Search results for: species classification
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 1634

Search results for: species classification

704 Joint Use of Factor Analysis (FA) and Data Envelopment Analysis (DEA) for Ranking of Data Envelopment Analysis

Authors: Reza Nadimi, Fariborz Jolai

Abstract:

This article combines two techniques: data envelopment analysis (DEA) and Factor analysis (FA) to data reduction in decision making units (DMU). Data envelopment analysis (DEA), a popular linear programming technique is useful to rate comparatively operational efficiency of decision making units (DMU) based on their deterministic (not necessarily stochastic) input–output data and factor analysis techniques, have been proposed as data reduction and classification technique, which can be applied in data envelopment analysis (DEA) technique for reduction input – output data. Numerical results reveal that the new approach shows a good consistency in ranking with DEA.

Keywords: Effectiveness, Decision Making, Data EnvelopmentAnalysis, Factor Analysis

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2425
703 Biotransformation of Artemisinin by using a Novel Soil Isolated Microorganism

Authors: Sreenivasa Rao Parcha, Lakshmi P

Abstract:

Artemisinin is a potential antimalarial drug effective against the multidrug resistant forms of Malarial Parasites. The current production of artemisinin is insufficient to meet the global demand. In the present study microbial biotransformation of arteannuin B, a biogenetic precursor of artemisinin to the later has been investigated. Screening studies carried out on several soil borne microorganisms have yielded one novel species with the bioconversion ability. Crude cell free extract of 72h old culture of the isolate had shown the bioconversion activity. On incubation with the substrate arteannuin B, crude cell free extract of the isolate had shown a bioconversion of 18.54% to artemisinin on molar basis with a specific activity of 0.18 units/mg.

Keywords: Arteannuin-B, Artemisia annua, Artemisinin, Bioconversion

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1745
702 EHW from Consumer Point of View: Consumer-Triggered Evolution

Authors: Yerbol Sapargaliyev, Tatiana Kalganova

Abstract:

Evolvable Hardware (EHW) has been regarded as adaptive system acquired by wide application market. Consumer market of any good requires diversity to satisfy consumers- preferences. Adaptation of EHW is a key technology that could provide individual approach to every particular user. This situation raises a question: how to set target for evolutionary algorithm? The existing techniques do not allow consumer to influence evolutionary process. Only designer at the moment is capable to influence the evolution. The proposed consumer-triggered evolution overcomes this problem by introducing new features to EHW that help adaptive system to obtain targets during consumer stage. Classification of EHW is given according to responsiveness, imitation of human behavior and target circuit response. Home intelligent water heating system is considered as an example.

Keywords: Actuators, consumer-triggered evolution, evolvable hardware, sensors.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1486
701 A New Face Recognition Method using PCA, LDA and Neural Network

Authors: A. Hossein Sahoolizadeh, B. Zargham Heidari, C. Hamid Dehghani

Abstract:

In this paper, a new face recognition method based on PCA (principal Component Analysis), LDA (Linear Discriminant Analysis) and neural networks is proposed. This method consists of four steps: i) Preprocessing, ii) Dimension reduction using PCA, iii) feature extraction using LDA and iv) classification using neural network. Combination of PCA and LDA is used for improving the capability of LDA when a few samples of images are available and neural classifier is used to reduce number misclassification caused by not-linearly separable classes. The proposed method was tested on Yale face database. Experimental results on this database demonstrated the effectiveness of the proposed method for face recognition with less misclassification in comparison with previous methods.

Keywords: Face recognition Principal component analysis, Linear discriminant analysis, Neural networks.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3213
700 Comparison of Eurocodes EN310 and EN789 in Determining the Bending Strength and Modulus of Elasticity of Red Seraya Plywood Panel

Authors: S.F. Tsen, M. Zamin Jumaat

Abstract:

The characteristic bending strength (MOR) and mean modulus of elasticity (MOE) of tropical hardwood red seraya (Shorea spp.) plywood were determined using European Standard EN310 and EN789. The thickness of the test specimen was 4.0mm, 7.0mm, 9.0mm, 12.0mm and 15.0mm. The experiment found that the MOR of red seraya plywood in EN310 is about 12% to 20% and 7% to 24% higher than EN789 whereas MOE were about 28% to 41% and 30% to 36% lower than those obtained from EN 789 for test specimens parallel and perpendicular to the grain direction. The linear regression shows that MOR and MOE for EN789 is about 0.8 times less and 1.5 times more than EN310. The experiment also found that the MOR and MOE of EN310 and EN789 also depend on the wood species that used in the experiment.

Keywords: Bending strength, Modulus of elasticity, EN310, EN789

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 4332
699 Target Detection with Improved Image Texture Feature Coding Method and Support Vector Machine

Authors: R. Xu, X. Zhao, X. Li, C. Kwan, C.-I Chang

Abstract:

An image texture analysis and target recognition approach of using an improved image texture feature coding method (TFCM) and Support Vector Machine (SVM) for target detection is presented. With our proposed target detection framework, targets of interest can be detected accurately. Cascade-Sliding-Window technique was also developed for automated target localization. Application to mammogram showed that over 88% of normal mammograms and 80% of abnormal mammograms can be correctly identified. The approach was also successfully applied to Synthetic Aperture Radar (SAR) and Ground Penetrating Radar (GPR) images for target detection.

Keywords: Image texture analysis, feature extraction, target detection, pattern classification.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1780
698 Data Analysis Techniques for Predictive Maintenance on Fleet of Heavy-Duty Vehicles

Authors: Antonis Sideris, Elias Chlis Kalogeropoulos, Konstantia Moirogiorgou

Abstract:

The present study proposes a methodology for the efficient daily management of fleet vehicles and construction machinery. The application covers the area of remote monitoring of heavy-duty vehicles operation parameters, where specific sensor data are stored and examined in order to provide information about the vehicle’s health. The vehicle diagnostics allow the user to inspect whether maintenance tasks need to be performed before a fault occurs. A properly designed machine learning model is proposed for the detection of two different types of faults through classification. Cross validation is used and the accuracy of the trained model is checked with the confusion matrix.

Keywords: Fault detection, feature selection, machine learning, predictive maintenance.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 781
697 Comparative Micro-Morphology, Anatomy and Architecture of Leaf of Physalis

Authors: Chockpisit Thepsithar, Aree Thongpukdee

Abstract:

Two species of Physalis, P.angulataL. and P. peruviana L. were used as models for comparative study to understand the values of micro-morphological, -anatomical and architectural characteristics of leaf for taxonomic purposes and possibly breeding and commercial applications. Both speciespossess amphistomaticleaves with 1-layer epidermis, 3-4-layer spongy mesophyll andbicollateral bundle midrib. Palisade parenchyma cells of P. angulatawere almost twice longer (65-75 μm) than the other one. Type of stomata was similar as anomocyticbut stomatal index(SI) at adaxial surface and abaxial surface of P. angulata were less than of P. peruvianaas 3.57, 4.00 and6.25, 6.66 respectively. Some leaf architectural characteristics such as leaf shape, order of venationalsoprovided information of taxonomic significance

Keywords: Physalis, Solanaceae, micromorphology, anatomy, leaf architecture.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3673
696 Risk Classification of SMEs by Early Warning Model Based on Data Mining

Authors: Nermin Ozgulbas, Ali Serhan Koyuncugil

Abstract:

One of the biggest problems of SMEs is their tendencies to financial distress because of insufficient finance background. In this study, an Early Warning System (EWS) model based on data mining for financial risk detection is presented. CHAID algorithm has been used for development of the EWS. Developed EWS can be served like a tailor made financial advisor in decision making process of the firms with its automated nature to the ones who have inadequate financial background. Besides, an application of the model implemented which covered 7,853 SMEs based on Turkish Central Bank (TCB) 2007 data. By using EWS model, 31 risk profiles, 15 risk indicators, 2 early warning signals, and 4 financial road maps has been determined for financial risk mitigation.

Keywords: Early Warning Systems, Data Mining, Financial Risk, SMEs.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3387
695 Temporary Housing Respond to Disasters in Developing Countries- Case Study: Iran-Ardabil and Lorestan Province Earthquakes

Authors: Farzaneh Hadafi, Alireza Fallahi

Abstract:

Natural Disasters have always occurred through earth life. As human life developed on earth, he faced with different disasters. Since disasters would destroy his living areas and ruin his life, he learned how to respond and overcome to these matters. Nowadays, in the era of industrialized world and informatics, the man kind seeks for stages and classification of pre and post disaster process in order to identify a framework in these circumstances. Because too many parameters complicate these frameworks and proceedings, it seems that this goal has not been properly established yet and the only resource is guidelines of UNDRO (1982) [1]. This paper will discuss about temporary housing as one of an approved stage in disaster management field and investigate the affects of disapproval or dismissal of this at two earthquakes which took place in Iran.

Keywords: Temporary Housing, Temporary Sheltering, DisasterManagement, Iran

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2301
694 Evolutionary Feature Selection for Text Documents using the SVM

Authors: Daniel I. Morariu, Lucian N. Vintan, Volker Tresp

Abstract:

Text categorization is the problem of classifying text documents into a set of predefined classes. After a preprocessing step, the documents are typically represented as large sparse vectors. When training classifiers on large collections of documents, both the time and memory restrictions can be quite prohibitive. This justifies the application of feature selection methods to reduce the dimensionality of the document-representation vector. In this paper, we present three feature selection methods: Information Gain, Support Vector Machine feature selection called (SVM_FS) and Genetic Algorithm with SVM (called GA_SVM). We show that the best results were obtained with GA_SVM method for a relatively small dimension of the feature vector.

Keywords: Feature Selection, Learning with Kernels, Support Vector Machine, Genetic Algorithm, and Classification.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1706
693 Feature Selection Methods for an Improved SVM Classifier

Authors: Daniel Morariu, Lucian N. Vintan, Volker Tresp

Abstract:

Text categorization is the problem of classifying text documents into a set of predefined classes. After a preprocessing step, the documents are typically represented as large sparse vectors. When training classifiers on large collections of documents, both the time and memory restrictions can be quite prohibitive. This justifies the application of feature selection methods to reduce the dimensionality of the document-representation vector. In this paper, three feature selection methods are evaluated: Random Selection, Information Gain (IG) and Support Vector Machine feature selection (called SVM_FS). We show that the best results were obtained with SVM_FS method for a relatively small dimension of the feature vector. Also we present a novel method to better correlate SVM kernel-s parameters (Polynomial or Gaussian kernel).

Keywords: Feature Selection, Learning with Kernels, SupportVector Machine, and Classification.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1829
692 Concentration of Nitrogen in a Forested Headwater Stream in Japan

Authors: Sakura Yoshii, Kana Sekiguchi, Akihiro Iijima

Abstract:

The balance between nitrogen loading and runoff in the forested headwater streams of the Kanna River was estimated to elucidate the current status of nitrogen saturation in a forested watershed. NO3-N concentration in the study area was far higher than the average value in Japan. Estimated nitrogen runoff accounted for 55–57% of nitrogen loading; suggesting that the forest-s nitrogen retention capacity is most likely in decline. Since the 1970s, Japan-s forestry industry has been declining due to the decrease in lumber demand and increase in cheap imported materials. Thus, this decline will contribute significantly to further reducing nitrogen saturation in forest ecosystems.

Keywords: Dissolved inorganic nitrogen species, Forest management, Nitrogen Saturation, Watershed.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2001
691 Meta Random Forests

Authors: Praveen Boinee, Alessandro De Angelis, Gian Luca Foresti

Abstract:

Leo Breimans Random Forests (RF) is a recent development in tree based classifiers and quickly proven to be one of the most important algorithms in the machine learning literature. It has shown robust and improved results of classifications on standard data sets. Ensemble learning algorithms such as AdaBoost and Bagging have been in active research and shown improvements in classification results for several benchmarking data sets with mainly decision trees as their base classifiers. In this paper we experiment to apply these Meta learning techniques to the random forests. We experiment the working of the ensembles of random forests on the standard data sets available in UCI data sets. We compare the original random forest algorithm with their ensemble counterparts and discuss the results.

Keywords: Random Forests [RF], ensembles, UCI.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2710
690 Technology and Its Social Implications: Myths and Realities in the Interpretation of the Concept

Authors: E. V. Veraszto, J. T. F. Camargo, D. Silva, N. A. Miranda, F. O. Simon, S. F. Amaral, L. V. Freitas

Abstract:

The concept of technology as well as itself has evolved continuously over time, such that, nowadays, this concept is still marked by myths and realities. Even the concept of science is frequently misunderstood as technology. In this way, this paper presents different forms of interpretation of the concept of technology in the course of history, as well as the social and cultural aspects associated with it, through an analysis made by means of insights from sociological studies of science and technology and its multiple relations with society. Through the analysis of contents, the paper presents a classification of how technology is interpreted in the social sphere and search channel efforts to show how a broader understanding can contribute to better interpretations of how scientific and technological development influences the environment in which we operate. The text also presents a particular point of view for the interpretation of the concept from the analysis throughout the whole work.

Keywords: Technology, conceptions of technology, technological myths, definition of technology.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1541
689 Thermodynamic Study of Uranium Extraction from Tunisian Wet Process Phosphoric Acid

Authors: N. Khleifia, A. Hannachi, N. Abbes

Abstract:

In the present paper, an experimental investigation was conducted to study the thermodynamic of uranium extraction from Tunisian wet phosphoric acid using the synergistic solvent mixture of di-2-ethylhexyl phosphoric acid (DEHPA) and trioctyl phosphine oxid (TOPO) diluted in kerosene. The effect of different factors affecting the extraction process (temperature, TOPO and DEHPA concentrations) has been investigated. The obtained data of temperature effect on the extraction showed that the enthalpy change is -35.8 kJ.mol-1. The slope analysis method was used for determining the stoichiometry of the extracted species.

Keywords: DEHPA-TOPO, extraction, phosphoric acid, stoichiometry, uranium.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2436
688 Pervasive Differentiated Services: A QoS Model for Pervasive Systems

Authors: Sherif G. Aly

Abstract:

In this article, we introduce a mechanism by which the same concept of differentiated services used in network transmission can be applied to provide quality of service levels to pervasive systems applications. The classical DiffServ model, including marking and classification, assured forwarding, and expedited forwarding, are all utilized to create quality of service guarantees for various pervasive applications requiring different levels of quality of service. Through a collection of various sensors, personal devices, and data sources, the transmission of contextsensitive data can automatically occur within a pervasive system with a given quality of service level. Triggers, initiators, sources, and receivers are four entities labeled in our mechanism. An explanation of the role of each is provided, and how quality of service is guaranteed.

Keywords: Pervasive systems, quality of service, differentiated services, mobile devices.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1497
687 A Proposed Hybrid Approach for Feature Selection in Text Document Categorization

Authors: M. F. Zaiyadi, B. Baharudin

Abstract:

Text document categorization involves large amount of data or features. The high dimensionality of features is a troublesome and can affect the performance of the classification. Therefore, feature selection is strongly considered as one of the crucial part in text document categorization. Selecting the best features to represent documents can reduce the dimensionality of feature space hence increase the performance. There were many approaches has been implemented by various researchers to overcome this problem. This paper proposed a novel hybrid approach for feature selection in text document categorization based on Ant Colony Optimization (ACO) and Information Gain (IG). We also presented state-of-the-art algorithms by several other researchers.

Keywords: Ant colony optimization, feature selection, information gain, text categorization, text representation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2069
686 Automatic Threshold Search for Heat Map Based Feature Selection: A Cancer Dataset Analysis

Authors: Carlos Huertas, Reyes Juarez-Ramirez

Abstract:

Public health is one of the most critical issues today; therefore, there is great interest to improve technologies in the area of diseases detection. With machine learning and feature selection, it has been possible to aid the diagnosis of several diseases such as cancer. In this work, we present an extension to the Heat Map Based Feature Selection algorithm, this modification allows automatic threshold parameter selection that helps to improve the generalization performance of high dimensional data such as mass spectrometry. We have performed a comparison analysis using multiple cancer datasets and compare against the well known Recursive Feature Elimination algorithm and our original proposal, the results show improved classification performance that is very competitive against current techniques.

Keywords: Feature selection, mass spectrometry, biomarker discovery, cancer.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1589
685 Biofungicide Trichodex WP

Authors: Snezana Rajkovic, Miroslava Markovic, Radoslav Rajkovic, Ljubinko Rakonjac

Abstract:

Grey mold on grape is caused by the fungus Botrytis cinerea Pers. Trichodex WP, a new biofungicide, that contains fungal spores of Trichoderma harzianum Rifai, was used for biological control of Grey mold on grape. The efficacy of Trichodex WP has been reported from many experiments. Experiments were carried out in the locality – Banatski Karlovac, on grapevine species – talijanski rizling. The trials were set according to instructions of methods PP1/152(2) and PP1/17(3) , according to a fully randomized block design. Phytotoxicity was estimated by PP methods 1/135(2), the intensity of infection according to Towsend Heuberger , the efficiency by Abbott, the analysis of variance with Duncan test and PP/181(2). Application of Trichodex WP is limited to the first two treatments. Other treatments are performed with the fungicides based on a.i. procymidone, vinclozoline and iprodione.

Keywords: Biofungicides, efficacy, grey mold, Trichodex WP.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 4174
684 A Proposed Approach for Emotion Lexicon Enrichment

Authors: Amr Mansour Mohsen, Hesham Ahmed Hassan, Amira M. Idrees

Abstract:

Document Analysis is an important research field that aims to gather the information by analyzing the data in documents. As one of the important targets for many fields is to understand what people actually want, sentimental analysis field has been one of the vital fields that are tightly related to the document analysis. This research focuses on analyzing text documents to classify each document according to its opinion. The aim of this research is to detect the emotions from text documents based on enriching the lexicon with adapting their content based on semantic patterns extraction. The proposed approach has been presented, and different experiments are applied by different perspectives to reveal the positive impact of the proposed approach on the classification results.

Keywords: Document analysis, sentimental analysis, emotion detection, WEKA tool, NRC Lexicon.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1456
683 Prediction of Cardiovascular Disease by Applying Feature Extraction

Authors: Nebi Gedik

Abstract:

Heart disease threatens the lives of a great number of people every year around the world. Heart issues lead to many of all deaths; therefore, early diagnosis and treatment are critical. The diagnosis of heart disease is complicated due to several factors affecting health such as high blood pressure, raised cholesterol, an irregular pulse rhythm, and more. Artificial intelligence has the potential to assist in the early detection and treatment of diseases. Improving heart failure prediction is one of the primary goals of research on heart disease risk assessment. This study aims to determine the features that provide the most successful classification prediction in detecting cardiovascular disease. The performances of each feature are compared using the K-Nearest Neighbor machine learning method. The feature that gives the most successful performance has been identified.

Keywords: Cardiovascular disease, feature extraction, supervised learning, k-NN.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 134
682 Evaluation of Clustering Based on Preprocessing in Gene Expression Data

Authors: Seo Young Kim, Toshimitsu Hamasaki

Abstract:

Microarrays have become the effective, broadly used tools in biological and medical research to address a wide range of problems, including classification of disease subtypes and tumors. Many statistical methods are available for analyzing and systematizing these complex data into meaningful information, and one of the main goals in analyzing gene expression data is the detection of samples or genes with similar expression patterns. In this paper, we express and compare the performance of several clustering methods based on data preprocessing including strategies of normalization or noise clearness. We also evaluate each of these clustering methods with validation measures for both simulated data and real gene expression data. Consequently, clustering methods which are common used in microarray data analysis are affected by normalization and degree of noise and clearness for datasets.

Keywords: Gene expression, clustering, data preprocessing.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1740
681 Trabecular Texture Analysis Using Fractal Metrics for Bone Fragility Assessment

Authors: Khaled Harrar, Rachid Jennane

Abstract:

The purpose of this study is the discrimination of 28 postmenopausal with osteoporotic femoral fractures from an agematched control group of 28 women using texture analysis based on fractals. Two pre-processing approaches are applied on radiographic images; these techniques are compared to highlight the choice of the pre-processing method. Furthermore, the values of the fractal dimension are compared to those of the fractal signature in terms of the classification of the two populations. In a second analysis, the BMD measure at proximal femur was compared to the fractal analysis, the latter, which is a non-invasive technique, allowed a better discrimination; the results confirm that the fractal analysis of texture on calcaneus radiographs is able to discriminate osteoporotic patients with femoral fracture from controls. This discrimination was efficient compared to that obtained by BMD alone. It was also present in comparing subgroups with overlapping values of BMD.

Keywords: Osteoporosis, fractal dimension, fractal signature, bone mineral density.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2328
680 Bone Ash Impact on Soil Shear Strength

Authors: G. M. Ayininuola, A. O. Sogunro

Abstract:

Most failures of soil have been attributed to poor shear strength. Consequently, the present paper investigated the suitability of cattle bone ash as a possible additive to improve the shear strength of soils. Four soil samples were collected and stabilized with prepared bone ash in proportions of 3%, 5%, 7%, 10%, 15% and 20% by dry weight. Chemical analyses of the bone ash; followed by classification, compaction, and triaxial shear tests of the treated soil samples were conducted. Results obtained showed that bone ash contained high proportion of calcium oxide and phosphate. Addition of bone ash to soil samples led to increase in soil shear strengths within the range of 22.40% to 105.18% over the strengths of the respective control tests. Conversely, all samples attained maximum shear strengths at 7% bone ash stabilization. The use of bone ash as an additive will therefore improve the shear strength of soils; however, using bone ash quantities in excess of 7% may not yield ample results.

Keywords: Bone ash, Shear strength, Stabilization, Soil.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3558
679 Recognition of Isolated Handwritten Latin Characters using One Continuous Route of Freeman Chain Code Representation and Feedforward Neural Network Classifier

Authors: Dewi Nasien, Siti S. Yuhaniz, Habibollah Haron

Abstract:

In a handwriting recognition problem, characters can be represented using chain codes. The main problem in representing characters using chain code is optimizing the length of the chain code. This paper proposes to use randomized algorithm to minimize the length of Freeman Chain Codes (FCC) generated from isolated handwritten characters. Feedforward neural network is used in the classification stage to recognize the image characters. Our test results show that by applying the proposed model, we reached a relatively high accuracy for the problem of isolated handwritten when tested on NIST database.

Keywords: Handwriting Recognition, Freeman Chain Code andFeedforward Backpropagation Neural Networks.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1822
678 Regeneration of Spent Catalysts with Ozone

Authors: Jyh-Cherng Chen, Chang-Yong Liu

Abstract:

This study investigates the in-situ regeneration of deactivated Pt-Pd catalyst in a laboratory-scale catalysis reactor. Different regeneration conditions are tested and the activity and characteristics of regenerated catalysts are analyzed. Experimental results show that the conversion efficiencies of C3H6 by different regenerated Pt-Pd catalysts were significantly improved from 77%, 55% and 41% to 86%, 98% and 99%, respectively. The best regeneration conditions was 52ppm ozone, 500oC, and 10min. Regeneration temperature has more influences than ozone concentration and regeneration time. With the comparisons of characteristics of deactivated catalyst and regenerated catalyst, the major poison species (carbon, metals, chloride, and sulfate) on the spent catalysts can be effectively removed by ozone regeneration. 

Keywords: Catalyst, deactivated, ozone, regeneration.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2425
677 Context-aware Recommender Systems using Data Mining Techniques

Authors: Kyoung-jae Kim, Hyunchul Ahn, Sangwon Jeong

Abstract:

This study proposes a novel recommender system to provide the advertisements of context-aware services. Our proposed model is designed to apply a modified collaborative filtering (CF) algorithm with regard to the several dimensions for the personalization of mobile devices – location, time and the user-s needs type. In particular, we employ a classification rule to understand user-s needs type using a decision tree algorithm. In addition, we collect primary data from the mobile phone users and apply them to the proposed model to validate its effectiveness. Experimental results show that the proposed system makes more accurate and satisfactory advertisements than comparative systems.

Keywords: Location-based advertisement, Recommender system, Collaborative filtering, User needs type, Mobile user.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2174
676 Chemical Characterization of Submicron Aerosol in Kanpur Region: a Source Apportionment Study

Authors: A. Chakraborty, T. Gupta

Abstract:

Several studies have shown the association between ambient particulate matter (PM) and adverse health effects and climate change, thus highlighting the need to limit the anthropogenic sources of PM. PM Exposure is commonly monitored as mass concentration of PM10 (particle aerodynamic diameter < 10μm) or PM2.5 (particle aerodynamic diameter < 2.5μm), although increasing toxicity with decreasing aerodynamic diameter has been reported due to increased surface area and enhanced chemical reactivity with other species. Additionally, the light scattering properties of PM increases with decreasing size. Hence, it is important to study the chemical characterization of finer fraction of the particulate matter and to identify their sources so that they can be controlled appropriately to a large extent at the sources before reaching to the receptors.

Keywords: PM1, PCA, source apportionment.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1651
675 Entropy Generation for Natural Convection in a Darcy – Brinkman Porous Cavity

Authors: Ali Mchirgui, Nejib Hidouri, Mourad Magherbi, Ammar Ben Brahim

Abstract:

The paper provides a numerical investigation of the entropy generation analysis due to natural convection in an inclined square porous cavity. The coupled equations of mass, momentum, energy and species conservation are solved using the Control Volume Finite-Element Method. Effect of medium permeability and inclination angle on entropy generation is analysed. It was found that according to the Darcy number and the porous thermal Raleigh number values, the entropy generation could be mainly due to heat transfer or to fluid friction irreversibility and that entropy generation reaches extremum values for specific inclination angles.

Keywords: Porous media, entropy generation, convection, numerical method.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2606