Search results for: Event detection
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 1807

Search results for: Event detection

847 Non-Revenue Water Management in Palestine

Authors: Samah Jawad Jabari

Abstract:

Water is the most important and valuable resource not only for human life but also for all living things on the planet. The water supply utilities should fulfill the water requirement quantitatively and qualitatively. Drinking water systems are exposed to both natural (hurricanes and flood) and manmade hazards (risks) that are common in Palestine. Non-Revenue Water (NRW) is a manmade risk which remains a major concern in Palestine, as the NRW levels are estimated to be at a high level. In this research, Hebron city water distribution network was taken as a case study to estimate and audit the NRW levels. The research also investigated the state of the existing water distribution system in the study area by investigating the water losses and obtained more information on NRW prevention and management practices. Data and information have been collected from the Palestinian Water Authority (PWA) and Hebron Municipality (HM) archive. In addition to that, a questionnaire has been designed and administered by the researcher in order to collect the necessary data for water auditing. The questionnaire also assessed the views of stakeholder in PWA and HM (staff) on the current status of the NRW in the Hebron water distribution system. The important result obtained by this research shows that NRW in Hebron city was high and in excess of 30%. The main factors that contribute to NRW were the inaccuracies in billing volumes, unauthorized consumption, and the method of estimating consumptions through faulty meters. Policy for NRW reduction is available in Palestine; however, it is clear that the number of qualified staff available to carry out the activities related to leak detection is low, and that there is a lack of appropriate technologies to reduce water losses and undertake sufficient system maintenance, which needs to be improved to enhance the performance of the network and decrease the level of NRW losses.

Keywords: Non-revenue water, water auditing, leak detection, water meters.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1105
846 Machine Learning Techniques for COVID-19 Detection: A Comparative Analysis

Authors: Abeer Aljohani

Abstract:

The COVID-19 virus spread has been one of the extreme pandemics across the globe. It is also referred as corona virus which is a contagious disease that continuously mutates into numerous variants. Currently, the B.1.1.529 variant labeled as Omicron is detected in South Africa. The huge spread of COVID-19 disease has affected several lives and has surged exceptional pressure on the healthcare systems worldwide. Also, everyday life and the global economy have been at stake. Numerous COVID-19 cases have produced a huge burden on hospitals as well as health workers. To reduce this burden, this paper predicts COVID-19 disease based on the symptoms and medical history of the patient. As machine learning is a widely accepted area and gives promising results for healthcare, this research presents an architecture for COVID-19 detection using ML techniques integrated with feature dimensionality reduction. This paper uses a standard University of California Irvine (UCI) dataset for predicting COVID-19 disease. This dataset comprises symptoms of 5434 patients. This paper also compares several supervised ML techniques on the presented architecture. The architecture has also utilized 10-fold cross validation process for generalization and Principal Component Analysis (PCA) technique for feature reduction. Standard parameters are used to evaluate the proposed architecture including F1-Score, precision, accuracy, recall, Receiver Operating Characteristic (ROC) and Area under Curve (AUC). The results depict that Decision tree, Random Forest and neural networks outperform all other state-of-the-art ML techniques. This result can be used to effectively identify COVID-19 infection cases.

Keywords: Supervised machine learning, COVID-19 prediction, healthcare analytics, Random Forest, Neural Network.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 384
845 Adaptive Hierarchical Key Structure Generation for Key Management in Wireless Sensor Networks using A*

Authors: Jin Myoung Kim, Tae Ho Cho

Abstract:

Wireless Sensor networks have a wide spectrum of civil and military applications that call for secure communication such as the terrorist tracking, target surveillance in hostile environments. For the secure communication in these application areas, we propose a method for generating a hierarchical key structure for the efficient group key management. In this paper, we apply A* algorithm in generating a hierarchical key structure by considering the history data of the ratio of addition and eviction of sensor nodes in a location where sensor nodes are deployed. Thus generated key tree structure provides an efficient way of managing the group key in terms of energy consumption when addition and eviction event occurs. A* algorithm tries to minimize the number of messages needed for group key management by the history data. The experimentation with the tree shows efficiency of the proposed method.

Keywords: Heuristic search, key management, security, sensor network.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1684
844 Trend Analysis of Annual Total Precipitation Data in Konya

Authors: Naci Büyükkaracığan

Abstract:

Hydroclimatic observation values ​​are used in the planning of the project of water resources. Climate variables are the first of the values ​​used in planning projects. At the same time, the climate system is a complex and interactive system involving the atmosphere, land surfaces, snow and bubbles, the oceans and other water structures. The amount and distribution of precipitation, which is an important climate parameter, is a limiting environmental factor for dispersed living things. Trend analysis is applied to the detection of the presence of a pattern or trend in the data set. Many trends work in different parts of the world are usually made for the determination of climate change. The detection and attribution of past trends and variability in climatic variables is essential for explaining potential future alteration resulting from anthropogenic activities. Parametric and non-parametric tests are used for determining the trends in climatic variables. In this study, trend tests were applied to annual total precipitation data obtained in period of 1972 and 2012, in the Konya Basin. Non-parametric trend tests, (Sen’s T, Spearman’s Rho, Mann-Kendal, Sen’s T trend, Wald-Wolfowitz) and parametric test (mean square) were applied to annual total precipitations of 15 stations for trend analysis. The linear slopes (change per unit time) of trends are calculated by using a non-parametric estimator developed by Sen. The beginning of trends is determined by using the Mann-Kendall rank correlation test. In addition, homogeneities in precipitation trends are tested by using a method developed by Van Belle and Hughes. As a result of tests, negative linear slopes were found in annual total precipitations in Konya.

Keywords: Trend analysis, precipitation, hydroclimatology, Konya, Turkey.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1008
843 Synthesis of Highly Sensitive Molecular Imprinted Sensor for Selective Determination of Doxycycline in Honey Samples

Authors: Nadia El Alami El Hassani, Soukaina Motia, Benachir Bouchikhi, Nezha El Bari

Abstract:

Doxycycline (DXy) is a cycline antibiotic, most frequently prescribed to treat bacterial infections in veterinary medicine. However, its broad antimicrobial activity and low cost, lead to an intensive use, which can seriously affect human health. Therefore, its spread in the food products has to be monitored. The scope of this work was to synthetize a sensitive and very selective molecularly imprinted polymer (MIP) for DXy detection in honey samples. Firstly, the synthesis of this biosensor was performed by casting a layer of carboxylate polyvinyl chloride (PVC-COOH) on the working surface of a gold screen-printed electrode (Au-SPE) in order to bind covalently the analyte under mild conditions. Secondly, DXy as a template molecule was bounded to the activated carboxylic groups, and the formation of MIP was performed by a biocompatible polymer by the mean of polyacrylamide matrix. Then, DXy was detected by measurements of differential pulse voltammetry (DPV). A non-imprinted polymer (NIP) prepared in the same conditions and without the use of template molecule was also performed. We have noticed that the elaborated biosensor exhibits a high sensitivity and a linear behavior between the regenerated current and the logarithmic concentrations of DXy from 0.1 pg.mL−1 to 1000 pg.mL−1. This technic was successfully applied to determine DXy residues in honey samples with a limit of detection (LOD) of 0.1 pg.mL−1 and an excellent selectivity when compared to the results of oxytetracycline (OXy) as analogous interfering compound. The proposed method is cheap, sensitive, selective, simple, and is applied successfully to detect DXy in honey with the recoveries of 87% and 95%. Considering these advantages, this system provides a further perspective for food quality control in industrial fields.

Keywords: Electrochemical sensor, molecular imprinted polymer, doxycycline, food control.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1174
842 High Sensitivity Crack Detection and Locating with Optimized Spatial Wavelet Analysis

Authors: A. Ghanbari Mardasi, N. Wu, C. Wu

Abstract:

In this study, a spatial wavelet-based crack localization technique for a thick beam is presented. Wavelet scale in spatial wavelet transformation is optimized to enhance crack detection sensitivity. A windowing function is also employed to erase the edge effect of the wavelet transformation, which enables the method to detect and localize cracks near the beam/measurement boundaries. Theoretical model and vibration analysis considering the crack effect are first proposed and performed in MATLAB based on the Timoshenko beam model. Gabor wavelet family is applied to the beam vibration mode shapes derived from the theoretical beam model to magnify the crack effect so as to locate the crack. Relative wavelet coefficient is obtained for sensitivity analysis by comparing the coefficient values at different positions of the beam with the lowest value in the intact area of the beam. Afterward, the optimal wavelet scale corresponding to the highest relative wavelet coefficient at the crack position is obtained for each vibration mode, through numerical simulations. The same procedure is performed for cracks with different sizes and positions in order to find the optimal scale range for the Gabor wavelet family. Finally, Hanning window is applied to different vibration mode shapes in order to overcome the edge effect problem of wavelet transformation and its effect on the localization of crack close to the measurement boundaries. Comparison of the wavelet coefficients distribution of windowed and initial mode shapes demonstrates that window function eases the identification of the cracks close to the boundaries.

Keywords: Edge effect, scale optimization, small crack locating, spatial wavelet.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 949
841 A New Heuristic Statistical Methodology for Optimizing Queuing Networks Using Discreet Event Simulation

Authors: Mohamad Mahdavi

Abstract:

Most of the real queuing systems include special properties and constraints, which can not be analyzed directly by using the results of solved classical queuing models. Lack of Markov chains features, unexponential patterns and service constraints, are the mentioned conditions. This paper represents an applied general algorithm for analysis and optimizing the queuing systems. The algorithm stages are described through a real case study. It is consisted of an almost completed non-Markov system with limited number of customers and capacities as well as lots of common exception of real queuing networks. Simulation is used for optimizing this system. So introduced stages over the following article include primary modeling, determining queuing system kinds, index defining, statistical analysis and goodness of fit test, validation of model and optimizing methods of system with simulation.

Keywords: Estimation, queuing system, simulation model, probability distribution, non-Markov chain.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1620
840 Using Interval Constrained Petri Nets and Fuzzy Method for Regulation of Quality: The Case of Weight in Tobacco Factory

Authors: Nabli L., Dhouibi H., Collart Dutilleul S., Craye E.

Abstract:

The existence of maximal durations drastically modifies the performance evaluation in Discrete Event Systems (DES). The same particularity may be found on systems where the associated constraints do not concern the time. For example weight measures, in chemical industry, are used in order to control the quantity of consumed raw materials. This parameter also takes a fundamental part in the product quality as the correct transformation process is based upon a given percentage of each essence. Weight regulation therefore increases the global productivity of the system by decreasing the quantity of rejected products. In this paper we present an approach based on mixing different characteristics theories, the fuzzy system and Petri net system to describe the behaviour. An industriel application on a tobacco manufacturing plant, where the critical parameter is the weight is presented as an illustration.

Keywords: Petri Net, Manufacturing systems, Performance evaluation, Fuzzy logic, Tolerant system.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1926
839 A Novel Approach for Scheduling Rescue Robot Mission Using Decision Analysis

Authors: Rana Soltani-Zarrin, Sohrab Khanmohammadi

Abstract:

In this paper, a new method for multi criteria decision making is represented whichspecifies a trajectory satisfying desired criteria including minimization of time. A rescue robot is defined to perform certain tasks before the arrival of rescue team, including evaluation of the probability of explosion in the area, detecting human-beings, and providing preliminary aidsin case of identifying signs of life, so that the security of the surroundings will have enhanced significantly for the individuals inside the disaster zone as well as the rescue team. The main idea behind our technique is using the Program Evaluation and Review Technique analysis along with Critical Path Method and use the Multi Criteria Decision Making (MCDM) method to decidewhich set of activities must be performed first. Since the disastrous event in one area may be well contagious to others, it is one of the robot's priorities to evaluate the relative adversity of the situation, using the above methods and prioritize its mission.

Keywords: PERT, CPM, MCDM.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1668
838 CBIR Using Multi-Resolution Transform for Brain Tumour Detection and Stages Identification

Authors: H. Benjamin Fredrick David, R. Balasubramanian, A. Anbarasa Pandian

Abstract:

Image retrieval is the most interesting technique which is being used today in our digital world. CBIR, commonly expanded as Content Based Image Retrieval is an image processing technique which identifies the relevant images and retrieves them based on the patterns that are extracted from the digital images. In this paper, two research works have been presented using CBIR. The first work provides an automated and interactive approach to the analysis of CBIR techniques. CBIR works on the principle of supervised machine learning which involves feature selection followed by training and testing phase applied on a classifier in order to perform prediction. By using feature extraction, the image transforms such as Contourlet, Ridgelet and Shearlet could be utilized to retrieve the texture features from the images. The features extracted are used to train and build a classifier using the classification algorithms such as Naïve Bayes, K-Nearest Neighbour and Multi-class Support Vector Machine. Further the testing phase involves prediction which predicts the new input image using the trained classifier and label them from one of the four classes namely 1- Normal brain, 2- Benign tumour, 3- Malignant tumour and 4- Severe tumour. The second research work includes developing a tool which is used for tumour stage identification using the best feature extraction and classifier identified from the first work. Finally, the tool will be used to predict tumour stage and provide suggestions based on the stage of tumour identified by the system. This paper presents these two approaches which is a contribution to the medical field for giving better retrieval performance and for tumour stages identification.

Keywords: Brain tumour detection, content based image retrieval, classification of tumours, image retrieval.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 775
837 Performance of Bridge Girder with Perforations under Tsunami Wave Loading

Authors: Sadia Rahman, Shatirah Akib, M. T. R. Khan, R. Triatmadja

Abstract:

Tsunami disaster poses a great threat to coastal infrastructures. Bridges without adequate provisions for earthquake and tsunami loading is generally vulnerable to tsunami attack. During the last two disastrous tsunami event (i.e. Indian Ocean and Japan Tsunami) a number of bridges were observed subsequent damages by tsunami waves. In this study, laboratory experiments were conducted to study the effects of perforations in bridge girder in force reduction. Results showed that significant amount of forces were reduced using perforations in girder. Approximately 10% to 18% force reductions were achieved by using about 16% perforations in bridge girder. Subsequent amount of force reductions revealed that perforations in girder are effective in reducing tsunami forces as perforations in girder let water to be passed through. Thus, less bridge damages are expected with the presence of perforations in girder during tsunami period.

Keywords: Bridge, force, girder, perforation, tsunami, wave.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2317
836 The Operation Strategy and Public Relations Trend for Public Relations Strategies Development in Thailand

Authors: Kanyapat U. Tapao

Abstract:

The purpose of this study is to analyze the operation strategy strategies and public relations trend for public relations strategies development in public television station in Thailand. This study is a qualitative approach by indent interview from the 6 key informants that are managers of Voice TV and Thairath TV Channel. The results showed that both TV stations have to do research before making a release on the operation strategy policy such as a slogan, segmentation, integrated marketing communication and PR activity and also in term of Public Relations trend are including online media, online content and online training before opening the station and start promoting. By the way, we found the PR strategy for both TV station should be including application on mobile, online content, CRM activity, online banner, special event, and brand ambassador in order to bring a very reliable way.

Keywords: Operation strategy, public relations trend, public relations strategies development, online banner.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 771
835 Hands-off Parking: Deep Learning Gesture-Based System for Individuals with Mobility Needs

Authors: Javier Romera, Alberto Justo, Ignacio Fidalgo, Javier Araluce, Joshué Pérez

Abstract:

Nowadays, individuals with mobility needs face a significant challenge when docking vehicles. In many cases, after parking, they encounter insufficient space to exit, leading to two undesired outcomes: either avoiding parking in that spot or settling for improperly placed vehicles. To address this issue, this paper presents a parking control system employing gestural teleoperation. The system comprises three main phases: capturing body markers, interpreting gestures, and transmitting orders to the vehicle. The initial phase is centered around the MediaPipe framework, a versatile tool optimized for real-time gesture recognition. MediaPipe excels at detecting and tracing body markers, with a special emphasis on hand gestures. Hands detection is done by generating 21 reference points for each hand. Subsequently, after data capture, the project employs the MultiPerceptron Layer (MPL) for in-depth gesture classification. This tandem of MediaPipe’s extraction prowess and MPL’s analytical capability ensures that human gestures are translated into actionable commands with high precision. Furthermore, the system has been trained and validated within a built-in dataset. To prove the domain adaptation, a framework based on the Robot Operating System 2 (ROS2), as a communication backbone, alongside CARLA Simulator, is used. Following successful simulations, the system is transitioned to a real-world platform, marking a significant milestone in the project. This real-vehicle implementation verifies the practicality and efficiency of the system beyond theoretical constructs.

Keywords: Gesture detection, MediaPipe, MultiLayer Perceptron Layer, Robot Operating System.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 137
834 Landcover Mapping Using Lidar Data and Aerial Image and Soil Fertility Degradation Assessment for Rice Production Area in Quezon, Nueva Ecija, Philippines

Authors: Eliza. E. Camaso, Guiller. B. Damian, Miguelito. F. Isip, Ronaldo T. Alberto

Abstract:

Land-cover maps were important for many scientific, ecological and land management purposes and during the last decades, rapid decrease of soil fertility was observed to be due to land use practices such as rice cultivation. High-precision land-cover maps are not yet available in the area which is important in an economy management. To assure   accurate mapping of land cover to provide information, remote sensing is a very suitable tool to carry out this task and automatic land use and cover detection. The study did not only provide high precision land cover maps but it also provides estimates of rice production area that had undergone chemical degradation due to fertility decline. Land-cover were delineated and classified into pre-defined classes to achieve proper detection features. After generation of Land-cover map, of high intensity of rice cultivation, soil fertility degradation assessment in rice production area due to fertility decline was created to assess the impact of soils used in agricultural production. Using Simple spatial analysis functions and ArcGIS, the Land-cover map of Municipality of Quezon in Nueva Ecija, Philippines was overlaid to the fertility decline maps from Land Degradation Assessment Philippines- Bureau of Soils and Water Management (LADA-Philippines-BSWM) to determine the area of rice crops that were most likely where nitrogen, phosphorus, zinc and sulfur deficiencies were induced by high dosage of urea and imbalance N:P fertilization. The result found out that 80.00 % of fallow and 99.81% of rice production area has high soil fertility decline.

Keywords: Aerial image, land-cover, LiDAR, soil fertility degradation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1142
833 Tree-on-DAG for Data Aggregation in Sensor Networks

Authors: Prakash G L, Thejaswini M, S H Manjula, K R Venugopal, L M Patnaik

Abstract:

Computing and maintaining network structures for efficient data aggregation incurs high overhead for dynamic events where the set of nodes sensing an event changes with time. Moreover, structured approaches are sensitive to the waiting time that is used by nodes to wait for packets from their children before forwarding the packet to the sink. An optimal routing and data aggregation scheme for wireless sensor networks is proposed in this paper. We propose Tree on DAG (ToD), a semistructured approach that uses Dynamic Forwarding on an implicitly constructed structure composed of multiple shortest path trees to support network scalability. The key principle behind ToD is that adjacent nodes in a graph will have low stretch in one of these trees in ToD, thus resulting in early aggregation of packets. Based on simulations on a 2,000-node Mica2- based network, we conclude that efficient aggregation in large-scale networks can be achieved by our semistructured approach.

Keywords: Aggregation, Packet Merging, Query Processing.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1931
832 Hospital Based Electrocardiogram Sensor Grid

Authors: Suken Nayak, Aditya Kambli, Bharati Ingale, Gauri Shukla

Abstract:

The technological concepts such as wireless hospital and portable cardiac telemetry system require the development of physiological signal acquisition devices to be easily integrated into the hospital database. In this paper we present the low cost, portable wireless ECG acquisition hardware that transmits ECG signals to a dedicated computer.The front end of the system obtains and processes incoming signals, which are then transmitted via a microcontroller and wireless Bluetooth module. A monitoring purpose Bluetooth based end user application integrated with patient database management module is developed for the computers. The system will act as a continuous event recorder, which can be used to follow up patients who have been resuscitatedfrom cardiac arrest, ventricular tachycardia but also for diagnostic purposes for patients with arrhythmia symptoms. In addition, cardiac information can be saved into the patient-s database of the hospital.

Keywords: ECG, Bluetooth communication, monitoring application, patient database

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2133
831 Determination of Severe Loading Condition at Critical System Cascading Collapse Considering the Effect of Protection System Hidden Failure

Authors: N. A. Salim, M. M. Othman, I. Musirin, M. S. Serwan

Abstract:

Hidden failure in a protection system has been recognized as one of the main reasons which may cause to a power system instability leading to a system cascading collapse. This paper presents a computationally systematic approach used to obtain the estimated average probability of a system cascading collapse by considering the effect of probability hidden failure in a protection system. The estimated average probability of a system cascading collapse is then used to determine the severe loading condition contributing to the higher risk of critical system cascading collapse. This information is essential to the system utility since it will assist the operator to determine the highest point of increased system loading condition prior to the event of critical system cascading collapse.

Keywords: Critical system cascading collapse, protection system hidden failure, severe loading condition.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1493
830 A Novel Approach towards Segmentation of Breast Tumors from Screening Mammograms for Efficient Decision Support System

Authors: M.Suganthi, M.Madheswaran

Abstract:

This paper presents a novel approach to finding a priori interesting regions in mammograms. In order to delineate those regions of interest (ROI-s) in mammograms, which appear to be prominent, a topographic representation called the iso-level contour map consisting of iso-level contours at multiple intensity levels and region segmentation based-thresholding have been proposed. The simulation results indicate that the computed boundary gives the detection rate of 99.5% accuracy.

Keywords: Breast Cancer, Mammogram, and Segmentation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1481
829 Modeling and Simulation of Flow Shop Scheduling Problem through Petri Net Tools

Authors: Joselito Medina Marin, Norberto Hernández Romero, Juan Carlos Seck Tuoh Mora, Erick S. Martinez Gomez

Abstract:

The Flow Shop Scheduling Problem (FSSP) is a typical problem that is faced by production planning managers in Flexible Manufacturing Systems (FMS). This problem consists in finding the optimal scheduling to carry out a set of jobs, which are processed in a set of machines or shared resources. Moreover, all the jobs are processed in the same machine sequence. As in all the scheduling problems, the makespan can be obtained by drawing the Gantt chart according to the operations order, among other alternatives. On this way, an FMS presenting the FSSP can be modeled by Petri nets (PNs), which are a powerful tool that has been used to model and analyze discrete event systems. Then, the makespan can be obtained by simulating the PN through the token game animation and incidence matrix. In this work, we present an adaptive PN to obtain the makespan of FSSP by applying PN analytical tools.

Keywords: Flow-shop scheduling problem, makespan, Petri nets, state equation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1739
828 From Victim to Ethical Agent: Oscar Wilde's The Ballad of Reading Gaol as Post-Traumatic Writing

Authors: Mona Salah El-Din Hassanein

Abstract:

Faced with a sudden, unexpected, and overwhelming event, the individual's normal cognitive processing may cease to function, trapping the psyche in "speechless terror", while images, feelings and sensations are experienced with emotional intensity. Unable to master such situation, the individual becomes a trauma victim who will be susceptible to traumatic recollections like intrusive thoughts, flashbacks, and repetitive re-living of the primal event in a way that blurs the distinction between past and present, and forecloses the future. Trauma is timeless, repetitious, and contagious; a trauma observer could fall prey to "secondary victimhood". Central to the process of healing the psychic wounds in the aftermath of trauma is verbalizing the traumatic experience (i.e., putting it into words) – an act which provides a chance for assimilation, testimony, and reevaluation. In light of this paradigm, this paper proposes a reading of Oscar Wilde's The Ballad of Reading Gaol, written shortly after his release from prison, as a post-traumatic text which traces the disruptive effects of the traumatic experience of Wilde's imprisonment for homosexual offences and the ensuing reversal of fortune he endured. Post-traumatic writing demonstrates the process of "working through" a trauma which may lead to the possibility of ethical agency in the form of a "survivor mission". This paper draws on fundamental concepts and key insights in literary trauma theory which is characterized by interdisciplinarity, combining the perspectives of different fields like critical theory, psychology, psychiatry, psychoanalysis, history, and social studies. Of particular relevance to this paper are the concepts of "vicarious traumatization" and "survivor mission", as The Ballad of Reading Gaol was written in response to Wilde's own prison trauma and the indirect traumatization he experienced as a result of witnessing the execution of a fellow prisoner whose story forms the narrative base of the poem. The Ballad displays Wilde's sense of mission which leads him to recognize the social as well as ethical implications of personal tragedy. Through a close textual analysis of The Ballad of Reading Gaol within the framework of literary trauma theory, the paper aims to: (a) demonstrate how the poem's thematic concerns, structure and rhetorical figures reflect the structure of trauma; (b) highlight Wilde's attempts to come to terms with the effects of the cataclysmic experience which transformed him into a social outcast; and (c) show how Wilde manages to transcend the victim status and assumes the role of ethical agent to voice a critique of the Victorian penal system and the standards of morality underlying the cruelties practiced against wrong doers and to solicit social action.

Keywords: Ballad of Reading Gaol, post-traumatic writing, trauma theory, Wilde.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1430
827 Continuity Planning in Supply Chain Networks: Degrees of Freedom and Application in the Risk Management Process

Authors: Marco Bötel, Tobias Gelau, Wendelin Gross

Abstract:

Supply chain networks are frequently hit by unplanned events which lead to disruptions and cause operational and financial consequences. It is neither possible to avoid disruption risk entirely, nor are network members able to prepare for every possible disruptive event. Therefore a continuity planning should be set up which supports effective operational responses in supply chain networks in times of emergencies. In this research network related degrees of freedom which determine the options for responsive actions are derived from interview data. The findings are further embedded into a common risk management process. The paper provides support for researchers and practitioners to identify the network related options for responsive actions and to determine the need for improving the reaction capabilities.

Keywords: Supply Chain Risk Management, Business Continuity Planning, Degrees of Freedom, Risk Management Process, Mitigation Measures.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1917
826 Hazard Rate Estimation of Temporal Point Process, Case Study: Earthquake Hazard Rate in Nusatenggara Region

Authors: Sunusi N., Kresna A. J., Islamiyati A., Raupong

Abstract:

Hazard rate estimation is one of the important topics in forecasting earthquake occurrence. Forecasting earthquake occurrence is a part of the statistical seismology where the main subject is the point process. Generally, earthquake hazard rate is estimated based on the point process likelihood equation called the Hazard Rate Likelihood of Point Process (HRLPP). In this research, we have developed estimation method, that is hazard rate single decrement HRSD. This method was adapted from estimation method in actuarial studies. Here, one individual associated with an earthquake with inter event time is exponentially distributed. The information of epicenter and time of earthquake occurrence are used to estimate hazard rate. At the end, a case study of earthquake hazard rate will be given. Furthermore, we compare the hazard rate between HRLPP and HRSD method.

Keywords: Earthquake forecast, Hazard Rate, Likelihood point process, Point process.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1495
825 Nanomaterial Based Electrochemical Sensors for Endocrine Disrupting Compounds

Authors: Gaurav Bhanjana, Ganga Ram Chaudhary, Sandeep Kumar, Neeraj Dilbaghi

Abstract:

Main sources of endocrine disrupting compounds in the ecosystem are hormones, pesticides, phthalates, flame retardants, dioxins, personal-care products, coplanar polychlorinated biphenyls (PCBs), bisphenol A, and parabens. These endocrine disrupting compounds are responsible for learning disabilities, brain development problems, deformations of the body, cancer, reproductive abnormalities in females and decreased sperm count in human males. Although discharge of these chemical compounds into the environment cannot be stopped, yet their amount can be retarded through proper evaluation and detection techniques. The available techniques for determination of these endocrine disrupting compounds mainly include high performance liquid chromatography (HPLC), mass spectroscopy (MS) and gas chromatography-mass spectrometry (GC–MS). These techniques are accurate and reliable but have certain limitations like need of skilled personnel, time consuming, interference and requirement of pretreatment steps. Moreover, these techniques are laboratory bound and sample is required in large amount for analysis. In view of above facts, new methods for detection of endocrine disrupting compounds should be devised that promise high specificity, ultra sensitivity, cost effective, efficient and easy-to-operate procedure. Nowadays, electrochemical sensors/biosensors modified with nanomaterials are gaining high attention among researchers. Bioelement present in this system makes the developed sensors selective towards analyte of interest. Nanomaterials provide large surface area, high electron communication feature, enhanced catalytic activity and possibilities of chemical modifications. In most of the cases, nanomaterials also serve as an electron mediator or electrocatalyst for some analytes.

Keywords: Sensors, endocrine disruptors, nanoparticles, electrochemical, microscopy.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1576
824 Revealing Nonlinear Couplings between Oscillators from Time Series

Authors: B.P. Bezruchko, D.A. Smirnov

Abstract:

Quantitative characterization of nonlinear directional couplings between stochastic oscillators from data is considered. We suggest coupling characteristics readily interpreted from a physical viewpoint and their estimators. An expression for a statistical significance level is derived analytically that allows reliable coupling detection from a relatively short time series. Performance of the technique is demonstrated in numerical experiments.

Keywords: Nonlinear time series analysis, directional couplings, coupled oscillators.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1265
823 Simulation of a Sustainable Cement Supply Chain; Proposal Model Review

Authors: Tarek Elhasia, Bernd Noche, Lima Zhao

Abstract:

In recent years, sustainable supply chain management (SSCM) has been widely researched in academic domain. However, due to the traditional operational role and the complexity of supply chain management in the cement industry, a relatively small amount of research has been conducted on cement supply chain simulation integrated with sustainability criteria. This paper analyses the cement supply chain operations using the Push-Pull supply chain frameworks, the Life Cycle Assessment (LCA) methodology; and proposal integration approach, proposes three supply chain scenarios based on Make-To-Stock (MTS), Pack-To-Order (PTO) and Grind- To-Order (GTO) strategies. A Discrete-Event Simulation (DES) model of SSCM is constructed using Arena software to implement the three-target scenarios. We conclude with the simulation results that (GTO) is the optimal supply chain strategy that demonstrates the best economic, ecological and social performance in the cement industry.

Keywords: Cement industry, simulation, supply chain management (SCM), sustainability.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 6969
822 Decision Algorithm for Smart Airbag Deployment Safety Issues

Authors: Aini Hussain, M A Hannan, Azah Mohamed, Hilmi Sanusi, Burhanuddin Yeop Majlis

Abstract:

Airbag deployment has been known to be responsible for huge death, incidental injuries and broken bones due to low crash severity and wrong deployment decisions. Therefore, the authorities and industries have been looking for more innovative and intelligent products to be realized for future enhancements in the vehicle safety systems (VSSs). Although the VSSs technologies have advanced considerably, they still face challenges such as how to avoid unnecessary and untimely airbag deployments that can be hazardous and fatal. Currently, most of the existing airbag systems deploy without regard to occupant size and position. As such, this paper will focus on the occupant and crash sensing performances due to frontal collisions for the new breed of so called smart airbag systems. It intends to provide a thorough discussion relating to the occupancy detection, occupant size classification, occupant off-position detection to determine safe distance zone for airbag deployment, crash-severity analysis and airbag decision algorithms via a computer modeling. The proposed system model consists of three main modules namely, occupant sensing, crash severity analysis and decision fusion. The occupant sensing system module utilizes the weight sensor to determine occupancy, classify the occupant size, and determine occupant off-position condition to compute safe distance for airbag deployment. The crash severity analysis module is used to generate relevant information pertinent to airbag deployment decision. Outputs from these two modules are fused to the decision module for correct and efficient airbag deployment action. Computer modeling work is carried out using Simulink, Stateflow, SimMechanics and Virtual Reality toolboxes.

Keywords: Crash severity analysis, occupant size classification, smart airbag, vehicle safety system.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 4117
821 Reliability Analysis of Underground Pipelines Using Subset Simulation

Authors: Kong Fah Tee, Lutfor Rahman Khan, Hongshuang Li

Abstract:

An advanced Monte Carlo simulation method, called Subset Simulation (SS) for the time-dependent reliability prediction for underground pipelines has been presented in this paper. The SS can provide better resolution for low failure probability level with efficient investigating of rare failure events which are commonly encountered in pipeline engineering applications. In SS method, random samples leading to progressive failure are generated efficiently and used for computing probabilistic performance by statistical variables. SS gains its efficiency as small probability event as a product of a sequence of intermediate events with larger conditional probabilities. The efficiency of SS has been demonstrated by numerical studies and attention in this work is devoted to scrutinise the robustness of the SS application in pipe reliability assessment. It is hoped that the development work can promote the use of SS tools for uncertainty propagation in the decision-making process of underground pipelines network reliability prediction.

Keywords: Underground pipelines, Probability of failure, Reliability and Subset Simulation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3554
820 Decision Tree for Competing Risks Survival Probability in Breast Cancer Study

Authors: N. A. Ibrahim, A. Kudus, I. Daud, M. R. Abu Bakar

Abstract:

Competing risks survival data that comprises of more than one type of event has been used in many applications, and one of these is in clinical study (e.g. in breast cancer study). The decision tree method can be extended to competing risks survival data by modifying the split function so as to accommodate two or more risks which might be dependent on each other. Recently, researchers have constructed some decision trees for recurrent survival time data using frailty and marginal modelling. We further extended the method for the case of competing risks. In this paper, we developed the decision tree method for competing risks survival time data based on proportional hazards for subdistribution of competing risks. In particular, we grow a tree by using deviance statistic. The application of breast cancer data is presented. Finally, to investigate the performance of the proposed method, simulation studies on identification of true group of observations were executed.

Keywords: Competing risks, Decision tree, Simulation, Subdistribution Proportional Hazard.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2374
819 Vitamin Content of Swordfish (Xhiphias gladius) Affected by Salting and Frying

Authors: L. Piñeiro, N. Cobas, L. Gómez-Limia, S. Martínez, I. Franco

Abstract:

The swordfish (Xiphias gladius) is a large oceanic fish of high commercial value, which is widely distributed in waters of the world’s oceans. They are considered to be an important source of high quality proteins, vitamins and essential fatty acids, although only half of the population follows the recommendation of nutritionists to consume fish at least twice a week. Swordfish is consumed worldwide because of its low fat content and high protein content. It is generally sold as fresh, frozen, and as pieces or slices. The aim of this study was to evaluate the effect of salting and frying on the composition of the water-soluble vitamins (B2, B3, B9 and B12) and fat-soluble vitamins (A, D, and E) of swordfish. Three loins of swordfish from Pacific Ocean were analyzed. All the fishes had a weight between 50 and 70 kg and were transported to the laboratory frozen (-18 ºC). Before the processing, they were defrosted at 4 ºC. Each loin was sliced and salted in brine. After cleaning the slices, they were divided into portions (10×2 cm) and fried in olive oil. The identification and quantification of vitamins were carried out by high-performance liquid chromatography (HPLC), using methanol and 0.010% trifluoroacetic acid as mobile phases at a flow-rate of 0.7 mL min-1. The UV-Vis detector was used for the detection of the water- and fat-soluble vitamins (A and D), as well as the fluorescence detector for the detection of the vitamin E. During salting, water and fat-soluble vitamin contents remained constant, observing an evident decrease in the values of vitamin B2. The diffusion of salt into the interior of the pieces and the loss of constitution water that occur during this stage would be related to this significant decrease. In general, after frying water-soluble and fat-soluble vitamins showed a great thermolability with high percentages of retention with values among 50–100%. Vitamin B3 is the one that exhibited higher percentages of retention with values close to 100%. However, vitamin B9 presented the highest losses with a percentage of retention of less than 20%.

Keywords: Frying, HPLC, salting, swordfish, vitamins.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 928
818 A Survey on Performance Tools for OpenMP

Authors: Mubarak S. Mohsen, Rosni Abdullah, Yong M. Teo

Abstract:

Advances in processors architecture, such as multicore, increase the size of complexity of parallel computer systems. With multi-core architecture there are different parallel languages that can be used to run parallel programs. One of these languages is OpenMP which embedded in C/Cµ or FORTRAN. Because of this new architecture and the complexity, it is very important to evaluate the performance of OpenMP constructs, kernels, and application program on multi-core systems. Performance is the activity of collecting the information about the execution characteristics of a program. Performance tools consists of at least three interfacing software layers, including instrumentation, measurement, and analysis. The instrumentation layer defines the measured performance events. The measurement layer determines what performance event is actually captured and how it is measured by the tool. The analysis layer processes the performance data and summarizes it into a form that can be displayed in performance tools. In this paper, a number of OpenMP performance tools are surveyed, explaining how each is used to collect, analyse, and display data collection.

Keywords: Parallel performance tools, OpenMP, multi-core.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1922