Search results for: spread constant.
236 On the Exact Solution of Non-Uniform Torsion for Beams with Asymmetric Cross-Section
Authors: A.Campanile, M. Mandarino, V. Piscopo
Abstract:
This paper deals with the problem of non-uniform torsion in thin-walled elastic beams with asymmetric cross-section, removing the basic concept of a fixed center of twist, necessary in the Vlasov-s and Benscoter-s theories to obtain a warping stress field equivalent to zero. In this new torsion/flexure theory, despite of the classical ones, the warping function will punctually satisfy the first indefinite equilibrium equation along the beam axis and it wont- be necessary to introduce the classical congruence condition, to take into account the effect of the beam restraints. The solution, based on the Fourier development of the displacement field, is obtained assuming that the applied external torque is constant along the beam axis and on both beam ends the unit twist angle and the warping axial displacement functions are totally restrained. Finally, in order to verify the feasibility of the proposed method and to compare it with the classical theories, two applications are carried out. The first one, relative to an open profile, is necessary to test the numerical method adopted to find the solution; the second one, instead, is relative to a simplified containership section, considered as full restrained in correspondence of two adjacent transverse bulkheads.Keywords: Non-uniform torsion, Asymmetric cross-section, Fourier series, Helmholtz equation, FE method.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1942235 Thermophoresis Particle Precipitate on Heated Surfaces
Authors: Rebhi A. Damseh, H. M. Duwairi, Benbella A. Shannak
Abstract:
This work deals with heat and mass transfer by steady laminar boundary layer flow of a Newtonian, viscous fluid over a vertical flat plate with variable surface heat flux embedded in a fluid saturated porous medium in the presence of thermophoresis particle deposition effect. The governing partial differential equations are transformed into no-similar form by using special transformation and solved numerically by using an implicit finite difference method. Many results are obtained and a representative set is displaced graphically to illustrate the influence of the various physical parameters on the wall thermophoresis deposition velocity and concentration profiles. It is found that the increasing of thermophoresis constant or temperature differences enhances heat transfer rates from vertical surfaces and increase wall thermophoresis velocities; this is due to favorable temperature gradients or buoyancy forces. It is also found that the effect of thermophoresis phenomena is more pronounced near pure natural convection heat transfer limit; because this phenomenon is directly a temperature gradient or buoyancy forces dependent. Comparisons with previously published work in the limits are performed and the results are found to be in excellent agreement.
Keywords: Thermophoresis, porous medium, variable surface heat flux.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2253234 Free Flapping Vibration of Rotating Inclined Euler Beams
Authors: Chih-Ling Huang, Wen-Yi Lin, Kuo-Mo Hsiao
Abstract:
A method based on the power series solution is proposed to solve the natural frequency of flapping vibration for the rotating inclined Euler beam with constant angular velocity. The vibration of the rotating beam is measured from the position of the corresponding steady state axial deformation. In this paper the governing equations for linear vibration of a rotating Euler beam are derived by the d'Alembert principle, the virtual work principle and the consistent linearization of the fully geometrically nonlinear beam theory in a rotating coordinate system. The governing equation for flapping vibration of the rotating inclined Euler beam is linear ordinary differential equation with variable coefficients and is solved by a power series with four independent coefficients. Substituting the power series solution into the corresponding boundary conditions at two end nodes of the rotating beam, a set of homogeneous equations can be obtained. The natural frequencies may be determined by solving the homogeneous equations using the bisection method. Numerical examples are studied to investigate the effect of inclination angle on the natural frequency of flapping vibration for rotating inclined Euler beams with different angular velocity and slenderness ratio.Keywords: Flapping vibration, Inclination angle, Natural frequency, Rotating beam.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2186233 Microstructure, Mechanical, Electrical and Thermal Properties of the Al-Si-Ni Ternary Alloy
Authors: Aynur Aker, Hasan Kaya
Abstract:
In recent years, the use of the aluminum based alloys in the industry and technology are increasing. Alloying elements in aluminum have further been improving the strength and stiffness properties that provide superior compared to other metals. In this study, investigation of physical properties (microstructure, microhardness, tensile strength, electrical conductivity and thermal properties) in the Al-12.6wt.%Si-%2wt.Ni ternary alloy were investigated. Al-Si-Ni alloy was prepared in vacuum atmosphere. The samples were directionally solidified upwards with different growth rate V (8.3−165.45 μm/s) at constant temperature gradient G (7.73 K/mm). The flake spacings (λ), microhardness (HV), ultimate tensile strength (σ), electrical resistivity (ρ) and thermal properties (H, Cp, Tm) of the samples were measured. Influence of the growth rate and spacings on microhardness, ultimate tensile strength and electrical resistivity were investigated and relationships between them were obtained. According to results, λ values decrease with increasing V, but HV, σ and ρ values increase with increasing V. Variations of electrical resistivity (ρ) of solidified samples were also measured. The enthalpy of fusion (H) and specific heat (Cp) for the alloy was also determined by differential scanning calorimeter (DSC) from heating trace during the transformation from liquid to solid. The results in this work were compared with the previous similar experimental results.Keywords: Electrical resistivity, enthalpy, microhardness, solidification, tensile stress.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2025232 The Effect of Acrylic Gel Grouting on Groundwater in Porous Media
Authors: S. Wagner, C. Boley, Y. Forouzandeh
Abstract:
When digging excavations, groundwater bearing layers are often encountered. In order to allow anhydrous excavation, soil groutings are carried out, which form a water-impermeable layer. As it is injected into groundwater areas, the effects of the materials used on the environment must be known. Developing an eco-friendly, economical and low viscous acrylic gel which has a sealing effect on groundwater is therefore a significant task. At this point the study begins. Basic investigations with the rheometer and a reverse column experiment have been performed with different mixing ratios of an acrylic gel. A dynamic rheology study was conducted to determine the time at which the gel still can be processed and the maximum gel strength is reached. To examine the effect of acrylic gel grouting on determine the parameters pH value, turbidity, electric conductivity, and total organic carbon on groundwater, an acrylic gel was injected in saturated sand filled the column. The structure was rinsed with a constant flow and the eluate was subsequently examined. The results show small changes in pH values and turbidity but there is a dependency between electric conductivity and total organic carbon. The curves of the two parameters react at the same time, which means that the electrical conductivity in the eluate can be measured constantly until the maximum is reached and only then must total organic carbon (TOC) samples be taken.
Keywords: Acrylic gel grouting, dynamic rheology study, electric conductivity, total organic carbon.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 544231 Surface Characteristics of Bacillus megaterium and Its Adsorption Behavior onto Dolomite
Authors: Mohsen Farahat, Tsuyoshi Hirajima
Abstract:
Surface characteristics of Bacillus megaterium strain were investigated; zeta potential, FTIR and contact angle were measured. Surface energy components including Lifshitz-van der Waals, Hamaker constant, and acid/base components (Lewis acid/Lewis base) were calculated from the contact angle data. The results showed that the microbial cells were negatively charged over all pH regions with high values at alkaline region. A hydrophilic nature for the strain was confirmed by contact angle and free energy of adhesion between microbial cells. Adsorption affinity of the strain toward dolomite was studied at different pH values. The results showed that the cells had a high affinity to dolomite at acid pH comparing to neutral and alkaline pH. Extended DLVO theory was applied to calculate interaction energy between B. megaterium cells and dolomite particles. The adsorption results were in agreement with the results of Extended DLVO approach. Surface changes occurred on dolomite surface after the bio-treatment were monitored; contact angle decreased from 69° to 38° and the mineral’s floatability decreased from 95% to 25% after the treatment.Keywords: Bacillus megaterium, surface modification, flotation, dolomite, adhesion energy.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2011230 Experimental on Free and Forced Heat Transfer and Pressure Drop of Copper Oxide-Heat Transfer Oil Nanofluid in Horizontal and Inclined Microfin Tube
Authors: F. Hekmatipour, M. A. Akhavan-Behabadi, B. Sajadi
Abstract:
In this paper, the combined free and forced convection heat transfer of the Copper Oxide-Heat Transfer Oil (CuO-HTO) nanofluid flow in horizontal and inclined microfin tubes is studied experimentally. The flow regime is laminar, and pipe surface temperature is constant. The effect of nanoparticle and microfin tube on the heat transfer rate is investigated with the Richardson number which is between 0.1 and 0.7. The results show an increasing nanoparticle concentration between 0% and 1.5% leads to enhance the combined free and forced convection heat transfer rate. According to the results, five correlations are proposed to provide estimating the free and forced heat transfer rate as the increasing Richardson number from 0.1 to 0.7. The maximum deviation of both correlations is less than 16%. Moreover, four correlations are suggested to assess the Nusselt number based on the Rayleigh number in inclined tubes from 1800000 to 7000000. The maximum deviation of the correlation is almost 16%. The Darcy friction factor of the nanofluid flow has been investigated. Furthermore, CuO-HTO nanofluid flows in inclined microfin tubes.
Keywords: Nanofluid; heat transfer oil; mixed convection; inclined tube; laminar flow.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 671229 Theoretical Analysis of Damping Due to Air Viscosity in Narrow Acoustic Tubes
Authors: M. Watanabe, T. Yamaguchi, M. Sasajima, Y. Kurosawa, Y. Koike
Abstract:
Headphones and earphones have many extremely small holes or narrow slits; they use sound-absorbing or porous material (i.e., dampers) to suppress vibratory system resonance. The air viscosity in these acoustic paths greatly affects the acoustic properties. Simulation analyses such as the finite element method (FEM) therefore require knowledge of the material properties of sound-absorbing or porous materials, such as the characteristic impedance and propagation constant. The transfer function method using acoustic tubes is a widely known measuring method, but there is no literature on taking measurements up to the audible range. To measure the acoustic properties at high-range frequencies, the acoustic tubes that form the measuring device need to be narrowed, and the distance between the two microphones needs to be reduced. However, when the tubes are narrowed, the characteristic impedance drops below the air impedance. In this study, we considered the effect of air viscosity in an acoustical tube, introduced a theoretical formula for this effect in the form of complex density and complex sonic velocity, and verified the theoretical formula. We also conducted an experiment and observed the effect from air viscosity in the actual measurements.Keywords: acoustic tube, air viscosity, earphones, FEM, porous material, sound-absorbing material, transfer function method
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2051228 Blood Glucose Level Measurement from Breath Analysis
Authors: Tayyab Hassan, Talha Rehman, Qasim Abdul Aziz, Ahmad Salman
Abstract:
The constant monitoring of blood glucose level is necessary for maintaining health of patients and to alert medical specialists to take preemptive measures before the onset of any complication as a result of diabetes. The current clinical monitoring of blood glucose uses invasive methods repeatedly which are uncomfortable and may result in infections in diabetic patients. Several attempts have been made to develop non-invasive techniques for blood glucose measurement. In this regard, the existing methods are not reliable and are less accurate. Other approaches claiming high accuracy have not been tested on extended dataset, and thus, results are not statistically significant. It is a well-known fact that acetone concentration in breath has a direct relation with blood glucose level. In this paper, we have developed the first of its kind, reliable and high accuracy breath analyzer for non-invasive blood glucose measurement. The acetone concentration in breath was measured using MQ 138 sensor in the samples collected from local hospitals in Pakistan involving one hundred patients. The blood glucose levels of these patients are determined using conventional invasive clinical method. We propose a linear regression classifier that is trained to map breath acetone level to the collected blood glucose level achieving high accuracy.
Keywords: Blood glucose level, breath acetone concentration, diabetes, linear regression.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1551227 Analyzing of Temperature-Dependent Thermal Conductivity Effect in the Numerical Modeling of Fin-Tube Radiators: Introduction of a New Method
Authors: Farzad Bazdidi-Tehrani, Mohammad Hadi Kamrava
Abstract:
In all industries which are related to heat, suitable thermal ranges are defined for each device to operate well. Consideration of these limits requires a thermal control unit beside the main system. The Satellite Thermal Control Unit exploits from different methods and facilities individually or mixed. For enhancing heat transfer between primary surface and the environment, utilization of radiating extended surfaces are common. Especially for large temperature differences; variable thermal conductivity has a strong effect on performance of such a surface .In most literatures, thermo-physical properties, such as thermal conductivity, are assumed as constant. However, in some recent researches the variation of these parameters is considered. This may be helpful for the evaluation of fin-s temperature distribution in relatively large temperature differences. A new method is introduced to evaluate temperature-dependent thermal conductivity values. The finite volume method is employed to simulate numerically the temperature distribution in a space radiating fin. The present modeling is carried out for Aluminum as fin material and compared with previous method. The present results are also compared with those of two other analytical methods and good agreement is shown.Keywords: Variable thermal conductivity, New method, Finitevolume method, Combined heat transfer, Extended Surface
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2329226 The Mechanical Response of a Composite Propellant under Harsh Conditions
Authors: Xin Tong, Jin-sheng Xu, Xiong Chen, Ya Zheng
Abstract:
The aim of this paper is to study the mechanical properties of HTPB (Hydroxyl-terminated polybutadiene) composite propellant under harsh conditions. It describes two tests involving uniaxial tensile tests of various strain rates (ranging from 0.0005 s-1 to 1.5 s-1), temperatures (ranging from 223 K to 343 K) and high-cycle fatigue tests under low-temperature (223 K, frequencies were set at 50, 100, 150 Hz) using DMA (Dynamic Mechanical Analyzer). To highlight the effect of small pre-strain on fatigue properties of HTPB propellant, quasi-static stretching was carried out before fatigue loading, and uniaxial tensile tests at constant strain rates were successively applied. The results reveal that flow stress of propellant increases with reduction in temperature and rise in strain rate, and the strain rate-temperature equivalence relationship could be described by TTSP (time-temperature superposition principle) incorporating a modified WLF equation. Moreover, the rate of performance degradations and damage accumulation of propellant during fatigue tests increased with increasing strain amplitude and loading frequencies, while initial quasi-static loading has a negative effect on fatigue properties by comparing stress-strain relations after fatigue tests.
Keywords: Fatigue, HTPB propellant, tensile properties, time-temperature superposition principle.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1067225 TiO2 Nanowires as Efficient Heterogeneous Photocatalysts for Waste-Water Treatment
Authors: Gul Afreen, Sreedevi Upadhyayula, Mahendra K. Sunkara
Abstract:
One-dimensional (1D) nanostructures like nanowires, nanotubes, and nanorods find variety of practical application owing to their unique physico-chemical properties. In this work, TiO2 nanowires were synthesized by direct oxidation of titanium particles in a unique microwave plasma jet reactor. The prepared TiO2 nanowires manifested the flexible features, and were characterized by using X-ray diffraction, Brunauer-Emmett-Teller (BET) surface area analyzer, UV-Visible and FTIR spectrophotometers, Scanning electron microscope, and Transmission electron microscope. Further, the photodegradation efficiency of these nanowires were tested against toxic organic dye like methylene blue (MB) and the results were compared with the commercial TiO2. It was found that TiO2 nanowires exhibited superior photocatalytic performance (89%) as compared to commercial TiO2 (75%) after 60 min of reaction. This is attributed to the lower recombination rate and increased interfacial charge transfer in TiO2 nanowire. Pseudo-first order kinetic modelling performed with the experimental results revealed that the rate constant of photodegradation in case of TiO2 nanowire was 1.3 times higher than that of commercial TiO2. Superoxide radical (O2˙−) was found to be the major contributor in the photodegradation mechanism. Based on the trapping experiments, a plausible mechanism of the photocatalytic reaction is discussed.
Keywords: Heterogeneous catalysis, photodegradation, reactive oxygen species, TiO2 nanowires.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 895224 The Study on the Conversed Remediation between Old and New Media in Case of Smart Phone and PC in South Korea
Authors: Jinhwan Yu, Jooyeon Yook
Abstract:
After Apple's first introduction its smart phone, iPhone in the end of 2009 in Korea, the number of Korean smarphone users had been rapidly increasing so that the half of Korean population became smart phone users as of February, 2012. Currently, smart phones are positioned as a major digital media with powerful influences in Korea. And, now, Koreans are leaning new information, enjoying games and communicating other people every time and everywhere. As smart phone devices' performances increased, the number of usable services became more while adequate GUI developments are required to implement various functions with smart phones. The strategy to provide similar experiences on smart phones through familiar features based on employment of existing media's functions mostly contributed to smart phones' popularization in connection with smart phone devices' iconic GUIs. The spread of Smart phone increased mobile web accesses. Therefore, the attempts to implement PC's web in the smart phone's web are continuously made. The mobile web GUI provides familiar experiences to users through designs adequately utilizing the smart phone's GUIs. As the number of users familiarized to smart phones and mobile web GUIs, opposite to reversed remediation from many parts of PCs, PCs are starting to adapt smart phone GUIs. This study defines this phenomenon as the reversed remediation, and reviews the reversed remediation cases of Smart phone GUI' characteristics of PCs. For this purpose, the established study issues are as under: · what is the reversed remediation? · what are the smart phone GUI's characteristics? · what kind of interrelationship exist s between the smart phone and PC's web site? It is meaningful in the forecast of the future GUI's change by understanding of characteristics in the paradigm changes of PC and smart phone's GUI designs. This also will be helpful to establish strategies for digital devices' development and design.Keywords: Graphic User Interface, Remediation, Smart Phone, South Korea, Web Site
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1546223 Supplementary Cementitious Materials as Sustainable Partial Replacement for Cement in the Building Industry
Authors: Nwakaego C. Onyenokporo
Abstract:
Cement is the most extensively used construction material due to its strength and versatility of use. However, the production of Portland cement has become unsustainable because of high energy usage, reduction of natural non-renewable resources and emissions of greenhouse gases. Production of cement contributes to anthropogenic greenhouse gases emissions annually. The growing concerns for the environment resulting from this constant and excessive use of cement has therefore raised the need for more green materials and technology. The use of supplementary cementitious materials (SCMs) is considered as one of the many alternatives suited to address this issue and serve as a sustainable partial replacement for cement in construction. This paper will examine the reuse of these waste materials to partially replace Portland cement. It provides a critical review of literature analysing various supplementary cementitious materials which are applicable in the building industry as either partial replacement for cement or aggregates. These materials have been grouped based on source into industrial wastes, domestic/general wastes, and agricultural wastes. The reuse of these waste materials could potentially reduce the negative effects of cement production and reduce landfills which constitute an environmental nuisance. This paper seeks to inform building industry professionals and researchers in the field on the applicability of these waste materials in construction.
Keywords: cement, greenhouse gases, landfills, sustainable, waste materials
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 741222 Supplementary Cementitious Materials as Sustainable Partial Replacement for Cement in the Building Industry
Authors: Nwakaego C. Onyenokporo
Abstract:
Cement is the most extensively used construction material due to its strength and versatility of use. However, the production of Portland cement has become unsustainable because of high energy usage, reduction of natural non-renewable resources and emissions of greenhouse gases. Production of cement contributes to anthropogenic greenhouse gases emissions annually. The growing concerns for the environment resulting from this constant and excessive use of cement has therefore raised the need for more green materials and technology. The use of supplementary cementitious materials (SCMs) is considered as one of the many alternatives suited to address this issue and serve as a sustainable partial replacement for cement in construction. This paper will examine the reuse of these waste materials to partially replace Portland cement. It provides a critical review of literature analysing various supplementary cementitious materials which are applicable in the building industry as either partial replacement for cement or aggregates. These materials have been grouped based on source into industrial wastes, domestic/general wastes, and agricultural wastes. The reuse of these waste materials could potentially reduce the negative effects of cement production and reduce landfills which constitute an environmental nuisance. This paper seeks to inform building industry professionals and researchers in the field on the applicability of these waste materials in construction.
Keywords: Cement, greenhouse gases, landfills, sustainable, waste materials.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 680221 Evaluating the Perception of Roma in Europe through Social Network Analysis
Authors: Giulia I. Pintea
Abstract:
The Roma people are a nomadic ethnic group native to India, and they are one of the most prevalent minorities in Europe. In the past, Roma were enslaved and they were imprisoned in concentration camps during the Holocaust; today, Roma are subject to hate crimes and are denied access to healthcare, education, and proper housing. The aim of this project is to analyze how the public perception of the Roma people may be influenced by antiziganist and pro-Roma institutions in Europe. In order to carry out this project, we used social network analysis to build two large social networks: The antiziganist network, which is composed of institutions that oppress and racialize Roma, and the pro-Roma network, which is composed of institutions that advocate for and protect Roma rights. Measures of centrality, density, and modularity were obtained to determine which of the two social networks is exerting the greatest influence on the public’s perception of Roma in European societies. Furthermore, data on hate crimes on Roma were gathered from the Organization for Security and Cooperation in Europe (OSCE). We analyzed the trends in hate crimes on Roma for several European countries for 2009-2015 in order to see whether or not there have been changes in the public’s perception of Roma, thus helping us evaluate which of the two social networks has been more influential. Overall, the results suggest that there is a greater and faster exchange of information in the pro-Roma network. However, when taking the hate crimes into account, the impact of the pro-Roma institutions is ambiguous, due to differing patterns among European countries, suggesting that the impact of the pro-Roma network is inconsistent. Despite antiziganist institutions having a slower flow of information, the hate crime patterns also suggest that the antiziganist network has a higher impact on certain countries, which may be due to institutions outside the political sphere boosting the spread of antiziganist ideas and information to the European public.
Keywords: Applied mathematics, oppression, Roma people, social network analysis.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 985220 An Overall Approach to the Communication of Organizations in Conventional and Virtual Offices
Authors: Mehmet Altınöz
Abstract:
Organizational communication is an administrative function crucial especially for executives in the implementation of organizational and administrative functions. Executives spend a significant part of their time on communicative activities. Doing his or her daily routine, arranging meeting schedules, speaking on the telephone, reading or replying to business correspondence, or fulfilling the control functions within the organization, an executive typically engages in communication processes. Efficient communication is the principal device for the adequate implementation of administrative and organizational activities. For this purpose, management needs to specify the kind of communication system to be set up and the kind of communication devices to be used. Communication is vital for any organization. In conventional offices, communication takes place within the hierarchical pyramid called the organizational structure, and is known as formal or informal communication. Formal communication is the type that works in specified structures within the organizational rules and towards the organizational goals. Informal communication, on the other hand, is the unofficial type taking place among staff as face-to-face or telephone interaction. Communication in virtual as well as conventional offices is essential for obtaining the right information in administrative activities and decision-making. Virtual communication technologies increase the efficiency of communication especially in virtual teams. Group communication is strengthened through an inter-group central channel. Further, ease of information transmission makes it possible to reach the information at the source, allowing efficient and correct decisions. Virtual offices can present as a whole the elements of information which conventional offices produce in different environments. At present, virtual work has become a reality with its pros and cons, and will probably spread very rapidly in coming years, in line with the growth in information technologies.Keywords: Organization, conventional office, virtual office, communication, communication model, communication functions, communication methods, vertical communication, linear communication, diagonal communication
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3163219 Rating the Importance of Customer Requirements for Green Product Using Analytic Hierarchy Process Methodology
Authors: Lara F. Horani, Shurong Tong
Abstract:
Identification of customer requirements and their preferences are the starting points in the process of product design. Most of design methodologies focus on traditional requirements. But in the previous decade, the green products and the environment requirements have increasingly attracted the attention with the constant increase in the level of consumer awareness towards environmental problems (such as green-house effect, global warming, pollution and energy crisis, and waste management). Determining the importance weights for the customer requirements is an essential and crucial process. This paper used the analytic hierarchy process (AHP) approach to evaluate and rate the customer requirements for green products. With respect to the ultimate goal of customer satisfaction, surveys are conducted using a five-point scale analysis. With the help of this scale, one can derive the weight vectors. This approach can improve the imprecise ranking of customer requirements inherited from studies based on the conventional AHP. Furthermore, the AHP with extent analysis is simple and easy to implement to prioritize customer requirements. The research is based on collected data through a questionnaire survey conducted over a sample of 160 people belonging to different age, marital status, education and income groups in order to identify the customer preferences for green product requirements.
Keywords: Analytic hierarchy process, green product, customer requirements for green design, importance weights for the customer requirements.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 889218 Dynamic Clustering Estimation of Tool Flank Wear in Turning Process using SVD Models of the Emitted Sound Signals
Authors: A. Samraj, S. Sayeed, J. E. Raja., J. Hossen, A. Rahman
Abstract:
Monitoring the tool flank wear without affecting the throughput is considered as the prudent method in production technology. The examination has to be done without affecting the machining process. In this paper we proposed a novel work that is used to determine tool flank wear by observing the sound signals emitted during the turning process. The work-piece material we used here is steel and aluminum and the cutting insert was carbide material. Two different cutting speeds were used in this work. The feed rate and the cutting depth were constant whereas the flank wear was a variable. The emitted sound signal of a fresh tool (0 mm flank wear) a slightly worn tool (0.2 -0.25 mm flank wear) and a severely worn tool (0.4mm and above flank wear) during turning process were recorded separately using a high sensitive microphone. Analysis using Singular Value Decomposition was done on these sound signals to extract the feature sound components. Observation of the results showed that an increase in tool flank wear correlates with an increase in the values of SVD features produced out of the sound signals for both the materials. Hence it can be concluded that wear monitoring of tool flank during turning process using SVD features with the Fuzzy C means classification on the emitted sound signal is a potential and relatively simple method.Keywords: Fuzzy c means, Microphone, Singular ValueDecomposition, Tool Flank Wear.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1898217 Research on Morning Commuting Behavior under Autonomous Vehicle Environment Based on Activity Method
Authors: Qing Dai, Zhengkui Lin, Jiajia Zhang, Yi Qu
Abstract:
Based on activity method, this paper focuses on morning commuting behavior when commuters travel with autonomous vehicles (AVs). Firstly, a net utility function of commuters is constructed by the activity utility of commuters at home, in car and at workplace, and the disutility of travel time cost and that of schedule delay cost. Then, this net utility function is applied to build an equilibrium model. Finally, under the assumption of constant marginal activity utility, the properties of equilibrium are analyzed. The results show that, in autonomous driving, the starting and ending time of morning peak and the number of commuters who arrive early and late at workplace are the same as those in manual driving. In automatic driving, however, the departure rate of arriving early at workplace is higher than that of manual driving, while the departure rate of arriving late is just the opposite. In addition, compared with manual driving, the departure time of arriving at workplace on time is earlier and the number of people queuing at the bottleneck is larger in automatic driving. However, the net utility of commuters and the total net utility of system in automatic driving are greater than those in manual driving.
Keywords: Autonomous cars, bottleneck model, activity utility, user equilibrium.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 609216 Design of Controllers to Control Frequency for Distributed Generation
Authors: R. Satish, G. Raja Rao
Abstract:
In this paper a hybrid distributed generation (DG) system connected to isolated load is studied. The DG system consisting of photo voltaic (PV) system, fuel cells, aqua electrolyzer, diesel engine generator and a battery energy storage system. The ambient temperature value of PV is taken as constant to make the output power of PV is directly proportional to the radiation and output power of other DG sources and frequency of the system is controlled by simple integral (I), proportional plus integral (PI), and proportional plus integral and derivative(PID) controllers. A maiden attempt is made to apply a more recent and powerful optimization technique named as bacterial foraging technique for optimization of controllers gains of the proposed hybrid DG system. The system responses with bacterial foraging based controllers are compared with that of classical method. Investigations reveal that bacterial foraging based controllers gives better responses than the classical method and also PID controller is best. Sensitivity analysis is carried out which demonstrates the robustness of the optimized gain values for system loading condition.
Keywords: Aqua electrolyzer, bacterial foraging, battery energy storage system, diesel engine generator, distributed generation, fuel cells, photo voltaic system.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2199215 Free Convection Boundary Layer Flow of a Viscoelastic Fluid in the Presence of Heat Generation
Authors: Abdul Rahman Mohd Kasim, Mohd Ariff Admon, Sharidan Shafie
Abstract:
The present paper considers the steady free convection boundary layer flow of a viscoelastics fluid with constant temperature in the presence of heat generation. The boundary layer equations are an order higher than those for the Newtonian (viscous) fluid and the adherence boundary conditions are insufficient to determine the solution of these equations completely. The governing boundary layer equations are first transformed into non-dimensional form by using special dimensionless group. Computations are performed numerically by using Keller-box method by augmenting an extra boundary condition at infinity and the results are displayed graphically to illustrate the influence of viscoelastic K, heat generation γ , and Prandtl Number, Pr parameters on the velocity and temperature profiles. The results of the surface shear stress in terms of the local skin friction and the surface rate of heat transfer in terms of the local Nusselt number for a selection of the heat generation parameterγ (=0.0, 0.2, 0.5, 0.8, 1.0) are obtained and presented in both tabular and graphical formats. Without effect of the internal heat generation inside the fluid domain for which we take γ = 0.0, the present numerical results show an excellent agreement with previous publication.Keywords: Free Convection, Boundary Layer, CircularCylinder, Viscoelastic Fluid, Heat Generation
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1924214 Characterization Study of Aluminium 6061 Hybrid Composite
Authors: U. Achutha Kini, S. S. Sharma, K. Jagannath, P. R. Prabhu, Gowri Shankar M. C.
Abstract:
Aluminium matrix composites with alumina reinforcements give superior mechanical & physical properties. Their applications in several fields like automobile, aerospace, defense, sports, electronics, bio-medical and other industrial purposes are becoming essential for the last several decades. In the present work, fabrication of hybrid composite was done by Stir casting technique using Al 6061 as a matrix with alumina and silicon carbide (SiC) as reinforcement materials. The weight percentage of alumina is varied from 2 to 4% and the silicon carbide weight percentage is maintained constant at 2%. Hardness and wear tests are performed in the as cast and heat treated conditions. Age hardening treatment was performed on the specimen with solutionizing at 550°C, aging at two temperatures (150 and 200°C) for different time durations. Hardness distribution curves are drawn and peak hardness values are recorded. Hardness increase was very sensitive with respect to the decrease in aging temperature. There was an improvement in wear resistance of the peak aged material when aged at lower temperature. Also increase in weight percent of alumina, increases wear resistance at lower temperature but opposite behavior was seen when aged at higher temperature.Keywords: Hybrid composite, hardness test, wear test, heat treatment, pin on disc wear testing machine.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2934213 Normalizing Scientometric Indicators of Individual Publications Using Local Cluster Detection Methods on Citation Networks
Authors: Levente Varga, Dávid Deritei, Mária Ercsey-Ravasz, Răzvan Florian, Zsolt I. Lázár, István Papp, Ferenc Járai-Szabó
Abstract:
One of the major shortcomings of widely used scientometric indicators is that different disciplines cannot be compared with each other. The issue of cross-disciplinary normalization has been long discussed, but even the classification of publications into scientific domains poses problems. Structural properties of citation networks offer new possibilities, however, the large size and constant growth of these networks asks for precaution. Here we present a new tool that in order to perform cross-field normalization of scientometric indicators of individual publications relays on the structural properties of citation networks. Due to the large size of the networks, a systematic procedure for identifying scientific domains based on a local community detection algorithm is proposed. The algorithm is tested with different benchmark and real-world networks. Then, by the use of this algorithm, the mechanism of the scientometric indicator normalization process is shown for a few indicators like the citation number, P-index and a local version of the PageRank indicator. The fat-tail trend of the article indicator distribution enables us to successfully perform the indicator normalization process.Keywords: Citation networks, scientometric indicator, cross-field normalization, local cluster detection.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 725212 Approach for Demonstrating Reliability Targets for Rail Transport during Low Mileage Accumulation in the Field: Methodology and Case Study
Authors: Nipun Manirajan, Heeralal Gargama, Sushil Guhe, Manoj Prabhakaran
Abstract:
In railway industry, train sets are designed based on contractual requirements (mission profile), where reliability targets are measured in terms of mean distance between failures (MDBF). However, during the beginning of revenue services, trains do not achieve the designed mission profile distance (mileage) within the timeframe due to infrastructure constraints, scarcity of commuters or other operational challenges thereby not respecting the original design inputs. Since trains do not run sufficiently and do not achieve the designed mileage within the specified time, car builder has a risk of not achieving the contractual MDBF target. This paper proposes a constant failure rate based model to deal with the situations where mileage accumulation is not a part of the design mission profile. The model provides appropriate MDBF target to be demonstrated based on actual accumulated mileage. A case study of rolling stock running in the field is undertaken to analyze the failure data and MDBF target demonstration during low mileage accumulation. The results of case study prove that with the proposed method, reliability targets are achieved under low mileage accumulation.Keywords: Mean distance between failures, mileage based reliability, reliability target normalization, rolling stock reliability.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1182211 Methane versus Carbon Dioxide: Mitigation Prospects
Authors: Alexander J. Severinsky, Allen L. Sessoms
Abstract:
Atmospheric carbon dioxide (CO2) has dominated the discussion around the causes of climate change. This is a reflection of a 100-year time horizon for all greenhouse gases that became a norm. The 100-year time horizon is much too long – and yet, almost all mitigation efforts, including those set in the near-term frame of within 30 years, are still geared toward it. In this paper, we show that for a 30-year time horizon, methane (CH4) is the greenhouse gas whose radiative forcing exceeds that of CO2. In our analysis, we use the radiative forcing of greenhouse gases in the atmosphere, because they directly affect the rise in temperature on Earth. We found that in 2019, the radiative forcing (RF) of methane was ~2.5 W/m2 and that of carbon dioxide was ~2.1 W/m2. Under a business-as-usual (BAU) scenario until 2050, such forcing would be ~2.8 W/m2 and ~3.1 W/m2 respectively. There is a substantial spread in the data for anthropogenic and natural methane (CH4) emissions, along with natural gas, (which is primarily CH4), leakages from industrial production to consumption. For this reason, we estimate the minimum and maximum effects of a reduction of these leakages, and assume an effective immediate reduction by 80%. Such action may serve to reduce the annual radiative forcing of all CH4 emissions by ~15% to ~30%. This translates into a reduction of RF by 2050 from ~2.8 W/m2 to ~2.5 W/m2 in the case of the minimum effect that can be expected, and to ~2.15 W/m2 in the case of the maximum effort to reduce methane leakages. Under the BAU, we find that the RF of CO2 will increase from ~2.1 W/m2 now to ~3.1 W/m2 by 2050. We assume a linear reduction of 50% in anthropogenic emission over the course of the next 30 years, which would reduce the radiative forcing of CO2 from ~3.1 W/m2 to ~2.9 W/m2. In the case of "net zero," the other 50% of only anthropogenic CO2 emissions reduction would be limited to being either from sources of emissions or directly from the atmosphere. In this instance, the total reduction would be from ~3.1 W/m2 to ~2.7 W/m2, or ~0.4 W/m2. To achieve the same radiative forcing as in the scenario of maximum reduction of methane leakages of ~2.15 W/m2, an additional reduction of radiative forcing of CO2 would be approximately 2.7 -2.15 = 0.55 W/m2. In total, one would need to remove ~660 GT of CO2 from the atmosphere in order to match the maximum reduction of current methane leakages, and ~270 GT of CO2 from emitting sources, to reach "negative emissions". This amounts to over 900 GT of CO2.
Keywords: Methane Leakages, Methane Radiative Forcing, Methane Mitigation, Methane Net Zero.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 646210 Mixed Model Assembly Line Sequencing In Make to Order System with Available to Promise Consideration
Authors: N. Manavizadeh, A. Dehghani, M. Rabbani
Abstract:
Mixed model assembly lines (MMAL) are a type of production line where a variety of product models similar in product characteristics are assembled. The effective design of these lines requires that schedule for assembling the different products is determined. In this paper we tried to fit the sequencing problem with the main characteristics of make to order (MTO) environment. The problem solved in this paper is a multiple objective sequencing problem in mixed model assembly lines sequencing using weighted Sum Method (WSM) using GAMS software for small problem and an effective GA for large scale problems because of the nature of NP-hardness of our problem and vast time consume to find the optimum solution in large problems. In this problem three practically important objectives are minimizing: total utility work, keeping a constant production rate variation, and minimizing earliness and tardiness cost which consider the priority of each customer and different due date which is a real situation in mixed model assembly lines and it is the first time we consider different attribute to prioritize the customers which help the company to reduce the cost of earliness and tardiness. This mechanism is a way to apply an advance available to promise (ATP) in mixed model assembly line sequencing which is the main contribution of this paper.Keywords: Available to promise, Earliness & Tardiness, GA, Mixed-Model assembly line Sequencing.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2533209 Flow-Through Supercritical Installation for Producing Biodiesel Fuel
Authors: Y. A. Shapovalov, F. M. Gumerov, M. K. Nauryzbaev, S. V. Mazanov, R. A. Usmanov, A. V. Klinov, L. K. Safiullina, S. A. Soshin
Abstract:
A flow-through installation was created and manufactured for the transesterification of triglycerides of fatty acids and production of biodiesel fuel under supercritical fluid conditions. Transesterification of rapeseed oil with ethanol was carried out according to two parameters: temperature and the ratio of alcohol/oil mixture at the constant pressure of 19 MPa. The kinetics of the yield of fatty acids ethyl esters (FAEE) was determined in the temperature range of 320-380 °C at the alcohol/oil molar ratio of 6:1-20:1. The content of the formed FAEE was determined by the method of correlation of the resulting biodiesel fuel by its kinematic viscosity. The maximum FAEE yield (about 90%) was obtained within 30 min at the ethanol/oil molar ratio of 12:1 and a temperature of 380 °C. When studying of transesterification of triglycerides, a kinetic model of an isothermal flow reactor was used. The reaction order implemented in the flow reactor has been determined. The first order of the reaction was confirmed by data on the conversion of FAEE during the reaction at different temperatures and the molar ratios of the initial reagents (ethanol/oil). Using the Arrhenius equation, the values of the effective constants of the transesterification reaction rate were calculated at different reaction temperatures. In addition, based on the experimental data, the activation energy and the pre-exponential factor of the transesterification reaction were determined.
Keywords: Biodiesel, fatty acid esters, supercritical fluid technology, transesterification.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 406208 Thermal Analysis on Heat Transfer Enhancement and Fluid Flow for Al2O3 Water-Ethylene Glycol Nanofluid in Single PEMFC Mini Channel
Authors: Irnie Zakaria, W. A. N. W Mohamed, W. H. Azmi
Abstract:
Thermal enhancement of a single mini channel in Proton Exchange Membrane Fuel Cell (PEMFC) cooling plate is numerically investigated. In this study, low concentration of Al2O3 in Water - Ethylene Glycol mixtures is used as coolant in single channel of carbon graphite plate to mimic the mini channels in PEMFC cooling plate. A steady and incompressible flow with constant heat flux is assumed in the channel of 1mm x 5mm x 100mm. Nano particle of Al2O3 used ranges from 0.1, 0.3 and 0.5 vol % concentration and then dispersed in 60:40 (water: Ethylene Glycol) mixture. The effect of different flow rates to fluid flow and heat transfer enhancement in Re number range of 20 to 140 was observed. The result showed that heat transfer coefficient was improved by 18.11%, 9.86% and 5.37% for 0.5, 0.3 and 0.1 vol. % Al2O3 in 60:40 (water: EG) as compared to base fluid of 60:40 (water: EG). It is also showed that the higher vol. % concentration of Al2O3 performed better in term of thermal enhancement but at the expense of higher pumping power required due to increase in pressure drop experienced. Maximum additional pumping power of 0.0012W was required for 0.5 vol % Al2O3 in 60:40 (water: EG) at Re number 140.Keywords: Heat transfer, mini channel, nanofluid, PEMFC.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2130207 Analysis of Hard Turning Process of AISI D3-Thermal Aspects
Authors: B. Varaprasad, C. Srinivasa Rao
Abstract:
In the manufacturing sector, hard turning has emerged as vital machining process for cutting hardened steels. Besides many advantages of hard turning operation, one has to implement to achieve close tolerances in terms of surface finish, high product quality, reduced machining time, low operating cost and environmentally friendly characteristics. In the present study, three-dimensional CAE (Computer Aided Engineering) based simulation of hard turning by using commercial software DEFORM 3D has been compared to experimental results of stresses, temperatures and tool forces in machining of AISI D3 steel using mixed Ceramic inserts (CC6050). In the present analysis, orthogonal cutting models are proposed, considering several processing parameters such as cutting speed, feed, and depth of cut. An exhaustive friction modeling at the tool-work interfaces is carried out. Work material flow around the cutting edge is carefully modeled with adaptive re-meshing simulation capability. In process simulations, feed rate and cutting speed are constant (i.e.,. 0.075 mm/rev and 155 m/min), and analysis is focused on stresses, forces, and temperatures during machining. Close agreement is observed between CAE simulation and experimental values.Keywords: Hard-turning, computer-aided engineering, computational machining, finite element method.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1353