Search results for: positive count data.
7566 A Soft Systems Methodology Perspective on Data Warehousing Education Improvement
Abstract:
This paper demonstrates how the soft systems methodology can be used to improve the delivery of a module in data warehousing for fourth year information technology students. Graduates in information technology needs to have academic skills but also needs to have good practical skills to meet the skills requirements of the information technology industry. In developing and improving current data warehousing education modules one has to find a balance in meeting the expectations of various role players such as the students themselves, industry and academia. The soft systems methodology, developed by Peter Checkland, provides a methodology for facilitating problem understanding from different world views. In this paper it is demonstrated how the soft systems methodology can be used to plan the improvement of data warehousing education for fourth year information technology students.Keywords: Data warehousing, education, soft systems methodology, stakeholders, systems thinking.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 17077565 Security Architecture for At-Home Medical Care Using Sensor Network
Authors: S.S.Mohanavalli, Sheila Anand
Abstract:
This paper proposes a novel architecture for At- Home medical care which enables senior citizens, patients with chronic ailments and patients requiring post- operative care to be remotely monitored in the comfort of their homes. This architecture is implemented using sensors and wireless networking for transmitting patient data to the hospitals, health- care centers for monitoring by medical professionals. Patients are equipped with sensors to measure their physiological parameters, like blood pressure, pulse rate etc. and a Wearable Data Acquisition Unit is used to transmit the patient sensor data. Medical professionals can be alerted to any abnormal variations in these values for diagnosis and suitable treatment. Security threats and challenges inherent to wireless communication and sensor network have been discussed and a security mechanism to ensure data confidentiality and source authentication has been proposed. Symmetric key algorithm AES has been used for encrypting the data and a patent-free, two-pass block cipher mode CCFB has been used for implementing semantic security.Keywords: data confidentiality, integrity, remotemonitoring, source authentication
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 17427564 Data Privacy and Safety with Large Language Models
Authors: Ashly Joseph, Jithu Paulose
Abstract:
Large language models (LLMs) have revolutionized natural language processing capabilities, enabling applications such as chatbots, dialogue agents, image, and video generators. Nevertheless, their trainings on extensive datasets comprising personal information poses notable privacy and safety hazards. This study examines methods for addressing these challenges, specifically focusing on approaches to enhance the security of LLM outputs, safeguard user privacy, and adhere to data protection rules. We explore several methods including post-processing detection algorithms, content filtering, reinforcement learning from human and AI inputs, and the difficulties in maintaining a balance between model safety and performance. The study also emphasizes the dangers of unintentional data leakage, privacy issues related to user prompts, and the possibility of data breaches. We highlight the significance of corporate data governance rules and optimal methods for engaging with chatbots. In addition, we analyze the development of data protection frameworks, evaluate the adherence of LLMs to General Data Protection Regulation (GDPR), and examine privacy legislation in academic and business policies. We demonstrate the difficulties and remedies involved in preserving data privacy and security in the age of sophisticated artificial intelligence by employing case studies and real-life instances. This article seeks to educate stakeholders on practical strategies for improving the security and privacy of LLMs, while also assuring their responsible and ethical implementation.
Keywords: Data privacy, large language models, artificial intelligence, machine learning, cybersecurity, general data protection regulation, data safety.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1067563 A Hybridization of Constructive Beam Search with Local Search for Far From Most Strings Problem
Authors: Sayyed R Mousavi
Abstract:
The Far From Most Strings Problem (FFMSP) is to obtain a string which is far from as many as possible of a given set of strings. All the input and the output strings are of the same length, and two strings are said to be far if their hamming distance is greater than or equal to a given positive integer. FFMSP belongs to the class of sequences consensus problems which have applications in molecular biology. The problem is NP-hard; it does not admit a constant-ratio approximation either, unless P = NP. Therefore, in addition to exact and approximate algorithms, (meta)heuristic algorithms have been proposed for the problem in recent years. On the other hand, in the recent years, hybrid algorithms have been proposed and successfully used for many hard problems in a variety of domains. In this paper, a new metaheuristic algorithm, called Constructive Beam and Local Search (CBLS), is investigated for the problem, which is a hybridization of constructive beam search and local search algorithms. More specifically, the proposed algorithm consists of two phases, the first phase is to obtain several candidate solutions via the constructive beam search and the second phase is to apply local search to the candidate solutions obtained by the first phase. The best solution found is returned as the final solution to the problem. The proposed algorithm is also similar to memetic algorithms in the sense that both use local search to further improve individual solutions. The CBLS algorithm is compared with the most recent published algorithm for the problem, GRASP, with significantly positive results; the improvement is by order of magnitudes in most cases.
Keywords: Bioinformatics, Far From Most Strings Problem, Hybrid metaheuristics, Matheuristics, Sequences consensus problems.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 17437562 Machine Learning Facing Behavioral Noise Problem in an Imbalanced Data Using One Side Behavioral Noise Reduction: Application to a Fraud Detection
Authors: Salma El Hajjami, Jamal Malki, Alain Bouju, Mohammed Berrada
Abstract:
With the expansion of machine learning and data mining in the context of Big Data analytics, the common problem that affects data is class imbalance. It refers to an imbalanced distribution of instances belonging to each class. This problem is present in many real world applications such as fraud detection, network intrusion detection, medical diagnostics, etc. In these cases, data instances labeled negatively are significantly more numerous than the instances labeled positively. When this difference is too large, the learning system may face difficulty when tackling this problem, since it is initially designed to work in relatively balanced class distribution scenarios. Another important problem, which usually accompanies these imbalanced data, is the overlapping instances between the two classes. It is commonly referred to as noise or overlapping data. In this article, we propose an approach called: One Side Behavioral Noise Reduction (OSBNR). This approach presents a way to deal with the problem of class imbalance in the presence of a high noise level. OSBNR is based on two steps. Firstly, a cluster analysis is applied to groups similar instances from the minority class into several behavior clusters. Secondly, we select and eliminate the instances of the majority class, considered as behavioral noise, which overlap with behavior clusters of the minority class. The results of experiments carried out on a representative public dataset confirm that the proposed approach is efficient for the treatment of class imbalances in the presence of noise.Keywords: Machine learning, Imbalanced data, Data mining, Big data.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 11377561 Content Based Sampling over Transactional Data Streams
Authors: Mansour Tarafdar, Mohammad Saniee Abade
Abstract:
This paper investigates the problem of sampling from transactional data streams. We introduce CFISDS as a content based sampling algorithm that works on a landmark window model of data streams and preserve more informed sample in sample space. This algorithm that work based on closed frequent itemset mining tasks, first initiate a concept lattice using initial data, then update lattice structure using an incremental mechanism.Incremental mechanism insert, update and delete nodes in/from concept lattice in batch manner. Presented algorithm extracts the final samples on demand of user. Experimental results show the accuracy of CFISDS on synthetic and real datasets, despite on CFISDS algorithm is not faster than exist sampling algorithms such as Z and DSS.
Keywords: Sampling, data streams, closed frequent item set mining.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 17097560 Chemotherapy Safety Protocol for Oncology Nurses: It's Effect on Their Protective Measures Practices
Authors: Magda M. Mohsen, Manal E. Fareed
Abstract:
Background: Widespread use of chemotherapeutic drugs in the treatment of cancer has lead to higher health hazards among employee who handle and administer such drugs, so nurses should know how to protect themselves, their patients and their work environment against toxic effects of chemotherapy. Aim of this study was carried out to examine the effect of chemotherapy safety protocol for oncology nurses on their protective measure practices. Design: A quasi experimental research design was utilized. Setting: The study was carried out in oncology department of Menoufia university hospital and Tanta oncology treatment center. Sample: A convenience sample of forty five nurses in Tanta oncology treatment center and eighteen nurses in Menoufiya oncology department. Tools: 1. an interviewing questionnaire that covering sociodemographic data, assessment of unit and nurses' knowledge about chemotherapy. II: Obeservational check list to assess nurses' actual practices of handling and adminestration of chemotherapy. A base line data were assessed before implementing Chemotherapy Safety protocol, then Chemotherapy Safety protocol was implemented, and after 2 monthes they were assessed again. Results: reveled that 88.9% of study group I and 55.6% of study group II improved to good total knowledge scores after educating on the safety protocol, also 95.6% of study group I and 88.9% of study group II had good total practice score after educating on the safety protocol. Moreover less than half of group I (44.4%) reported that heavy workload is the most barriers for them, while the majority of group II (94.4%) had many barriers for adhering to the safety protocol such as they didn’t know the protocol, the heavy work load and inadequate equipment. Conclusions: Safety protocol for Oncology Nurses seemed to have positive effect on improving nurses' knowledge and practice. Recommendation: chemotherapy safety protocol should be instituted for all oncology nurses who are working in any oncology unit and/ or center to enhance compliance, and this protocol should be done at frequent intervals.
Keywords: Chemotherapy Safety protocol, Effect, protective measure practice.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 71977559 In Vitro Antibacterial and Antifungal Effects of a 30 kDa D-Galactoside-Specific Lectin from the Demosponge, Halichondria okadai
Authors: Sarkar M. A. Kawsar, Sarkar M. A. Mamun, Md S. Rahman, Hidetaro Yasumitsu, Yasuhiro Ozeki
Abstract:
The present study has been taken to explore the screening of in vitro antimicrobial activities of D-galactose-binding sponge lectin (HOL-30). HOL-30 was purified from the marine demosponge Halichondria okadai by affinity chromatography. The molecular mass of the lectin was determined to be 30 kDa with a single polypeptide by SDS-PAGE under non-reducing and reducing conditions. HOL-30 agglutinated trypsinized and glutaraldehydefixed rabbit and human erythrocytes with preference for type O erythrocytes. The lectin was subjected to evaluation for inhibition of microbial growth by the disc diffusion method against eleven human pathogenic gram-positive and gram-negative bacteria. The lectin exhibited strong antibacterial activity against gram-positive bacteria, such as Bacillus megaterium and Bacillus subtilis. However, it did not affect against gram-negative bacteria such as Salmonella typhi and Escherichia coli. The largest zone of inhibition was recorded of Bacillus megaterium (12 in diameter) and Bacillus subtilis (10 mm in diameter) at a concentration of the lectin (250 μg/disc). On the other hand, the antifungal activity of the lectin was investigated against six phytopathogenic fungi based on food poisoning technique. The lectin has shown maximum inhibition (22.83%) of mycelial growth of Botrydiplodia theobromae at a concentration of 100 μg/mL media. These findings indicate that the lectin may be of importance to clinical microbiology and have therapeutic applications.Keywords: Antibacterial, Halichondria okadai, Inhibition zone, Lectin.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 22817558 An Automatic Tool for Checking Consistency between Data Flow Diagrams (DFDs)
Authors: Rosziati Ibrahim, Siow Yen Yen
Abstract:
System development life cycle (SDLC) is a process uses during the development of any system. SDLC consists of four main phases: analysis, design, implement and testing. During analysis phase, context diagram and data flow diagrams are used to produce the process model of a system. A consistency of the context diagram to lower-level data flow diagrams is very important in smoothing up developing process of a system. However, manual consistency check from context diagram to lower-level data flow diagrams by using a checklist is time-consuming process. At the same time, the limitation of human ability to validate the errors is one of the factors that influence the correctness and balancing of the diagrams. This paper presents a tool that automates the consistency check between Data Flow Diagrams (DFDs) based on the rules of DFDs. The tool serves two purposes: as an editor to draw the diagrams and as a checker to check the correctness of the diagrams drawn. The consistency check from context diagram to lower-level data flow diagrams is embedded inside the tool to overcome the manual checking problem.Keywords: Data Flow Diagram, Context Diagram, ConsistencyCheck, Syntax and Semantic Rules
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 34397557 Real-Time Implementation of STANAG 4539 High-Speed HF Modem
Authors: S. Saraç, F. Kara, C.Vural
Abstract:
High-frequency (HF) communications have been used by military organizations for more than 90 years. The opportunity of very long range communications without the need for advanced equipment makes HF a convenient and inexpensive alternative of satellite communications. Besides the advantages, voice and data transmission over HF is a challenging task, because the HF channel generally suffers from Doppler shift and spread, multi-path, cochannel interference, and many other sources of noise. In constructing an HF data modem, all these effects must be taken into account. STANAG 4539 is a NATO standard for high-speed data transmission over HF. It allows data rates up to 12800 bps over an HF channel of 3 kHz. In this work, an efficient implementation of STANAG 4539 on a single Texas Instruments- TMS320C6747 DSP chip is described. The state-of-the-art algorithms used in the receiver and the efficiency of the implementation enables real-time high-speed data / digitized voice transmission over poor HF channels.
Keywords: High frequency, modem, STANAG 4539.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 53417556 Detection Efficient Enterprises via Data Envelopment Analysis
Authors: S. Turkan
Abstract:
In this paper, the Turkey’s Top 500 Industrial Enterprises data in 2014 were analyzed by data envelopment analysis. Data envelopment analysis is used to detect efficient decision-making units such as universities, hospitals, schools etc. by using inputs and outputs. The decision-making units in this study are enterprises. To detect efficient enterprises, some financial ratios are determined as inputs and outputs. For this reason, financial indicators related to productivity of enterprises are considered. The efficient foreign weighted owned capital enterprises are detected via super efficiency model. According to the results, it is said that Mercedes-Benz is the most efficient foreign weighted owned capital enterprise in Turkey.Keywords: Data envelopment analysis, super efficiency, financial ratios, BCC model.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 8767555 Fusion of ETM+ Multispectral and Panchromatic Texture for Remote Sensing Classification
Authors: Mahesh Pal
Abstract:
This paper proposes to use ETM+ multispectral data and panchromatic band as well as texture features derived from the panchromatic band for land cover classification. Four texture features including one 'internal texture' and three GLCM based textures namely correlation, entropy, and inverse different moment were used in combination with ETM+ multispectral data. Two data sets involving combination of multispectral, panchromatic band and its texture were used and results were compared with those obtained by using multispectral data alone. A decision tree classifier with and without boosting were used to classify different datasets. Results from this study suggest that the dataset consisting of panchromatic band, four of its texture features and multispectral data was able to increase the classification accuracy by about 2%. In comparison, a boosted decision tree was able to increase the classification accuracy by about 3% with the same dataset.Keywords: Internal texture; GLCM; decision tree; boosting; classification accuracy.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 17367554 Investigation of Syngas Production from Waste Gas and Ratio Adjustment using a Fischer-Tropsch Synthesis Reactor
Authors: E.Darzi
Abstract:
In this study, a reformer model simulation to use refinery (Farashband refinery, Iran) waste natural gas. In the petroleum and allied sectors where natural gas is being encountered (in form of associated gas) without prior preparation for its positive use, its combustion (which takes place in flares, an equipment through which they are being disposed) has become a great problem because of its associated environmental problems in form of gaseous emission. The proposed model is used to product syngas from waste natural gas. A detailed steady model described by a set of ordinary differential and algebraic equations was developed to predict the behavior of the overall process. The proposed steady reactor model was validated against process data of a reformer synthesis plant recorded and a good agreement was achieved. H2/CO ratio has important effect on Fischer- Tropsch synthesis reactor product and we try to achieve this parameter with best designing reformer reactor. We study different kind of reformer reactors and then select auto thermal reforming process of natural gas in a fixed bed reformer that adjustment H2/CO ratio with CO2 and H2O injection. Finally a strategy was proposed for prevention of extra natural gas to atmosphere.Keywords: Fischer-Tropsch, injection, reformer, syngas, waste natural gas.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 17327553 A Formal Approach for Instructional Design Integrated with Data Visualization for Learning Analytics
Authors: Douglas A. Menezes, Isabel D. Nunes, Ulrich Schiel
Abstract:
Most Virtual Learning Environments do not provide support mechanisms for the integrated planning, construction and follow-up of Instructional Design supported by Learning Analytic results. The present work aims to present an authoring tool that will be responsible for constructing the structure of an Instructional Design (ID), without the data being altered during the execution of the course. The visual interface aims to present the critical situations present in this ID, serving as a support tool for the course follow-up and possible improvements, which can be made during its execution or in the planning of a new edition of this course. The model for the ID is based on High-Level Petri Nets and the visualization forms are determined by the specific kind of the data generated by an e-course, a population of students generating sequentially dependent data.
Keywords: Educational data visualization, high-level petri nets, instructional design, learning analytics.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 8487552 Exploring the Destination Image of Mainland China Tourists to Taiwan by Word-of-Mouth on Web
Authors: Y. R. Li, Y. Y. Wang
Abstract:
After allowing direct flights from Mainland China to Taiwan, Chinese tourists increased according to Tourism Bureaustatistics. There are from 0.19 to 2 million tourists from 2008 to 2011. Mainland China has become the main source of Taiwan developing tourism industry. Taiwanese government should know more about comments from Chinese tourists to Taiwan in order toproperly market Taiwan tourism and enhance the overall quality of tourism. In order to understand Chinese visitors’ comments, this study adopts content analysis to analyze electronic word-of-mouth on Web. This study collects 375 blog articles of Chinese tourists from Ctrip.com as a database during 2009 to 2011. Through the qualitative data analysis the traveling destination imagesis divided into seven dimensions, such as senic spots, shopping, food and beverages, accommodations, transportation, festivals and recreation activities. Finally, this study proposes some practical managerial implication to know both positive and negative images of the seven dimensions from Chinese tourists, providing marketing strategies and suggestions to traveling agency industry.
Keywords: Destination Image, Content Analysis, Electronic Word-of-Mouth.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 25407551 Visual Text Analytics Technologies for Real-Time Big Data: Chronological Evolution and Issues
Authors: Siti Azrina B. A. Aziz, Siti Hafizah A. Hamid
Abstract:
New approaches to analyze and visualize data stream in real-time basis is important in making a prompt decision by the decision maker. Financial market trading and surveillance, large-scale emergency response and crowd control are some example scenarios that require real-time analytic and data visualization. This situation has led to the development of techniques and tools that support humans in analyzing the source data. With the emergence of Big Data and social media, new techniques and tools are required in order to process the streaming data. Today, ranges of tools which implement some of these functionalities are available. In this paper, we present chronological evolution evaluation of technologies for supporting of real-time analytic and visualization of the data stream. Based on the past research papers published from 2002 to 2014, we gathered the general information, main techniques, challenges and open issues. The techniques for streaming text visualization are identified based on Text Visualization Browser in chronological order. This paper aims to review the evolution of streaming text visualization techniques and tools, as well as to discuss the problems and challenges for each of identified tools.Keywords: Information visualization, visual analytics, text mining, visual text analytics tools, big data visualization.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 10027550 Safety Assessment of Traditional Ready-to-Eat Meat Products Vended at Retail Outlets in Kebbi and Sokoto States, Nigeria
Authors: M. I. Ribah, M. Jibir, Y. A. Bashar, S. S. Manga
Abstract:
Food safety is a significant and growing public health problem in the world and Nigeria as a developing country, since food-borne diseases are important contributors to the huge burden of sickness and death of humans. In Nigeria, traditional ready-to-eat meat products (RTE-MPs) like balangu, tsire, guru and dried meat products like kilishi, dambun nama, banda, were reported to be highly appreciated because of their eating qualities. The consumption of these products was considered as safe due to the treatments that are usually involved during their production process. However, during processing and handling, the products could be contaminated by pathogens that could cause food poisoning. Therefore, a hazard identification for pathogenic bacteria on some traditional RTE-MPs was conducted in Kebbi and Sokoto States, Nigeria. A total of 116 RTE-MPs (balangu-38, kilishi-39 and tsire-39) samples were obtained from retail outlets and analyzed using standard cultural microbiological procedures in general and selective enrichment media to isolate the target pathogens. A six-fold serial dilution was prepared and using the pour plating method, colonies were counted. Serial dilutions were selected based on the prepared pre-labeled Petri dishes for each sample. A volume of 10-12 ml of molten Nutrient agar cooled to 42-45°C was poured into each Petri dish and 1 ml each from dilutions of 102, 104 and 106 for every sample was respectively poured on a pre-labeled Petri plate after which colonies were counted. The isolated pathogens were identified and confirmed after series of biochemical tests. Frequencies and percentages were used to describe the presence of pathogens. The General Linear Model was used to analyze data on pathogen presence according to RTE-MPs and means were separated using the Tukey test at 0.05 confidence level. Of the 116 RTE-MPs samples collected, 35 (30.17%) samples were found to be contaminated with some tested pathogens. Prevalence results showed that Escherichia coli, salmonella and Staphylococcus aureus were present in the samples. Mean total bacterial count was 23.82×106 cfu/g. The frequency of individual pathogens isolated was; Staphylococcus aureus 18 (15.51%), Escherichia coli 12 (10.34%) and Salmonella 5 (4.31%). Also, among the RTE-MPs tested, the total bacterial counts were found to differ significantly (P < 0.05), with 1.81, 2.41 and 2.9×104 cfu/g for tsire, kilishi, and balangu, respectively. The study concluded that the presence of pathogenic bacteria in balangu could pose grave health risks to consumers, and hence, recommended good manufacturing practices in the production of balangu to improve the products’ safety.
Keywords: Ready-to-eat meat products, retail outlets, safety assessment, public health.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 12097549 Churn Prediction for Telecommunication Industry Using Artificial Neural Networks
Authors: Ulas Vural, M. Ergun Okay, E. Mesut Yildiz
Abstract:
Telecommunication service providers demand accurate and precise prediction of customer churn probabilities to increase the effectiveness of their customer relation services. The large amount of customer data owned by the service providers is suitable for analysis by machine learning methods. In this study, expenditure data of customers are analyzed by using an artificial neural network (ANN). The ANN model is applied to the data of customers with different billing duration. The proposed model successfully predicts the churn probabilities at 83% accuracy for only three months expenditure data and the prediction accuracy increases up to 89% when the nine month data is used. The experiments also show that the accuracy of ANN model increases on an extended feature set with information of the changes on the bill amounts.Keywords: Customer relationship management, churn prediction, telecom industry, deep learning, Artificial Neural Networks, ANN.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 7607548 A Technical Perspective on Roadway Safety in Eastern Province: Data Evaluation and Spatial Analysis
Authors: Muhammad Farhan, Sayed Faruque, Amr Mohammed, Sami Osman, Omar Al-Jabari, Abdul Almojil
Abstract:
Saudi Arabia in recent years has seen drastic increase in traffic related crashes. With population of over 29 million, Saudi Arabia is considered as a fast growing and emerging economy. The rapid population increase and economic growth has resulted in rapid expansion of transportation infrastructure, which has led to increase in road crashes. Saudi Ministry of Interior reported more than 7,000 people killed and 68,000 injured in 2011 ranking Saudi Arabia to be one of the worst worldwide in traffic safety. The traffic safety issues in the country also result in distress to road users and cause and economic loss exceeding 3.7 billion Euros annually. Keeping this in view, the researchers in Saudi Arabia are investigating ways to improve traffic safety conditions in the country. This paper presents a multilevel approach to collect traffic safety related data required to do traffic safety studies in the region. Two highway corridors including King Fahd Highway 39 kilometre and Gulf Cooperation Council Highway 42 kilometre long connecting the cities of Dammam and Khobar were selected as a study area. Traffic data collected included traffic counts, crash data, travel time data, and speed data. The collected data was analysed using geographic information system to evaluate any correlation. Further research is needed to investigate the effectiveness of traffic safety related data when collected in a concerted effort.
Keywords: Crash Data, Data Collection, Traffic Safety.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 23517547 Machine Scoring Model Using Data Mining Techniques
Authors: Wimalin S. Laosiritaworn, Pongsak Holimchayachotikul
Abstract:
this article proposed a methodology for computer numerical control (CNC) machine scoring. The case study company is a manufacturer of hard disk drive parts in Thailand. In this company, sample of parts manufactured from CNC machine are usually taken randomly for quality inspection. These inspection data were used to make a decision to shut down the machine if it has tendency to produce parts that are out of specification. Large amount of data are produced in this process and data mining could be very useful technique in analyzing them. In this research, data mining techniques were used to construct a machine scoring model called 'machine priority assessment model (MPAM)'. This model helps to ensure that the machine with higher risk of producing defective parts be inspected before those with lower risk. If the defective prone machine is identified sooner, defective part and rework could be reduced hence improving the overall productivity. The results showed that the proposed method can be successfully implemented and approximately 351,000 baht of opportunity cost could have saved in the case study company.Keywords: Computer Numerical Control, Data Mining, HardDisk Drive.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 13957546 The Impact of Seasonality on Rainfall Patterns: A Case Study
Authors: Priti Kaushik, Randhir Singh Baghel, Somil Khandelwal
Abstract:
This study uses whole-year data from Rajasthan, India, at the meteorological divisional level to analyze and evaluate long-term spatiotemporal trends in rainfall and looked at the data from each of the thirteen tehsils in the Jaipur district to see how the rainfall pattern has altered over the last 10 years. Data on daily rainfall from the Indian Meteorological Department (IMD) in Jaipur are available for the years 2012 through 2021. We mainly focus on comparing data of tehsil wise in the Jaipur district, Rajasthan, India. Also analyzed is the fact that July and August always see higher rainfall than any other month. Rainfall usually starts to rise around week 25th and peaks in weeks 32nd or 33rd. They showed that on several occasions, 2017 saw the least amount of rainfall during a long span of 10 years. The greatest rain fell between 2012 and 2021 in 2013, 2019, and 2020.
Keywords: Data analysis, extreme events, rainfall, descriptive case studies, precipitation temperature.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1907545 Enhance the Power of Sentiment Analysis
Authors: Yu Zhang, Pedro Desouza
Abstract:
Since big data has become substantially more accessible and manageable due to the development of powerful tools for dealing with unstructured data, people are eager to mine information from social media resources that could not be handled in the past. Sentiment analysis, as a novel branch of text mining, has in the last decade become increasingly important in marketing analysis, customer risk prediction and other fields. Scientists and researchers have undertaken significant work in creating and improving their sentiment models. In this paper, we present a concept of selecting appropriate classifiers based on the features and qualities of data sources by comparing the performances of five classifiers with three popular social media data sources: Twitter, Amazon Customer Reviews, and Movie Reviews. We introduced a couple of innovative models that outperform traditional sentiment classifiers for these data sources, and provide insights on how to further improve the predictive power of sentiment analysis. The modeling and testing work was done in R and Greenplum in-database analytic tools.
Keywords: Sentiment Analysis, Social Media, Twitter, Amazon, Data Mining, Machine Learning, Text Mining.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 35187544 Lineup Optimization Model of Basketball Players Based on the Prediction of Recursive Neural Networks
Authors: Wang Yichen, Haruka Yamashita
Abstract:
In recent years, in the field of sports, decision making such as member in the game and strategy of the game based on then analysis of the accumulated sports data are widely attempted. In fact, in the NBA basketball league where the world's highest level players gather, to win the games, teams analyze the data using various statistical techniques. However, it is difficult to analyze the game data for each play such as the ball tracking or motion of the players in the game, because the situation of the game changes rapidly, and the structure of the data should be complicated. Therefore, it is considered that the analysis method for real time game play data is proposed. In this research, we propose an analytical model for "determining the optimal lineup composition" using the real time play data, which is considered to be difficult for all coaches. In this study, because replacing the entire lineup is too complicated, and the actual question for the replacement of players is "whether or not the lineup should be changed", and “whether or not Small Ball lineup is adopted”. Therefore, we propose an analytical model for the optimal player selection problem based on Small Ball lineups. In basketball, we can accumulate scoring data for each play, which indicates a player's contribution to the game, and the scoring data can be considered as a time series data. In order to compare the importance of players in different situations and lineups, we combine RNN (Recurrent Neural Network) model, which can analyze time series data, and NN (Neural Network) model, which can analyze the situation on the field, to build the prediction model of score. This model is capable to identify the current optimal lineup for different situations. In this research, we collected all the data of accumulated data of NBA from 2019-2020. Then we apply the method to the actual basketball play data to verify the reliability of the proposed model.Keywords: Recurrent Neural Network, players lineup, basketball data, decision making model.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 8287543 Inter-Specific Differences in Leaf Phenology, Growth of Seedlings of Cork OAK (Quercus suber L.), Zeen Oak (Quercus canariensis Willd.) and Their Hybrid Afares Oak (Quercus afares Pomel) in the Nursery
Authors: S. Mhamdi, O. Brendel, P. Montpied, K. Ben Yahia, N. Saouyah, B. Hasnaoui, E. Dreyer
Abstract:
Leaf Life Span (LLS) is used to classify trees into two main groups: evergreen and deciduous species. It varies according to the forms of life between taxonomic groups. Co-occurrence of deciduous and evergreen oaks is common in some Mediterranean type climate areas. Nevertheless, in the Tunisian forests, there is no enough information about the functional inter-specific diversity among oak species, especially in the mixed stand marked by the simultaneous presence of Q. suber L., Q. canariensis Willd. and their hybrid (Q. afares), the latter being an endemic oak species threatened with extinction. This study has been conducted to estimate the LLS, the relative growth rate, and the count of different growth flushes of samplings in semi-controlled conditions. Our study took 17 months, with an observation's interval of 4 weeks. The aim is to characterize and compare the hybrid species to the parental ones. Differences were observed among species, both for phenology and growth. Indeed, Q. suber saplings reached higher total height and number of growth flushes then Q. canariensis, while Q. afares showed much less growth flushes than the parental species. The LLS of parental species has exceeded the duration of the experiment, but their hybrid lost all leaves on all cohorts. The short LLSs of hybrid species are in accordance with this phenology in the field, but for Q. canariensis there was a contrast with observations in the field where phenology is strictly annual. This study allowed us to differentiate the hybrid from both parental species.
Keywords: Leaf life span, growth, hybrid, evergreen, deciduous, seedlings, Q. afares Pomel, Q. suber L., Q. canariensis Willd.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 9777542 New Multisensor Data Fusion Method Based on Probabilistic Grids Representation
Authors: Zhichao Zhao, Yi Liu, Shunping Xiao
Abstract:
A new data fusion method called joint probability density matrix (JPDM) is proposed, which can associate and fuse measurements from spatially distributed heterogeneous sensors to identify the real target in a surveillance region. Using the probabilistic grids representation, we numerically combine the uncertainty regions of all the measurements in a general framework. The NP-hard multisensor data fusion problem has been converted to a peak picking problem in the grids map. Unlike most of the existing data fusion method, the JPDM method dose not need association processing, and will not lead to combinatorial explosion. Its convergence to the CRLB with a diminishing grid size has been proved. Simulation results are presented to illustrate the effectiveness of the proposed technique.
Keywords: Cramer-Rao lower bound (CRLB), data fusion, probabilistic grids, joint probability density matrix, localization, sensor network.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 18037541 Information System Management Factors Related to Behavioral Trend of Online Accommodation Services
Authors: Supattra Kanchanopast
Abstract:
The purpose of this research was to study the customers’ behavioral trend for online accommodation system at Bangkonthi District, Samutsongkhram province. The research collected data from 400 online users. A questionnaire was utilized as the tool in collecting information. Descriptive statistics included frequency, percentage, mean and standard deviation. Independent- sample t- test, analysis of variance and Pearson Correlation were also used. The findings of this research revealed that the majority of the respondents were male, 25-32 years old, and graduated a bachelor degree. The respondents mostly worked in private sectors and had monthly income between 10,001-15,000 baht. The regular online users, visiting this system between 3-4 times/month, spending 1-2 hours/time, searched for online accommodation information. This result showed that the users had good and high attitude towards the system. According to the hypothesis testing, the number of online usage had positive related to the behavioral trends: accommodation purchasing intention and recommend the accommodation to others. Furthermore, both the number of online usage and overall attitude had a significant correlation to accommodation purchase intention and recommend the accommodation to others.
Keywords: Customer Behavior, Information System Management, Online Accommodation Services.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 17207540 Childrearing Styles and Family Communication Patterns among University Students
Authors: Pegah Farokhzad
Abstract:
Family is a basic unit of the society and the main source of human development. The initial aim of the family is psychological and social support of its members and has special developmental stages. Researches show the families who have less cohesion, have more conflicts and maladjustments and the members of such families are not able to communicate effectively. Family is a system in which any inter communication is related to child rearing patterns and can affect it. Even the child rearing styles in childhood can determine the family communications in adulthood. Therefore, the aim of the present research was to examine the relationship between child-rearing styles including authoritative, authoritarian and permissive with dimensions of family communication patterns including the conversation and conformity. The research design was a correlational and the population consisted of the psychology students of Roudehen Islamic Azad University who were studying in academic year 2013-2014. A sample of 324 students was selected randomly from the population. The research tools were the Baumrind Child-rearing Questionnaires and Family Communication Patterns Inventory, The Revised Scale of Koerner and Fitzpatrick. The result was as below: (a) there was a positive and significant relationship between conversation orientation and authoritative style. (b) There was no significant relationship between conversation orientation and other child-rearing styles. (c) There was a negative significant relationship between conformity orientation and authoritative style. (d) There was a positive significant relationship between conformity orientation with authoritarian and permissive styles. (e) There was a significant relationship between 3 dimensions of child-rearing and communication patterns.Keywords: Child-rearing Styles, Family Relationship Patterns.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 24667539 Sampled-Data Model Predictive Tracking Control for Mobile Robot
Authors: Wookyong Kwon, Sangmoon Lee
Abstract:
In this paper, a sampled-data model predictive tracking control method is presented for mobile robots which is modeled as constrained continuous-time linear parameter varying (LPV) systems. The presented sampled-data predictive controller is designed by linear matrix inequality approach. Based on the input delay approach, a controller design condition is derived by constructing a new Lyapunov function. Finally, a numerical example is given to demonstrate the effectiveness of the presented method.Keywords: Model predictive control, sampled-data control, linear parameter varying systems, LPV.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 12777538 Talent Management through Integration of Talent Value Chain and Human Capital Analytics Approaches
Authors: Wuttigrai Ngamsirijit
Abstract:
Talent management in today’s modern organizations has become data-driven due to a demand for objective human resource decision making and development of analytics technologies. HR managers have been faced with some obstacles in exploiting data and information to obtain their effective talent management decisions. These include process-based data and records; insufficient human capital-related measures and metrics; lack of capabilities in data modeling in strategic manners; and, time consuming to add up numbers and make decisions. This paper proposes a framework of talent management through integration of talent value chain and human capital analytics approaches. It encompasses key data, measures, and metrics regarding strategic talent management decisions along the organizational and talent value chain. Moreover, specific predictive and prescriptive models incorporating these data and information are recommended to help managers in understanding the state of talent, gaps in managing talent and the organization, and the ways to develop optimized talent strategies.Keywords: Decision making, human capital analytics, talent management, talent value chain.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 9667537 Enhancing K-Means Algorithm with Initial Cluster Centers Derived from Data Partitioning along the Data Axis with the Highest Variance
Authors: S. Deelers, S. Auwatanamongkol
Abstract:
In this paper, we propose an algorithm to compute initial cluster centers for K-means clustering. Data in a cell is partitioned using a cutting plane that divides cell in two smaller cells. The plane is perpendicular to the data axis with the highest variance and is designed to reduce the sum squared errors of the two cells as much as possible, while at the same time keep the two cells far apart as possible. Cells are partitioned one at a time until the number of cells equals to the predefined number of clusters, K. The centers of the K cells become the initial cluster centers for K-means. The experimental results suggest that the proposed algorithm is effective, converge to better clustering results than those of the random initialization method. The research also indicated the proposed algorithm would greatly improve the likelihood of every cluster containing some data in it.Keywords: Clustering algorithm, K-means algorithm, Datapartitioning, Initial cluster centers.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2866