Search results for: Analysis of optimization
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 10031

Search results for: Analysis of optimization

9071 Optimization of the Process of Osmo – Convective Drying of Edible Button Mushrooms using Response Surface Methodology (RSM)

Authors: Behrouz Mosayebi Dehkordi

Abstract:

Simultaneous effects of temperature, immersion time, salt concentration, sucrose concentration, pressure and convective dryer temperature on the combined osmotic dehydration - convective drying of edible button mushrooms were investigated. Experiments were designed according to Central Composite Design with six factors each at five different levels. Response Surface Methodology (RSM) was used to determine the optimum processing conditions that yield maximum water loss and rehydration ratio and minimum solid gain and shrinkage in osmotic-convective drying of edible button mushrooms. Applying surfaces profiler and contour plots optimum operation conditions were found to be temperature of 39 °C, immersion time of 164 min, salt concentration of 14%, sucrose concentration of 53%, pressure of 600 mbar and drying temperature of 40 °C. At these optimum conditions, water loss, solid gain, rehydration ratio and shrinkage were found to be 63.38 (g/100 g initial sample), 3.17 (g/100 g initial sample), 2.26 and 7.15%, respectively.

Keywords: Dehydration, Mushroom, Optimization, Osmotic, Response Surface Methodology

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2017
9070 Optimization the Process of Osmo – Convective Drying of Edible Button Mushrooms using Response Surface Methodology (RSM)

Authors: Behrouz Mosayebi Dehkordi

Abstract:

Simultaneous effects of temperature, immersion time, salt concentration, sucrose concentration, pressure and convective dryer temperature on the combined osmotic dehydration - convective drying of edible button mushrooms were investigated. Experiments were designed according to Central Composite Design with six factors each at five different levels. Response Surface Methodology (RSM) was used to determine the optimum processing conditions that yield maximum water loss and rehydration ratio and minimum solid gain and shrinkage in osmotic-convective drying of edible button mushrooms. Applying surfaces profiler and contour plots optimum operation conditions were found to be temperature of 39 °C, immersion time of 164 min, salt concentration of 14%, sucrose concentration of 53%, pressure of 600 mbar and drying temperature of 40 °C. At these optimum conditions, water loss, solid gain, rehydration ratio and shrinkage were found to be 63.38 (g/100 g initial sample), 3.17 (g/100 g initial sample), 2.26 and 7.15%, respectively.

Keywords: Dehydration, mushroom, optimization, osmotic, response surface methodology.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1442
9069 Discovering Complex Regularities: from Tree to Semi-Lattice Classifications

Authors: A. Faro, D. Giordano, F. Maiorana

Abstract:

Data mining uses a variety of techniques each of which is useful for some particular task. It is important to have a deep understanding of each technique and be able to perform sophisticated analysis. In this article we describe a tool built to simulate a variation of the Kohonen network to perform unsupervised clustering and support the entire data mining process up to results visualization. A graphical representation helps the user to find out a strategy to optimize classification by adding, moving or delete a neuron in order to change the number of classes. The tool is able to automatically suggest a strategy to optimize the number of classes optimization, but also support both tree classifications and semi-lattice organizations of the classes to give to the users the possibility of passing from one class to the ones with which it has some aspects in common. Examples of using tree and semi-lattice classifications are given to illustrate advantages and problems. The tool is applied to classify macroeconomic data that report the most developed countries- import and export. It is possible to classify the countries based on their economic behaviour and use the tool to characterize the commercial behaviour of a country in a selected class from the analysis of positive and negative features that contribute to classes formation. Possible interrelationships between the classes and their meaning are also discussed.

Keywords: Unsupervised classification, Kohonen networks, macroeconomics, Visual data mining, Cluster interpretation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1520
9068 Optimization of Thermopile Sensor Performance of Polycrystalline Silicon Film

Authors: Li Long, Thomas Ortlepp

Abstract:

A theoretical model for the optimization of thermopile sensor performance is developed for thermoelectric-based infrared radiation detection. It is shown that the performance of polycrystalline silicon film thermopile sensor can be optimized according to the thermoelectric quality factor, sensor layer structure factor and sensor layout shape factor. Based on the properties of electrons, phonons, grain boundaries and their interactions, the thermoelectric quality factor of polycrystalline silicon is analyzed with the relaxation time approximation of Boltzmann transport equation. The model includes the effects of grain structure, grain boundary trap properties and doping concentration. The layer structure factor of sensor is analyzed with respect to infrared absorption coefficient. The effect of layout design is characterized with the shape factor, which is calculated for different sensor designs. Double layer polycrystalline silicon thermopile infrared sensors on suspended support membrane have been designed and fabricated with a CMOS-compatible process. The theoretical approach is confirmed with measurement results.

Keywords: Polycrystalline silicon film, relaxation time approximation, specific detectivity, thermal conductivity, thermopile infrared sensor.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 182
9067 Influence of Fermentation Conditions on Humic Acids Production by Trichoderma viride Using an Oil Palm Empty Fruit Bunch as the Substrate

Authors: F. L. Motta, M. H. A. Santana

Abstract:

Humic acids (HA) were produced by a Trichoderma viride strain under submerged fermentation in a medium based on the oil palm empty fruit bunch (EFB) and the main variables of the process were optimized by using response surface methodology. A temperature of 40°C and concentrations of 50g/L EFB, 5.7g/L potato peptone and 0.11g/L (NH4)2SO4 were the optimum levels of the variables that maximize the HA production, within the physicochemical and biological limits of the process. The optimized conditions led to an experimental HA concentration of 428.4±17.5 mg/L, which validated the prediction from the statistical model of 412.0mg/L. This optimization increased about 7–fold the HA production previously reported in the literature. Additionally, the time profiles of HA production and fungal growth confirmed our previous findings that HA production preferably occurs during fungal sporulation. The present study demonstrated that T. viride successfully produced HA via the submerged fermentation of EFB and the process parameters were successfully optimized using a statistics-based response surface model. To the best of our knowledge, the present work is the first report on the optimization of HA production from EFB by a biotechnological process, whose feasibility was only pointed out in previous works.

Keywords: Empty fruit bunch, humic acids, submerged fermentation, Trichoderma viride.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2148
9066 Design and Optimization of a Microstrip Patch Antenna for Increased Bandwidth

Authors: Ankit Jain, Archana Agrawal

Abstract:

With the ever-increasing need for wireless communication and the emergence of many systems, it is important to design broadband antennas to cover a wide frequency range. The aim of this paper is to design a broadband patch antenna, employing the three techniques of slotting, adding directly coupled parasitic elements, and fractal EBG structures. The bandwidth is improved from 9.32% to 23.77%. A wideband ranging from 4.15 GHz to 5.27 GHz is obtained. Also a comparative analysis of embedding EBG structures at different heights is also done. The composite effect of integrating these techniques in the design provides a simple and efficient method for obtaining low profile, broadband, high gain antenna. By the addition of parasitic elements the bandwidth was increased to only 18.04%. Later on by embedding EBG structures the bandwidth was increased up to 23.77%. The design is suitable for variety of wireless applications like WLAN and Radar Applications.

Keywords: Bandwidth, broadband, EBG structures, parasitic elements, Slotting.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3371
9065 Joint Use of Factor Analysis (FA) and Data Envelopment Analysis (DEA) for Ranking of Data Envelopment Analysis

Authors: Reza Nadimi, Fariborz Jolai

Abstract:

This article combines two techniques: data envelopment analysis (DEA) and Factor analysis (FA) to data reduction in decision making units (DMU). Data envelopment analysis (DEA), a popular linear programming technique is useful to rate comparatively operational efficiency of decision making units (DMU) based on their deterministic (not necessarily stochastic) input–output data and factor analysis techniques, have been proposed as data reduction and classification technique, which can be applied in data envelopment analysis (DEA) technique for reduction input – output data. Numerical results reveal that the new approach shows a good consistency in ranking with DEA.

Keywords: Effectiveness, Decision Making, Data EnvelopmentAnalysis, Factor Analysis

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2401
9064 Error Correction of Radial Displacement in Grinding Machine Tool Spindle by Optimizing Shape and Bearing Tuning

Authors: Khairul Jauhari, Achmad Widodo, Ismoyo Haryanto

Abstract:

In this article, the radial displacement error correction capability of a high precision spindle grinding caused by unbalance force was investigated. The spindle shaft is considered as a flexible rotor mounted on two sets of angular contact ball bearing. Finite element methods (FEM) have been adopted for obtaining the equation of motion of the spindle. In this paper, firstly, natural frequencies, critical frequencies, and amplitude of the unbalance response caused by residual unbalance are determined in order to investigate the spindle behaviors. Furthermore, an optimization design algorithm is employed to minimize radial displacement of the spindle which considers dimension of the spindle shaft, the dynamic characteristics of the bearings, critical frequencies and amplitude of the unbalance response, and computes optimum spindle diameters and stiffness and damping of the bearings. Numerical simulation results show that by optimizing the spindle diameters, and stiffness and damping in the bearings, radial displacement of the spindle can be reduced. A spindle about 4 μm radial displacement error can be compensated with 2 μm accuracy. This certainly can improve the accuracy of the product of machining.

Keywords: Error correction, High precision grinding, Optimization, Radial displacement, Spindle.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1775
9063 An Efficient and Optimized Multi Constrained Path Computation for Real Time Interactive Applications in Packet Switched Networks

Authors: P.S. Prakash, S. Selvan

Abstract:

Quality of Service (QoS) Routing aims to find path between source and destination satisfying the QoS requirements which efficiently using the network resources and underlying routing algorithm and to fmd low-cost paths that satisfy given QoS constraints. One of the key issues in providing end-to-end QoS guarantees in packet networks is determining feasible path that satisfies a number of QoS constraints. We present a Optimized Multi- Constrained Routing (OMCR) algorithm for the computation of constrained paths for QoS routing in computer networks. OMCR applies distance vector to construct a shortest path for each destination with reference to a given optimization metric, from which a set of feasible paths are derived at each node. OMCR is able to fmd feasible paths as well as optimize the utilization of network resources. OMCR operates with the hop-by-hop, connectionless routing model in IP Internet and does not create any loops while fmding the feasible paths. Nodes running OMCR not necessarily maintaining global view of network state such as topology, resource information and routing updates are sent only to neighboring nodes whereas its counterpart link-state routing method depend on complete network state for constrained path computation and that incurs excessive communication overhead.

Keywords: QoS Routing, Optimization, feasible path, multiple constraints.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1109
9062 Molecular and Electronic Structure of Chromium (III) Cyclopentadienyl Complexes

Authors: Salem El-tohami Ashoor

Abstract:

Here, we have shown the reaction of [Cr(ArN(CH2)3NAr)2Cl2] (1) where (Ar = 2,6-Pri 2C6H3) and in presence of NaCp (2) (Cp= C5H5 = cyclopentadien), with a center coordination η5 interaction between Cp as co-ligand and chromium metal center, for optimization we used density functional theory (DFT), under methods, explicitly including electrons correlations, for the final calculations as MB3LYP (Becke) (Lee–Yang–Parr) level of theory we used to obtain more exact results. This complex was calculated as electronic energy for molecular system, because the calculation accounting all electrons correlations interactions. The optimised of [Cr(ArN(CH2)3NAr)2(η5-Cp)] (Ar = 2,6-Pri2C6H3 and Cp = C5H5) was found to be thermally stable. By using Dewar-Chatt-Duncanson model, as a basis of the molecular orbital (MO) analysis and showed the highest occupied molecular orbital (HOMO) and lowest occupied molecular orbital LUMO.

Keywords: Chromium (III) cyclopentadienyl complexes, DFT, MO, HOMO, LUMO.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1251
9061 Optimization of Biodiesel Production from Sunflower Oil Using Central Composite Design

Authors: Pascal Mwenge, Jefrey Pilusa, Tumisang Seodigeng

Abstract:

The current study investigated the effect of catalyst ratio and methanol to oil ratio on biodiesel production by using central composite design. Biodiesel was produced by transesterification using sodium hydroxide as a homogeneous catalyst, a laboratory scale reactor consisting of flat bottom flask mounts with a reflux condenser and a heating plate was used to produce biodiesel. Key parameters, including, time, temperature and mixing rate were kept constant at 60 minutes, 60 oC and 600 RPM, respectively. From the results obtained, it was observed that the biodiesel yield depends on catalyst ratio and methanol to oil ratio. The highest yield of 50.65% was obtained at catalyst ratio of 0.5 wt.% and methanol to oil mole ratio 10.5. The analysis of variances of biodiesel yield showed the R Squared value of 0.8387. A quadratic mathematical model was developed to predict the biodiesel yield in the specified parameters ranges.

Keywords: ANOVA, biodiesel, catalyst, CCD, transesterification.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1061
9060 Bridging Stress Modeling of Composite Materials Reinforced by Fibers Using Discrete Element Method

Authors: Chong Wang, Kellem M. Soares, Luis E. Kosteski

Abstract:

The problem of toughening in brittle materials reinforced by fibers is complex, involving all of the mechanical properties of fibers, matrix and the fiber/matrix interface, as well as the geometry of the fiber. Development of new numerical methods appropriate to toughening simulation and analysis is necessary. In this work, we have performed simulations and analysis of toughening in brittle matrix reinforced by randomly distributed fibers by means of the discrete elements method. At first, we put forward a mechanical model of toughening contributed by random fibers. Then with a numerical program, we investigated the stress, damage and bridging force in the composite material when a crack appeared in the brittle matrix. From the results obtained, we conclude that: (i) fibers of high strength and low elasticity modulus are beneficial to toughening; (ii) fibers of relatively high elastic modulus compared to the matrix may result in substantial matrix damage due to spalling effect; (iii) employment of high-strength synthetic fibers is a good option for toughening. We expect that the combination of the discrete element method (DEM) with the finite element method (FEM) can increase the versatility and efficiency of the software developed. The present work can guide the design of ceramic composites of high performance through the optimization of the parameters.

Keywords: Bridging stress, discrete element method, fiber reinforced composites, toughening.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1874
9059 Optimal Green Facility Planning - Implementation of Organic Rankine Cycle System for Factory Waste Heat Recovery

Authors: Chun-Wei Lin, Yu-Lin Chen

Abstract:

As global industry developed rapidly, the energy demand also rises simultaneously. In the production process, there’s a lot of energy consumed in the process. Formally, the energy used in generating the heat in the production process. In the total energy consumption, 40% of the heat was used in process heat, mechanical work, chemical energy and electricity. The remaining 50% were released into the environment. It will cause energy waste and environment pollution. There are many ways for recovering the waste heat in factory. Organic Rankine Cycle (ORC) system can produce electricity and reduce energy costs by recovering the waste of low temperature heat in the factory. In addition, ORC is the technology with the highest power generating efficiency in low-temperature heat recycling. However, most of factories executives are still hesitated because of the high implementation cost of the ORC system, even a lot of heat are wasted. Therefore, this study constructs a nonlinear mathematical model of waste heat recovery equipment configuration to maximize profits. A particle swarm optimization algorithm is developed to generate the optimal facility installation plan for the ORC system.

Keywords: Green facility planning, organic rankine cycle, particle swarm optimization, waste heat recovery.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1961
9058 Auto Tuning of PID Controller for MIMO Processes

Authors: M. J. Lengare, R. H. Chile, L. M. Waghmare, Bhavesh Parmar

Abstract:

One of the most basic functions of control engineers is tuning of controllers. There are always several process loops in the plant necessitate of tuning. The auto tuned Proportional Integral Derivative (PID) Controllers are designed for applications where large load changes are expected or the need for extreme accuracy and fast response time exists. The algorithm presented in this paper is used for the tuning PID controller to obtain its parameters with a minimum computing complexity. It requires continuous analysis of variation in few parameters, and let the program to do the plant test and calculate the controller parameters to adjust and optimize the variables for the best performance. The algorithm developed needs less time as compared to a normal step response test for continuous tuning of the PID through gain scheduling.

Keywords: Auto tuning; gain scheduling; MIMO Processes; Optimization; PID controller; Process Control.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2974
9057 System Identification with General Dynamic Neural Networks and Network Pruning

Authors: Christian Endisch, Christoph Hackl, Dierk Schröder

Abstract:

This paper presents an exact pruning algorithm with adaptive pruning interval for general dynamic neural networks (GDNN). GDNNs are artificial neural networks with internal dynamics. All layers have feedback connections with time delays to the same and to all other layers. The structure of the plant is unknown, so the identification process is started with a larger network architecture than necessary. During parameter optimization with the Levenberg- Marquardt (LM) algorithm irrelevant weights of the dynamic neural network are deleted in order to find a model for the plant as simple as possible. The weights to be pruned are found by direct evaluation of the training data within a sliding time window. The influence of pruning on the identification system depends on the network architecture at pruning time and the selected weight to be deleted. As the architecture of the model is changed drastically during the identification and pruning process, it is suggested to adapt the pruning interval online. Two system identification examples show the architecture selection ability of the proposed pruning approach.

Keywords: System identification, dynamic neural network, recurrentneural network, GDNN, optimization, Levenberg Marquardt, realtime recurrent learning, network pruning, quasi-online learning.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1912
9056 Decolourization of Melanoidin Containing Wastewater Using South African Coal Fly Ash

Authors: V.O. Ojijo, M.S. Onyango, Aoyi Ochieng, F.A.O. Otieno

Abstract:

Batch adsorption of recalcitrant melanoidin using the abundantly available coal fly ash was carried out. It had low specific surface area (SBET) of 1.7287 m2/g and pore volume of 0.002245 cm3/g while qualitative evaluation of the predominant phases in it was done by XRD analysis. Colour removal efficiency was found to be dependent on various factors studied. Maximum colour removal was achieved around pH 6, whereas increasing sorbent mass from 10g/L to 200 g/L enhanced colour reduction from 25% to 86% at 298 K. Spontaneity of the process was suggested by negative Gibbs free energy while positive values for enthalpy change showed endothermic nature of the process. Non-linear optimization of error functions resulted in Freundlich and Redlich-Peterson isotherms describing sorption equilibrium data best. The coal fly ash had maximum sorption capacity of 53 mg/g and could thus be used as a low cost adsorbent in melanoidin removal.

Keywords: Adsorption, Isotherms, Melanoidin, South African coal fly ash.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2495
9055 Parametric Investigation of Diode and CO2 Laser in Direct Metal Deposition of H13 Tool Steel on Copper Substrate

Authors: M. Khalid Imran, Syed Masood, Milan Brandt, Sudip Bhattacharya, Jyotirmoy Mazumder

Abstract:

In the present investigation, H13 tool steel has been deposited on copper alloy substrate using both CO2 and diode laser. A detailed parametric analysis has been carried out in order to find out optimum processing zone for coating defect free H13 tool steel on copper alloy substrate. Followed by parametric optimization, the microstructure and microhardness of the deposited clads have been evaluated. SEM micrographs revealed dendritic microstructure in both clads. However, the microhardness of CO2 laser deposited clad was much higher compared to diode laser deposited clad.

Keywords: CO2 laser, Diode laser, Direct Metal Deposition, Microstructure, Microhardness, Porosity.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1978
9054 Value Engineering and Its Effect in Reduction of Industrial Organization Energy Expenses

Authors: Habibollah Najafi, Amir Abbas Yazdani, Hosseinali Nahavandi

Abstract:

The review performed on the condition of energy consumption & rate in Iran, shows that unfortunately the subject of optimization and conservation of energy in active industries of country lacks a practical & effective method and in most factories, the energy consumption and rate is more than in similar industries of industrial countries. The increasing demand of electrical energy and the overheads which it imposes on the organization, forces companies to search for suitable approaches to optimize energy consumption and demand management. Application of value engineering techniques is among these approaches. Value engineering is considered a powerful tool for improving profitability. These tools are used for reduction of expenses, increasing profits, quality improvement, increasing market share, performing works in shorter durations, more efficient utilization of sources & etc. In this article, we shall review the subject of value engineering and its capabilities for creating effective transformations in industrial organizations, in order to reduce energy costs & the results have been investigated and described during a case study in Mazandaran wood and paper industries, the biggest consumer of energy in north of Iran, for the purpose of presenting the effects of performed tasks in optimization of energy consumption by utilizing value engineering techniques in one case study.

Keywords: Value Engineering (VE), Expense, Energy, Industrial

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2248
9053 Delay-Dependent H∞ Performance Analysis for Markovian Jump Systems with Time-Varying Delays

Authors: Yucai Ding, Hong Zhu, Shouming Zhong, Yuping Zhang

Abstract:

This paper considers ­H∞ performance for Markovian jump systems with Time-varying delays. The systems under consideration involve disturbance signal, Markovian switching and timevarying delays. By using a new Lyapunov-Krasovskii functional and a convex optimization approach, a delay-dependent stability condition in terms of linear matrix inequality (LMI) is addressed, which guarantee asymptotical stability in mean square and a prescribed ­H∞ performance index for the considered systems. Two numerical examples are given to illustrate the effectiveness and the less conservatism of the proposed main results. All these results are expected to be of use in the study of stochastic systems with time-varying delays.

Keywords: ­H∞ performance, Markovian switching, Delaydependent stability, Linear matrix inequality (LMI)

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1592
9052 CFD Modeling of High Temperature Seal Chamber

Authors: Mikhail P. Strongin, Ragupathi Soundararajan

Abstract:

The purpose of this work is fast design optimization of the seal chamber. The study includes the mass transfer between lower and upper chamber on seal chamber for hot water application pumps. The use of Fluent 12.1 commercial code made it possible to capture complex flow with heat-mass transfer, radiation, Tailor instability, and buoyancy effect. Realizable k-epsilon model was used for turbulence modeling. Radiation heat losses were taken into account. The temperature distribution at seal region is predicted with respect to heat addition. Results show the possibilities of the model simplifications by excluding the water domain in low chamber from calculations. CFD simulations permit to improve seal chamber design to meet target water temperature around the seal. This study can be used for the analysis of different seal chamber configurations.

Keywords: CFD, heat transfer, seal chamber, high temperature water

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1656
9051 MPSO based Model Order Formulation Technique for SISO Continuous Systems

Authors: S. N. Deepa, G. Sugumaran

Abstract:

This paper proposes a new version of the Particle Swarm Optimization (PSO) namely, Modified PSO (MPSO) for model order formulation of Single Input Single Output (SISO) linear time invariant continuous systems. In the General PSO, the movement of a particle is governed by three behaviors namely inertia, cognitive and social. The cognitive behavior helps the particle to remember its previous visited best position. In Modified PSO technique split the cognitive behavior into two sections like previous visited best position and also previous visited worst position. This modification helps the particle to search the target very effectively. MPSO approach is proposed to formulate the higher order model. The method based on the minimization of error between the transient responses of original higher order model and the reduced order model pertaining to the unit step input. The results obtained are compared with the earlier techniques utilized, to validate its ease of computation. The proposed method is illustrated through numerical example from literature.

Keywords: Continuous System, Model Order Formulation, Modified Particle Swarm Optimization, Single Input Single Output, Transfer Function Approach

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1758
9050 Simulation and Parameterization by the Finite Element Method of a C Shape Delectromagnet for Application in the Characterization of Magnetic Properties of Materials

Authors: A. A Velásquez, J.Baena

Abstract:

This article presents the simulation, parameterization and optimization of an electromagnet with the C–shaped configuration, intended for the study of magnetic properties of materials. The electromagnet studied consists of a C-shaped yoke, which provides self–shielding for minimizing losses of magnetic flux density, two poles of high magnetic permeability and power coils wound on the poles. The main physical variable studied was the static magnetic flux density in a column within the gap between the poles, with 4cm2 of square cross section and a length of 5cm, seeking a suitable set of parameters that allow us to achieve a uniform magnetic flux density of 1x104 Gaussor values above this in the column, when the system operates at room temperature and with a current consumption not exceeding 5A. By means of a magnetostatic analysis by the finite element method, the magnetic flux density and the distribution of the magnetic field lines were visualized and quantified. From the results obtained by simulating an initial configuration of electromagnet, a structural optimization of the geometry of the adjustable caps for the ends of the poles was performed. The magnetic permeability effect of the soft magnetic materials used in the poles system, such as low– carbon steel (0.08% C), Permalloy (45% Ni, 54.7% Fe) and Mumetal (21.2% Fe, 78.5% Ni), was also evaluated. The intensity and uniformity of the magnetic field in the gap showed a high dependence with the factors described above. The magnetic field achieved in the column was uniform and its magnitude ranged between 1.5x104 Gauss and 1.9x104 Gauss according to the material of the pole used, with the possibility of increasing the magnetic field by choosing a suitable geometry of the cap, introducing a cooling system for the coils and adjusting the spacing between the poles. This makes the device a versatile and scalable tool to generate the magnetic field necessary to perform magnetic characterization of materials by techniques such as vibrating sample magnetometry (VSM), Hall-effect, Kerr-effect magnetometry, among others. Additionally, a CAD design of the modules of the electromagnet is presented in order to facilitate the construction and scaling of the physical device.

Keywords: Electromagnet, Finite Elements Method, Magnetostatic, Magnetometry, Modeling.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1909
9049 An Unified Approach to Thermodynamics of Power Yield in Thermal, Chemical and Electrochemical Systems

Authors: S. Sieniutycz

Abstract:

This paper unifies power optimization approaches in various energy converters, such as: thermal, solar, chemical, and electrochemical engines, in particular fuel cells. Thermodynamics leads to converter-s efficiency and limiting power. Efficiency equations serve to solve problems of upgrading and downgrading of resources. While optimization of steady systems applies the differential calculus and Lagrange multipliers, dynamic optimization involves variational calculus and dynamic programming. In reacting systems chemical affinity constitutes a prevailing component of an overall efficiency, thus the power is analyzed in terms of an active part of chemical affinity. The main novelty of the present paper in the energy yield context consists in showing that the generalized heat flux Q (involving the traditional heat flux q plus the product of temperature and the sum products of partial entropies and fluxes of species) plays in complex cases (solar, chemical and electrochemical) the same role as the traditional heat q in pure heat engines. The presented methodology is also applied to power limits in fuel cells as to systems which are electrochemical flow engines propelled by chemical reactions. The performance of fuel cells is determined by magnitudes and directions of participating streams and mechanism of electric current generation. Voltage lowering below the reversible voltage is a proper measure of cells imperfection. The voltage losses, called polarization, include the contributions of three main sources: activation, ohmic and concentration. Examples show power maxima in fuel cells and prove the relevance of the extension of the thermal machine theory to chemical and electrochemical systems. The main novelty of the present paper in the FC context consists in introducing an effective or reduced Gibbs free energy change between products p and reactants s which take into account the decrease of voltage and power caused by the incomplete conversion of the overall reaction.

Keywords: Power yield, entropy production, chemical engines, fuel cells, exergy.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1623
9048 Heuristics Analysis for Distributed Scheduling using MONARC Simulation Tool

Authors: Florin Pop

Abstract:

Simulation is a very powerful method used for highperformance and high-quality design in distributed system, and now maybe the only one, considering the heterogeneity, complexity and cost of distributed systems. In Grid environments, foe example, it is hard and even impossible to perform scheduler performance evaluation in a repeatable and controllable manner as resources and users are distributed across multiple organizations with their own policies. In addition, Grid test-beds are limited and creating an adequately-sized test-bed is expensive and time consuming. Scalability, reliability and fault-tolerance become important requirements for distributed systems in order to support distributed computation. A distributed system with such characteristics is called dependable. Large environments, like Cloud, offer unique advantages, such as low cost, dependability and satisfy QoS for all users. Resource management in large environments address performant scheduling algorithm guided by QoS constrains. This paper presents the performance evaluation of scheduling heuristics guided by different optimization criteria. The algorithms for distributed scheduling are analyzed in order to satisfy users constrains considering in the same time independent capabilities of resources. This analysis acts like a profiling step for algorithm calibration. The performance evaluation is based on simulation. The simulator is MONARC, a powerful tool for large scale distributed systems simulation. The novelty of this paper consists in synthetic analysis results that offer guidelines for scheduler service configuration and sustain the empirical-based decision. The results could be used in decisions regarding optimizations to existing Grid DAG Scheduling and for selecting the proper algorithm for DAG scheduling in various actual situations.

Keywords: Scheduling, Simulation, Performance Evaluation, QoS, Distributed Systems, MONARC

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1733
9047 Thermal Assessment of Outer Rotor Direct Drive Gearless Small-Scale Wind Turbines

Authors: Yusuf Yasa, Erkan Mese

Abstract:

This paper investigates the thermal issue of permanent magnet synchronous generator which is frequently used in direct drive gearless small-scale wind turbine applications. Permanent Magnet Synchronous Generator (PMSG) is designed with 2.5 kW continuous and 6 kW peak power. Then considering generator geometry, mechanical design of wind turbine is performed. Thermal analysis and optimization is carried out considering all wind turbine components to reach realistic results. This issue is extremely important in research and development (R&D) process for wind turbine applications.

Keywords: Direct drive, gearless wind turbine, permanent magnet synchronous generator (PMSG), small-scale wind turbine, thermal management.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2350
9046 Optimization of Process Parameters of Pressure Die Casting using Taguchi Methodology

Authors: Satish Kumar, Arun Kumar Gupta, Pankaj Chandna

Abstract:

The present work analyses different parameters of pressure die casting to minimize the casting defects. Pressure diecasting is usually applied for casting of aluminium alloys. Good surface finish with required tolerances and dimensional accuracy can be achieved by optimization of controllable process parameters such as solidification time, molten temperature, filling time, injection pressure and plunger velocity. Moreover, by selection of optimum process parameters the pressure die casting defects such as porosity, insufficient spread of molten material, flash etc. are also minimized. Therefore, a pressure die casting component, carburetor housing of aluminium alloy (Al2Si2O5) has been considered. The effects of selected process parameters on casting defects and subsequent setting of parameters with the levels have been accomplished by Taguchi-s parameter design approach. The experiments have been performed as per the combination of levels of different process parameters suggested by L18 orthogonal array. Analyses of variance have been performed for mean and signal-to-noise ratio to estimate the percent contribution of different process parameters. Confidence interval has also been estimated for 95% consistency level and three conformational experiments have been performed to validate the optimum level of different parameters. Overall 2.352% reduction in defects has been observed with the help of suggested optimum process parameters.

Keywords: Aluminium Casting, Pressure Die Casting, Taguchi Methodology, Design of Experiments

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 7312
9045 Algorithms for Computing of Optimization Problems with a Common Minimum-Norm Fixed Point with Applications

Authors: Apirak Sombat, Teerapol Saleewong, Poom Kumam, Parin Chaipunya, Wiyada Kumam, Anantachai Padcharoen, Yeol Je Cho, Thana Sutthibutpong

Abstract:

This research is aimed to study a two-step iteration process defined over a finite family of σ-asymptotically quasi-nonexpansive nonself-mappings. The strong convergence is guaranteed under the framework of Banach spaces with some additional structural properties including strict and uniform convexity, reflexivity, and smoothness assumptions. With similar projection technique for nonself-mapping in Hilbert spaces, we hereby use the generalized projection to construct a point within the corresponding domain. Moreover, we have to introduce the use of duality mapping and its inverse to overcome the unavailability of duality representation that is exploit by Hilbert space theorists. We then apply our results for σ-asymptotically quasi-nonexpansive nonself-mappings to solve for ideal efficiency of vector optimization problems composed of finitely many objective functions. We also showed that the obtained solution from our process is the closest to the origin. Moreover, we also give an illustrative numerical example to support our results.

Keywords: σ-asymptotically quasi-nonexpansive nonselfmapping, strong convergence, fixed point, uniformly convex and uniformly smooth Banach space.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1074
9044 Traffic Flow Prediction using Adaboost Algorithm with Random Forests as a Weak Learner

Authors: Guy Leshem, Ya'acov Ritov

Abstract:

Traffic Management and Information Systems, which rely on a system of sensors, aim to describe in real-time traffic in urban areas using a set of parameters and estimating them. Though the state of the art focuses on data analysis, little is done in the sense of prediction. In this paper, we describe a machine learning system for traffic flow management and control for a prediction of traffic flow problem. This new algorithm is obtained by combining Random Forests algorithm into Adaboost algorithm as a weak learner. We show that our algorithm performs relatively well on real data, and enables, according to the Traffic Flow Evaluation model, to estimate and predict whether there is congestion or not at a given time on road intersections.

Keywords: Machine Learning, Boosting, Classification, TrafficCongestion, Data Collecting, Magnetic Loop Detectors, SignalizedIntersections, Traffic Signal Timing Optimization.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3879
9043 Robust Design and Optimization of Production Wastes: An Application for Industries

Authors: Christopher C. Ihueze, Charles C. Okpala, Christian E. Okafor, Peter O. Ogbobe

Abstract:

This paper focuses on robust design and optimization of industrial production wastes. Past literatures were reviewed to case study Clamason Industries Limited (CIL) - a leading ladder-tops manufacturer. A painstaking study of the firm-s practices at the shop floor revealed that Over-production, Waiting time, Excess inventory, and Defects are the major wastes that are impeding their progress and profitability. Design expert8 software was used to apply Taguchi robust design and response surface methodology in order to model, analyse and optimise the wastes cost in CIL. Waiting time and overproduction rank first and second in contributing to the costs of wastes in CIL. For minimal wastes cost the control factors of overproduction, waiting-time, defects and excess-inventory must be set at 0.30, 390.70, 4 and 55.70 respectively for CIL. The optimal value of cost of wastes for the months studied was 22.3679. Finally, a recommendation was made that for the company to enhance their profitability and customer satisfaction, they must adopt the Shingeo Shingo-s Single Minute Exchange of Dies (SMED), which will immediately tackle the waste of waiting by drastically reducing their setup time.

Keywords: Excess-inventory, setup time, single minute exchange of dies, optimal value, over-production, robust design.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1693
9042 Optimal Data Compression and Filtering: The Case of Infinite Signal Sets

Authors: Anatoli Torokhti, Phil Howlett

Abstract:

We present a theory for optimal filtering of infinite sets of random signals. There are several new distinctive features of the proposed approach. First, we provide a single optimal filter for processing any signal from a given infinite signal set. Second, the filter is presented in the special form of a sum with p terms where each term is represented as a combination of three operations. Each operation is a special stage of the filtering aimed at facilitating the associated numerical work. Third, an iterative scheme is implemented into the filter structure to provide an improvement in the filter performance at each step of the scheme. The final step of the concerns signal compression and decompression. This step is based on the solution of a new rank-constrained matrix approximation problem. The solution to the matrix problem is described in this paper. A rigorous error analysis is given for the new filter.

Keywords: stochastic signals, optimization problems in signal processing.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1264