been reported. Therefore, a system is required to precisely detect defects and deterioration in underground pipelines and the locations of such defects, for timely and accurate maintenance or replacement of the ducts. In this study, a system was developed which can locate underground structures (gas and water pipelines, power cable ducts, etc.) in 3D-coordinates and monitor the degree and position of defects using an Inertial Measurement Unit (IMU) sensing technique. The system can prevent damage to underground ducts and superannuated pipelines during construction, and provide reliable data for maintenance. The utility of the IMU sensing technique used in aircraft and ships in civil applications was verified.Keywords: IMU, Pipelines, 3D-Coordinate, monitor.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 18632423 Experimental Study of Discharge with Sharp-Crested Weirs
Authors: E. Keramaris, V. Kanakoudis
Abstract:
In this study the water flow in an open channel over a sharp-crested weir is investigated experimentally. For this reason a series of laboratory experiments were performed in an open channel with a sharp-crested weir. The maximum head expected over the weir, the total upstream water height and the downstream water height of the impact in the constant bed of the open channel were measured. The discharge was measured using a tank put right after the open channel. In addition, the discharge and the upstream velocity were also calculated using already known equations. The main finding is that the relative error percentage for the majority of the experimental measurements is ± 4%, meaning that the calculation of the discharge with a sharp-crested weir gives very good results compared to the numerical results from known equations.
Keywords: Sharp-crested weir, weir height, flow measurement, open channel flow.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 6912422 Evaluation of the Performance of ACTIFLO® Clarifier in the Treatment of Mining Wastewaters: Case Study of Costerfield Mining Operations, Victoria, Australia
Authors: Seyed Mohsen Samaei, Shirley Gato-Trinidad
Abstract:
A pre-treatment stage prior to reverse osmosis (RO) is very important to ensure the long-term performance of the RO membranes in any wastewater treatment using RO. This study aims to evaluate the application of the Actiflo® clarifier as part of a pre-treatment unit in mining operations. It involves performing analytical testing on RO feed water before and after installation of Actiflo® unit. Water samples prior to RO plant stage were obtained on different dates from Costerfield mining operations in Victoria, Australia. Tests were conducted in an independent laboratory to determine the concentration of various compounds in RO feed water before and after installation of Actiflo® unit during the entire evaluated period from December 2015 to June 2018. Water quality analysis shows that the quality of RO feed water has remarkably improved since installation of Actiflo® clarifier. Suspended solids (SS) and turbidity removal efficiencies has been improved by 91 and 85 percent respectively in pre-treatment system since the installation of Actiflo®. The Actiflo® clarifier proved to be a valuable part of pre-treatment system prior to RO. It has the potential to conveniently condition the mining wastewater prior to RO unit, and reduce the risk of RO physical failure and irreversible fouling. Consequently, reliable and durable operation of RO unit with minimum requirement for RO membrane replacement is expected with Actiflo® in use.
Keywords: Actiflo® clarifier, membrane, mining wastewater, reverse osmosis, wastewater treatment.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 12112421 Monthly River Flow Prediction Using a Nonlinear Prediction Method
Authors: N. H. Adenan, M. S. M. Noorani
Abstract:
River flow prediction is an essential tool to ensure proper management of water resources and the optimal distribution of water to consumers. This study presents an analysis and prediction by using nonlinear prediction method with monthly river flow data for Tanjung Tualang from 1976 to 2006. Nonlinear prediction method involves the reconstruction of phase space and local linear approximation approach. The reconstruction of phase space involves the reconstruction of one-dimension (the observed 287 months of data) in a multidimensional phase space to reveal the dynamics of the system. The revenue of phase space reconstruction is used to predict the next 72 months. A comparison of prediction performance based on correlation coefficient (CC) and root mean square error (RMSE) was employed to compare prediction performance for the nonlinear prediction method, ARIMA and SVM. Prediction performance comparisons show that the prediction results using the nonlinear prediction method are better than ARIMA and SVM. Therefore, the results of this study could be used to develop an efficient water management system to optimize the allocation of water resources.
Keywords: River flow, nonlinear prediction method, phase space, local linear approximation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 19682420 A Review of Genetic Algorithm Optimization: Operations and Applications to Water Pipeline Systems
Authors: I. Abuiziah, N. Shakarneh
Abstract:
Genetic Algorithm (GA) is a powerful technique for solving optimization problems. It follows the idea of survival of the fittest - Better and better solutions evolve from previous generations until a near optimal solution is obtained. GA uses the main three operations, the selection, crossover and mutation to produce new generations from the old ones. GA has been widely used to solve optimization problems in many applications such as traveling salesman problem, airport traffic control, information retrieval (IR), reactive power optimization, job shop scheduling, and hydraulics systems such as water pipeline systems. In water pipeline systems we need to achieve some goals optimally such as minimum cost of construction, minimum length of pipes and diameters, and the place of protection devices. GA shows high performance over the other optimization techniques, moreover, it is easy to implement and use. Also, it searches a limited number of solutions.
Keywords: Genetic Algorithm, optimization, pipeline systems, selection, cross over.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 51122419 A Multi-Feature Deep Learning Algorithm for Urban Traffic Classification with Limited Labeled Data
Authors: Rohan Putatunda, Aryya Gangopadhyay
Abstract:
Acoustic sensors, if embedded in smart street lights, can help in capturing the activities (car honking, sirens, events, traffic, etc.) in cities. Needless to say, the acoustic data from such scenarios are complex due to multiple audio streams originating from different events, and when decomposed to independent signals, the amount of retrieved data volume is small in quantity which is inadequate to train deep neural networks. So, in this paper, we address the two challenges: a) separating the mixed signals, and b) developing an efficient acoustic classifier under data paucity. So, to address these challenges, we propose an architecture with supervised deep learning, where the initial captured mixed acoustics data are analyzed with Fast Fourier Transformation (FFT), followed by filtering the noise from the signal, and then decomposed to independent signals by fast independent component analysis (Fast ICA). To address the challenge of data paucity, we propose a multi feature-based deep neural network with high performance that is reflected in our experiments when compared to the conventional convolutional neural network (CNN) and multi-layer perceptron (MLP).
Keywords: FFT, ICA, vehicle classification, multi-feature DNN, CNN, MLP.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 4392418 Formation of Byproducts during Regeneration of Various Graphitic Adsorbents in a Batch Electrochemical Reactor
Authors: S. N. Hussain, H. M. A. Asghar, H. Sattar, N. W. Brown, E. P. L. Roberts
Abstract:
A water treatment technology employing the adsorption of dissolved organic contaminants from water and their electrochemical regeneration has been commercialized by Arvia Technology Ltd, UK. This technology focuses the adsorption of pollutants onto the surface of low surface area graphite based adsorbents followed by the anodic oxidation of adsorbed species in an electrochemical cell. However, some of the adsorbed species may lead to the formation of intermediate breakdown products due to incomplete oxidation. The information regarding the formation of breakdown products during electrochemical regeneration of these adsorbents is important for the effective application of this process to water treatment. In the present paper, the formation of the break down products during electrochemical regeneration of various graphite based adsorbents has been demonstrated.
Keywords: Arvia®, Adsorption, Electrochemical Regeneration, Breakdown products.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 18162417 Investigation of the Effect of Impulse Voltage to Flashover by Using Water Jet
Authors: Harun Gülan, Muhsin Tunay Gencoglu, Mehmet Cebeci
Abstract:
The main function of the insulators used in high voltage (HV) transmission lines is to insulate the energized conductor from the pole and hence from the ground. However, when the insulators fail to perform this insulation function due to various effects, failures occur. The deterioration of the insulation results either from breakdown or surface flashover. The surface flashover is caused by the layer of pollution that forms conductivity on the surface of the insulator, such as salt, carbonaceous compounds, rain, moisture, fog, dew, industrial pollution and desert dust. The source of the majority of failures and interruptions in HV lines is surface flashover. This threatens the continuity of supply and causes significant economic losses. Pollution flashover in HV insulators is still a serious problem that has not been fully resolved. In this study, a water jet test system has been established in order to investigate the behavior of insulators under dirty conditions and to determine their flashover performance. Flashover behavior of the insulators is examined by applying impulse voltages in the test system. This study aims to investigate the insulator behaviour under high impulse voltages. For this purpose, a water jet test system was installed and experimental results were obtained over a real system and analyzed. By using the water jet test system instead of the actual insulator, the damage to the insulator as a result of the flashover that would occur under impulse voltage was prevented. The results of the test system performed an important role in determining the insulator behavior and provided predictability.
Keywords: Insulator, pollution flashover, high impulse voltage, water jet model.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 12582416 Entropy Generation Analysis of Heat Recovery Vapor Generator for Ammonia-Water Mixture
Authors: Chul Ho Han, Kyoung Hoon Kim
Abstract:
This paper carries out a performance analysis based on the first and second laws of thermodynamics for heat recovery vapor generator (HRVG) of ammonia-water mixture when the heat source is low-temperature energy in the form of sensible heat. In the analysis, effects of the ammonia mass concentration and mass flow ratio of the binary mixture are investigated on the system performance including the effectiveness of heat transfer, entropy generation, and exergy efficiency. The results show that the ammonia concentration and the mass flow ratio of the mixture have significant effects on the system performance of HRVG.
Keywords: Entropy, exergy, ammonia-water mixture, heat exchanger.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 20882415 Multi-Robotic Partial Disassembly Line Balancing with Robotic Efficiency Difference via HNSGA-II
Authors: Tao Yin, Zeqiang Zhang, Wei Liang, Yanqing Zeng, Yu Zhang
Abstract:
To accelerate the remanufacturing process of electronic waste products, this study designs a partial disassembly line with the multi-robotic station to effectively dispose of excessive wastes. The multi-robotic partial disassembly line is a technical upgrade to the existing manual disassembly line. Balancing optimization can make the disassembly line smoother and more efficient. For partial disassembly line balancing with the multi-robotic station (PDLBMRS), a mixed-integer programming model (MIPM) considering the robotic efficiency differences is established to minimize cycle time, energy consumption and hazard index and to calculate their optimal global values. Besides, an enhanced NSGA-II algorithm (HNSGA-II) is proposed to optimize PDLBMRS efficiently. Finally, MIPM and HNSGA-II are applied to an actual mixed disassembly case of two types of computers, the comparison of the results solved by GUROBI and HNSGA-II verifies the correctness of the model and excellent performance of the algorithm, and the obtained Pareto solution set provides multiple options for decision-makers.
Keywords: Waste disposal, disassembly line balancing, multi-robot station, robotic efficiency difference, HNSGA-II.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 5572414 Alexandria’s Eastern Entrance: Analysis of Qaitbay Waterfront Development
Authors: Riham A. Ragheb
Abstract:
Water is a fundamental attraction in all cultures and among all classes of people,tourists and citizens. It is a favorite location for major tourism initiatives, celebrations and ceremonies. The vitality of any city depends on citizen action to take part in creating the neighborhoods they desire. Waterfront can provide extensive new areas of high quality public open space in parts of the city that are popular venues for social activities and also have the highest land values. Each city must have a character that can be used as a key attraction for the development. The morphology of a waterfront can be identified by both its physical characteristics and the socio-cultural activities that take place in the area. Alexandria has been selected as an area of study because it has a unique character due to its possession of a variety of waterfronts.
This paper aims to set some criteria of successful waterfront development and then through these criteria analyzing the development of the Qaitbay waterfront in the eastern harbor in Alexandria, Egypt. Hence, a comprehensive improvement of the waterfront areas is certainly needed to ensure a successful waterfront development radiated the sense of uniformity and coherence.
Alexandria can benefit from these criteria to develop its urban waterfront in order to preserve and revitalize its unique waterfront character and achieve mixed uses and tourism development.
Keywords: Place making, Qaitbay, responsive environment, sustainable urban design, waterfront development.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 32012413 Conceptual Design and Characterization of Contractile Water Jet Thruster Using IPMC Actuator
Authors: Muhammad Farid Shaari, Zahurin Samad
Abstract:
This paper presents the design, development and characterization of contractile water jet thruster (CWJT) for mini underwater robot. Instead of electric motor, this CWJT utilizes the Ionic Polymer Metal Composite (IPMC) as the actuator to generate the water jet. The main focus of this paper is to analyze the conceptual design of the proposed CWJT which would determine the thrust force value, jet flow behavior and actuator’s stress. Those thrust force and jet flow studies were carried out using Matlab/Simscape simulation software. The actuator stress had been analyzed using COSMOS simulation software. The results showed that there was no significant change for jet velocity at variable cross sectional nozzle area. However, a significant change was detected for jet velocity at different nozzle cross sectional area ratio which was up to 37%. The generated thrust force has proportional relation to the nozzle cross sectional area.
Keywords: Contractile water jet thruster, IPMC actuator, Thrust force.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 22332412 Annual Changes in Some Qualitative Parameters of Groundwater in Shirvan Plain North East of Iran
Authors: Hadi Ghorbani, Samira Mohammadi Sadabad
Abstract:
Shirvan is located in plain in Northern Khorasan province north east of Iran and has semiarid to temperate climate. To investigate the annual changes in some qualitative parameters such as electrical conductivity, total dissolved solids and chloride concentrations which have increased during ten continuous years. Fourteen groundwater sources including deep as well as semi-deep wells were sampled and were analyzed using standard methods. The trends of obtained data were analyzed during these years and the effects of different factors on the changes in electrical conductivity, concentration of chloride and total dissolved solids were clarified. The results showed that the amounts of some qualitative parameters have been increased during 10 years time which has led to decrease in water quality. The results also showed that increased in urban populations as well as extensive industrialization in the studied area are the most important reasons to influence underground water quality. Furthermore decrease in water quantity is also evident due to more water utilization and occurrence of recent droughts in the region during recent years.
Keywords: Chloride, Electrical Conductivity, Shirvan, Total Dissolved Solids.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 13662411 Decontamination of Chromium Containing Ground Water by Adsorption Using Chemically Modified Activated Carbon Fabric
Authors: J. R. Mudakavi, K. Puttanna
Abstract:
Chromium in the environment is considered as one of the most toxic elements probably next only to mercury and arsenic. It is acutely toxic, mutagenic and carcinogenic in the environment. Chromium contamination of soil and underground water due to industrial activities is a very serious problem in several parts of India covering Karnataka, Tamil Nadu, Andhra Pradesh etc. Functionally modified Activated Carbon Fabrics (ACF) offer targeted chromium removal from drinking water and industrial effluents. Activated carbon fabric is a light weight adsorbing material with high surface area and low resistance to fluid flow. We have investigated surface modification of ACF using various acids in the laboratory through batch as well as through continuous flow column experiments with a view to develop the optimum conditions for chromium removal. Among the various acids investigated, phosphoric acid modified ACF gave best results with a removal efficiency of 95% under optimum conditions. Optimum pH was around 2 – 4 with 2 hours contact time. Continuous column experiments with an effective bed contact time (EBCT) of 5 minutes indicated that breakthrough occurred after 300 bed volumes. Adsorption data followed a Freundlich isotherm pattern. Nickel adsorbs preferentially and sulphate reduces chromium adsorption by 50%. The ACF could be regenerated up to 52.3% using 3 M NaOH under optimal conditions. The process is simple, economical, energy efficient and applicable to industrial effluents and drinking water.
Keywords: Activated carbon fabric, adsorption, drinking water, hexavalent chromium.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 10512410 Treatment of Recycled Concrete Aggregates by Si-Based Polymers
Authors: V. Spaeth, A. Djerbi-Tegguer
Abstract:
The recycling of concrete, bricks and masonry rubble as concrete aggregates is an important way to contribute to a sustainable material flow. However, there are still various uncertainties limiting the widespread use of Recycled Concrete Aggregates (RCA). The fluctuations in the composition of grade recycled aggregates and their influence on the properties of fresh and hardened concrete are of particular concern regarding the use of RCA. Most of problems occurring while using recycled concrete aggregates as aggregates are due to higher porosity and hence higher water absorption, lower mechanical strengths, residual impurities on the surface of the RCA forming weaker bond between cement paste and aggregate. So, the reuse of RCA is still limited. Efficient polymer based treatment is proposed in order to reuse RCA easier. The silicon-based polymer treatments of RCA were carried out and were compared. This kind of treatment can improve the properties of RCA such as the rate of water absorption on treated RCA is significantly reduced.Keywords: Recycled concrete aggregates, water absorption, silicon-based agent and polymer.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 28162409 Multi-Agent System for Irrigation Using Fuzzy Logic Algorithm and Open Platform Communication Data Access
Authors: T. Wanyama, B. Far
Abstract:
Automatic irrigation systems usually conveniently protect landscape investment. While conventional irrigation systems are known to be inefficient, automated ones have the potential to optimize water usage. In fact, there is a new generation of irrigation systems that are smart in the sense that they monitor the weather, soil conditions, evaporation and plant water use, and automatically adjust the irrigation schedule. In this paper, we present an agent based smart irrigation system. The agents are built using a mix of commercial off the shelf software, including MATLAB, Microsoft Excel and KEPServer Ex5 OPC server, and custom written code. The Irrigation Scheduler Agent uses fuzzy logic to integrate the information that affect the irrigation schedule. In addition, the Multi-Agent system uses Open Platform Connectivity (OPC) technology to share data. OPC technology enables the Irrigation Scheduler Agent to communicate over the Internet, making the system scalable to a municipal or regional agent based water monitoring, management, and optimization system. Finally, this paper presents simulation and pilot installation test result that show the operational effectiveness of our system.
Keywords: Community water usage, fuzzy logic, irrigation, multi-agent system.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1344