Search results for: binary images
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 1457

Search results for: binary images

527 Numerical Calculation of Heat Transfer in Water Heater

Authors: Michal Spilacek, Martin Lisy, Marek Balas, Zdenek Skala

Abstract:

This article is trying to determine the status of flue gas that is entering the KWH heat exchanger from combustion chamber in order to calculate the heat transfer ratio of the heat exchanger. Combination of measurement, calculation and computer simulation was used to create a useful way to approximate the heat transfer rate. The measurements were taken by a number of sensors that are mounted on the experimental device and by a thermal imaging camera. The results of the numerical calculation are in a good correspondence with the real power output of the experimental device. That result shows that the research has a good direction and can be used to propose changes in the construction of the heat exchanger, but still needs enhancements.

Keywords: Heat exchanger, heat transfer rate, numerical calculation, thermal images.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2839
526 Application of Neural Network in User Authentication for Smart Home System

Authors: A. Joseph, D.B.L. Bong, D.A.A. Mat

Abstract:

Security has been an important issue and concern in the smart home systems. Smart home networks consist of a wide range of wired or wireless devices, there is possibility that illegal access to some restricted data or devices may happen. Password-based authentication is widely used to identify authorize users, because this method is cheap, easy and quite accurate. In this paper, a neural network is trained to store the passwords instead of using verification table. This method is useful in solving security problems that happened in some authentication system. The conventional way to train the network using Backpropagation (BPN) requires a long training time. Hence, a faster training algorithm, Resilient Backpropagation (RPROP) is embedded to the MLPs Neural Network to accelerate the training process. For the Data Part, 200 sets of UserID and Passwords were created and encoded into binary as the input. The simulation had been carried out to evaluate the performance for different number of hidden neurons and combination of transfer functions. Mean Square Error (MSE), training time and number of epochs are used to determine the network performance. From the results obtained, using Tansig and Purelin in hidden and output layer and 250 hidden neurons gave the better performance. As a result, a password-based user authentication system for smart home by using neural network had been developed successfully.

Keywords: Neural Network, User Authentication, Smart Home, Security

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2039
525 Enhancement Effect of Superparamagnetic Iron Oxide Nanoparticle-Based MRI Contrast Agent at Different Concentrations and Magnetic Field Strengths

Authors: Bimali Sanjeevani Weerakoon, Toshiaki Osuga, Takehisa Konishi

Abstract:

Magnetic Resonance Imaging Contrast Agents (MRI-CM) are significant in the clinical and biological imaging as they have the ability to alter the normal tissue contrast, thereby affecting the signal intensity to enhance the visibility and detectability of images. Superparamagnetic Iron Oxide (SPIO) nanoparticles, coated with dextran or carboxydextran are currently available for clinical MR imaging of the liver. Most SPIO contrast agents are T2 shortening agents and Resovist (Ferucarbotran) is one of a clinically tested, organ-specific, SPIO agent which has a low molecular carboxydextran coating. The enhancement effect of Resovist depends on its relaxivity which in turn depends on factors like magnetic field strength, concentrations, nanoparticle properties, pH and temperature. Therefore, this study was conducted to investigate the impact of field strength and different contrast concentrations on enhancement effects of Resovist. The study explored the MRI signal intensity of Resovist in the physiological range of plasma from T2-weighted spin echo sequence at three magnetic field strengths: 0.47 T (r1=15, r2=101), 1.5 T (r1=7.4, r2=95), and 3 T (r1=3.3, r2=160) and the range of contrast concentrations by a mathematical simulation. Relaxivities of r1 and r2 (L mmol-1 Sec-1) were obtained from a previous study and the selected concentrations were 0.05, 0.06, 0.07, 0.08, 0.09, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1.0, 2.0, and 3.0 mmol/L. T2-weighted images were simulated using TR/TE ratio as 2000 ms /100 ms. According to the reference literature, with increasing magnetic field strengths, the r1 relaxivity tends to decrease while the r2 did not show any systematic relationship with the selected field strengths. In parallel, this study results revealed that the signal intensity of Resovist at lower concentrations tends to increase than the higher concentrations. The highest reported signal intensity was observed in the low field strength of 0.47 T. The maximum signal intensities for 0.47 T, 1.5 T and 3 T were found at the concentration levels of 0.05, 0.06 and 0.05 mmol/L, respectively. Furthermore, it was revealed that, the concentrations higher than the above, the signal intensity was decreased exponentially. An inverse relationship can be found between the field strength and T2 relaxation time, whereas, the field strength was increased, T2 relaxation time was decreased accordingly. However, resulted T2 relaxation time was not significantly different between 0.47 T and 1.5 T in this study. Moreover, a linear correlation of transverse relaxation rates (1/T2, s–1) with the concentrations of Resovist can be observed. According to these results, it can conclude that the concentration of SPIO nanoparticle contrast agents and the field strengths of MRI are two important parameters which can affect the signal intensity of T2-weighted SE sequence. Therefore, when MR imaging those two parameters should be considered prudently.

Keywords: Concentration, Resovist, Field strength, Relaxivity, Signal intensity.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1997
524 Visual Search Based Indoor Localization in Low Light via RGB-D Camera

Authors: Yali Zheng, Peipei Luo, Shinan Chen, Jiasheng Hao, Hong Cheng

Abstract:

Most of traditional visual indoor navigation algorithms and methods only consider the localization in ordinary daytime, while we focus on the indoor re-localization in low light in the paper. As RGB images are degraded in low light, less discriminative infrared and depth image pairs are taken, as the input, by RGB-D cameras, the most similar candidates, as the output, are searched from databases which is built in the bag-of-word framework. Epipolar constraints can be used to relocalize the query infrared and depth image sequence. We evaluate our method in two datasets captured by Kinect2. The results demonstrate very promising re-localization results for indoor navigation system in low light environments.

Keywords: Indoor navigation, low light, RGB-D camera, vision based.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1676
523 The Thermal Properties of Nano Magnesium Hydroxide Blended with LDPE/EVA/Irganox1010 for Insulator Application

Authors: Ahmad Aroziki Abdul Aziz, Sakinah Mohd Alauddin, Ruzitah Mohd Salleh, Mohammed Iqbal Shueb

Abstract:

This paper illustrates the effect of nano Magnesium Hydroxide (MH) loading on the thermal properties of Low Density Polyethylene (LDPE)/Poly (ethylene-co vinyl acetate) (EVA) nano composite. Thermal studies were conducted, as it understanding is vital for preliminary development of new polymeric systems. Thermal analysis of nanocomposite was conducted using thermo gravimetric analysis (TGA), and differential scanning calorimetry (DSC). Major finding of TGA indicated two main stages of degradation process found at (350 ± 25oC) and (480 ± 25oC) respectively. Nano metal filler expressed better fire resistance as it stand over high degree of temperature. Furthermore, DSC analysis provided a stable glass temperature around 51 (±1oC) and captured double melting point at 84 (±2oC) and 108 (±2oC). This binary melting point reflects the modification of nano filler to the polymer matrix forming melting crystals of folded and extended chain. The percent crystallinity of the samples grew vividly with increasing filler content. Overall, increasing the filler loading improved the degradation temperature and weight loss evidently and a better process and phase stability was captured in DSC.

Keywords: Cable and Wire, LDPE/EVA, Nano MH, Nano Particles, Thermal properties.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3042
522 The Microstructural and Mechanical Characterization of Organo-Clay-Modified Bitumen, Calcareous Aggregate, and Organo-Clay Blends

Authors: A. Gürses, T. B. Barın, Ç. Doğar

Abstract:

Bitumen has been widely used as the binder of aggregate in road pavement due to its good viscoelastic properties, as a viscous organic mixture with various chemical compositions. Bitumen is a liquid at high temperature and it becomes brittle at low temperatures, and this temperature-sensitivity can cause the rutting and cracking of the pavement and limit its application. Therefore, the properties of existing asphalt materials need to be enhanced. The pavement with polymer modified bitumen exhibits greater resistance to rutting and thermal cracking, decreased fatigue damage, as well as stripping and temperature susceptibility; however, they are expensive and their applications have disadvantages. Bituminous mixtures are composed of very irregular aggregates bound together with hydrocarbon-based asphalt, with a low volume fraction of voids dispersed within the matrix. Montmorillonite (MMT) is a layered silicate with low cost and abundance, which consists of layers of tetrahedral silicate and octahedral hydroxide sheets. Recently, the layered silicates have been widely used for the modification of polymers, as well as in many different fields. However, there are not too much studies related with the preparation of the modified asphalt with MMT, currently. In this study, organo-clay-modified bitumen, and calcareous aggregate and organo-clay blends were prepared by hot blending method with OMMT, which has been synthesized using a cationic surfactant (Cetyltrymethylammonium bromide, CTAB) and long chain hydrocarbon, and MMT. When the exchangeable cations in the interlayer region of pristine MMT were exchanged with hydrocarbon attached surfactant ions, the MMT becomes organophilic and more compatible with bitumen. The effects of the super hydrophobic OMMT onto the micro structural and mechanic properties (Marshall Stability and volumetric parameters) of the prepared blends were investigated. Stability and volumetric parameters of the blends prepared were measured using Marshall Test. Also, in order to investigate the morphological and micro structural properties of the organo-clay-modified bitumen and calcareous aggregate and organo-clay blends, their SEM and HRTEM images were taken. It was observed that the stability and volumetric parameters of the prepared mixtures improved significantly compared to the conventional hot mixes and even the stone matrix mixture. A micro structural analysis based on SEM images indicates that the organo-clay platelets dispersed in the bitumen have a dominant role in the increase of effectiveness of bitumen - aggregate interactions.

Keywords: Hot mix asphalt, stone matrix asphalt, organo clay, Marshall Test, calcareous aggregate, modified bitumen.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1377
521 Improvement of Blood Detection Accuracy using Image Processing Techniques suitable for Capsule Endoscopy

Authors: Yong-Gyu Lee, Gilwon Yoon

Abstract:

Bleeding in the digestive duct is an important diagnostic parameter for patients. Blood in the endoscopic image can be determined by investigating the color tone of blood due to the degree of oxygenation, under- or over- illumination, food debris and secretions, etc. However, we found that how to pre-process raw images obtained from the capsule detectors was very important. We applied various image process methods suitable for the capsule endoscopic image in order to remove noises and unbalanced sensitivities for the image pixels. The results showed that much improvement was achieved by additional pre-processing techniques on the algorithm of determining bleeding areas.

Keywords: blood detection, capsule endoscopy, image processing.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1892
520 Biomechanical Properties of Hen's Eggshell: Experimental Study and Numerical Modeling

Authors: A. Darvizeh, H. Rajabi, S. Fatahtooei Nejad, A. Khaheshi, P. Haghdoust

Abstract:

In this article, biomechanical aspects of hen-s eggshell as a natural ceramic structure are studied. The images, taken by a scanning electron microscope (SEM), are used to investigate the microscopic aspects of the egg. It is observed that eggshell has a three-layered microstructure with different morphological and structural characteristics. Studies on the eggshell membrane (ESM) as a prosperous tissue suggest that it is placed to prevent the penetration of microorganisms into the egg. Finally, numerical models of the egg are presented to study the stress distribution and its deformation under different loading conditions. The effects of two different types of loading (hydrostatic and point loadings) on two different shell models (with constant and variable thicknesses) are investigated in detail.

Keywords: Eggshell, biomechanical properties, Scanning electron microscope, Numerical Modeling.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2468
519 Morphological Description of Cervical Cell Images for the Pathological Recognition

Authors: N. Lassouaoui, L. Hamami, N. Nouali

Abstract:

The tracking allows to detect the tumor affections of cervical cancer, it is particularly complex and consuming time, because it consists in seeking some abnormal cells among a cluster of normal cells. In this paper, we present our proposed computer system for helping the doctors in tracking the cervical cancer. Knowing that the diagnosis of the malignancy is based in the set of atypical morphological details of all cells, herein, we present an unsupervised genetic algorithm for the separation of cell components since the diagnosis is doing by analysis of the core and the cytoplasm. We give also the various algorithms used for computing the morphological characteristics of cells (Ratio core/cytoplasm, cellular deformity, ...) necessary for the recognition of illness.

Keywords: Cervical cell, morphological analysis, recognition, segmentation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1940
518 A Comparative Analysis of Different Web Content Mining Tools

Authors: T. Suresh Kumar, M. Arthanari, N. Shanthi

Abstract:

Nowadays, the Web has become one of the most pervasive platforms for information change and retrieval. It collects the suitable and perfectly fitting information from websites that one requires. Data mining is the form of extracting data’s available in the internet. Web mining is one of the elements of data mining Technique, which relates to various research communities such as information recovery, folder managing system and simulated intellects. In this Paper we have discussed the concepts of Web mining. We contain generally focused on one of the categories of Web mining, specifically the Web Content Mining and its various farm duties. The mining tools are imperative to scanning the many images, text, and HTML documents and then, the result is used by the various search engines. We conclude by presenting a comparative table of these tools based on some pertinent criteria.

Keywords: Data Mining, Web Mining, Web Content Mining, Mining Tools, Information retrieval.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3553
517 Drowsiness Warning System Using Artificial Intelligence

Authors: Nidhi Sharma, V. K. Banga

Abstract:

Nowadays, driving support systems, such as car navigation systems, are getting common, and they support drivers in several aspects. It is important for driving support systems to detect status of driver's consciousness. Particularly, detecting driver's drowsiness could prevent drivers from collisions caused by drowsy driving. In this paper, we discuss the various artificial detection methods for detecting driver's drowsiness processing technique. This system is based on facial images analysis for warning the driver of drowsiness or in attention to prevent traffic accidents.

Keywords: Neuro-Fuzzy Model, Halstead Model, Walston-FelixModel, Bailey-Basili Model, Doty Model, GA Based Model, GeneticAlgorithm.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3711
516 GPU-Based Volume Rendering for Medical Imagery

Authors: Hadjira Bentoumi, Pascal Gautron, Kadi Bouatouch

Abstract:

We present a method for fast volume rendering using graphics hardware (GPU). To our knowledge, it is the first implementation on the GPU. Based on the Shear-Warp algorithm, our GPU-based method provides real-time frame rates and outperforms the CPU-based implementation. When the number of slices is not sufficient, we add in-between slices computed by interpolation. This improves then the quality of the rendered images. We have also implemented the ray marching algorithm on the GPU. The results generated by the three algorithms (CPU-based and GPU-based Shear- Warp, GPU-based Ray Marching) for two test models has proved that the ray marching algorithm outperforms the shear-warp methods in terms of speed up and image quality.

Keywords: Volume rendering, graphics processors

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1854
515 Pose Normalization Network for Object Classification

Authors: Bingquan Shen

Abstract:

Convolutional Neural Networks (CNN) have demonstrated their effectiveness in synthesizing 3D views of object instances at various viewpoints. Given the problem where one have limited viewpoints of a particular object for classification, we present a pose normalization architecture to transform the object to existing viewpoints in the training dataset before classification to yield better classification performance. We have demonstrated that this Pose Normalization Network (PNN) can capture the style of the target object and is able to re-render it to a desired viewpoint. Moreover, we have shown that the PNN improves the classification result for the 3D chairs dataset and ShapeNet airplanes dataset when given only images at limited viewpoint, as compared to a CNN baseline.

Keywords: Convolutional neural networks, object classification, pose normalization, viewpoint invariant.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1120
514 Research of Linear Camera Calibration Based on Planar Pattern

Authors: Jin Sun, Hongbin Gu

Abstract:

An important step in three-dimensional reconstruction and computer vision is camera calibration, whose objective is to estimate the intrinsic and extrinsic parameters of each camera. In this paper, two linear methods based on the different planes are given. In both methods, the general plane is used to replace the calibration object with very good precision. In the first method, after controlling the camera to undergo five times- translation movements and taking pictures of the orthogonal planes, a set of linear constraints of the camera intrinsic parameters is then derived by means of homography matrix. The second method is to get all camera parameters by taking only one picture of a given radius circle. experiments on simulated data and real images,indicate that our method is reasonable and is a good supplement to camera calibration.

Keywords: camera calibration, 3D reconstruction, computervision

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1830
513 Non-destructive Watermelon Ripeness Determination Using Image Processing and Artificial Neural Network (ANN)

Authors: Shah Rizam M. S. B., Farah Yasmin A.R., Ahmad Ihsan M. Y., Shazana K.

Abstract:

Agriculture products are being more demanding in market today. To increase its productivity, automation to produce these products will be very helpful. The purpose of this work is to measure and determine the ripeness and quality of watermelon. The textures on watermelon skin will be captured using digital camera. These images will be filtered using image processing technique. All these information gathered will be trained using ANN to determine the watermelon ripeness accuracy. Initial results showed that the best model has produced percentage accuracy of 86.51%, when measured at 32 hidden units with a balanced percentage rate of training dataset.

Keywords: Artificial Neural Network (ANN), Digital ImageProcessing, YCbCr Colour Space, Watermelon Ripeness.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2952
512 MR-Implantology: Exploring the Use for Mixed Reality in Dentistry Education

Authors: Areej R. Banjar, Abraham G. Campbell

Abstract:

The use of Mixed Reality (MR) in teaching and training is growing popular and can improve students’ ability to perform technical procedures. This paper outlines the creation of an interactive educational MR 3D application that aims to improve the quality of instruction for dentistry students. This application is called ”MR-Implantology” and aims to teach and train dentistry students on single dental implant placement. MR-Implantology uses cone-beam computed tomography (CBCT) images as the source for 3D dental models that dentistry students will be able to freely manipulate within a 3D MR world to aid their learning process.

Keywords: Cone-Beam Computed Tomography, dentistry education, implantology, Mixed Reality, MR.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 505
511 Performance Assessment of Multi-Level Ensemble for Multi-Class Problems

Authors: Rodolfo Lorbieski, Silvia Modesto Nassar

Abstract:

Many supervised machine learning tasks require decision making across numerous different classes. Multi-class classification has several applications, such as face recognition, text recognition and medical diagnostics. The objective of this article is to analyze an adapted method of Stacking in multi-class problems, which combines ensembles within the ensemble itself. For this purpose, a training similar to Stacking was used, but with three levels, where the final decision-maker (level 2) performs its training by combining outputs from the tree-based pair of meta-classifiers (level 1) from Bayesian families. These are in turn trained by pairs of base classifiers (level 0) of the same family. This strategy seeks to promote diversity among the ensembles forming the meta-classifier level 2. Three performance measures were used: (1) accuracy, (2) area under the ROC curve, and (3) time for three factors: (a) datasets, (b) experiments and (c) levels. To compare the factors, ANOVA three-way test was executed for each performance measure, considering 5 datasets by 25 experiments by 3 levels. A triple interaction between factors was observed only in time. The accuracy and area under the ROC curve presented similar results, showing a double interaction between level and experiment, as well as for the dataset factor. It was concluded that level 2 had an average performance above the other levels and that the proposed method is especially efficient for multi-class problems when compared to binary problems.

Keywords: Stacking, multi-layers, ensemble, multi-class.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1093
510 Detection of Breast Cancer in the JPEG2000 Domain

Authors: Fayez M. Idris, Nehal I. AlZubaidi

Abstract:

Breast cancer detection techniques have been reported to aid radiologists in analyzing mammograms. We note that most techniques are performed on uncompressed digital mammograms. Mammogram images are huge in size necessitating the use of compression to reduce storage/transmission requirements. In this paper, we present an algorithm for the detection of microcalcifications in the JPEG2000 domain. The algorithm is based on the statistical properties of the wavelet transform that the JPEG2000 coder employs. Simulation results were carried out at different compression ratios. The sensitivity of this algorithm ranges from 92% with a false positive rate of 4.7 down to 66% with a false positive rate of 2.1 using lossless compression and lossy compression at a compression ratio of 100:1, respectively.

Keywords: Breast cancer, JPEG2000, mammography, microcalcifications.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1577
509 Printed Arabic Sub-Word Recognition Using Moments

Authors: Ibrahim A. El rube, Mohamed T. El Sonni, Soha S. Saleh

Abstract:

the cursive nature of the Arabic writing makes it difficult to accurately segment characters or even deal with the whole word efficiently. Therefore, in this paper, a printed Arabic sub-word recognition system is proposed. The suggested algorithm utilizes geometrical moments as descriptors for the separated sub-words. Three types of moments are investigated and applied to the printed sub-word images after dividing each image into multiple parts using windowing. Since moments are global descriptors, the windowing mechanism allows the moments to be applied to local regions of the sub-word. The local-global mixture of the proposed scheme increases the discrimination power of the moments while keeping the simplicity and ease of use of moments.

Keywords: Arabic sub-word recognition, windowing, aspectratio, moments.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1565
508 Multi-Focus Image Fusion Using SFM and Wavelet Packet

Authors: Somkait Udomhunsakul

Abstract:

In this paper, a multi-focus image fusion method using Spatial Frequency Measurements (SFM) and Wavelet Packet was proposed. The proposed fusion approach, firstly, the two fused images were transformed and decomposed into sixteen subbands using Wavelet packet. Next, each subband was partitioned into sub-blocks and each block was identified the clearer regions by using the Spatial Frequency Measurement (SFM). Finally, the recovered fused image was reconstructed by performing the Inverse Wavelet Transform. From the experimental results, it was found that the proposed method outperformed the traditional SFM based methods in terms of objective and subjective assessments.

Keywords: Multi-focus image fusion, Wavelet Packet, Spatial Frequency Measurement.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1614
507 On-line Image Mosaicing of Live Stem Cells

Authors: Alessandro Bevilacqua, Alessandro Gherardi, Filippo Piccinini

Abstract:

Image mosaicing is a technique that permits to enlarge the field of view of a camera. For instance, it is employed to achieve panoramas with common cameras or even in scientific applications, to achieve the image of a whole culture in microscopical imaging. Usually, a mosaic of cell cultures is achieved through using automated microscopes. However, this is often performed in batch, through CPU intensive minimization algorithms. In addition, live stem cells are studied in phase contrast, showing a low contrast that cannot be improved further. We present a method to study the flat field from live stem cells images even in case of 100% confluence, this permitting to build accurate mosaics on-line using high performance algorithms.

Keywords: Microscopy, image mosaicing, stem cells.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1508
506 A Quantum-Inspired Evolutionary Algorithm forMultiobjective Image Segmentation

Authors: Hichem Talbi, Mohamed Batouche, Amer Draa

Abstract:

In this paper we present a new approach to deal with image segmentation. The fact that a single segmentation result do not generally allow a higher level process to take into account all the elements included in the image has motivated the consideration of image segmentation as a multiobjective optimization problem. The proposed algorithm adopts a split/merge strategy that uses the result of the k-means algorithm as input for a quantum evolutionary algorithm to establish a set of non-dominated solutions. The evaluation is made simultaneously according to two distinct features: intra-region homogeneity and inter-region heterogeneity. The experimentation of the new approach on natural images has proved its efficiency and usefulness.

Keywords: Image segmentation, multiobjective optimization, quantum computing, evolutionary algorithms.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2359
505 Color Constancy using Superpixel

Authors: Xingsheng Yuan, Zhengzhi Wang

Abstract:

Color constancy algorithms are generally based on the simplified assumption about the spectral distribution or the reflection attributes of the scene surface. However, in reality, these assumptions are too restrictive. The methodology is proposed to extend existing algorithm to applying color constancy locally to image patches rather than globally to the entire images. In this paper, a method based on low-level image features using superpixels is proposed. Superpixel segmentation partition an image into regions that are approximately uniform in size and shape. Instead of using entire pixel set for estimating the illuminant, only superpixels with the most valuable information are used. Based on large scale experiments on real-world scenes, it can be derived that the estimation is more accurate using superpixels than when using the entire image.

Keywords: color constancy, illuminant estimation, superpixel

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1460
504 Performance Analysis of MIMO Based Multi-User Cooperation Diversity Over Various Fading Channels

Authors: Zuhaib Ashfaq Khan, Imran Khan, Nandana Rajatheva

Abstract:

In this paper, hybrid FDMA-TDMA access technique in a cooperative distributive fashion introducing and implementing a modified protocol introduced in [1] is analyzed termed as Power and Cooperation Diversity Gain Protocol (PCDGP). A wireless network consists of two users terminal , two relays and a destination terminal equipped with two antennas. The relays are operating in amplify-and-forward (AF) mode with a fixed gain. Two operating modes: cooperation-gain mode and powergain mode are exploited from source terminals to relays, as it is working in a best channel selection scheme. Vertical BLAST (Bell Laboratories Layered Space Time) or V-BLAST with minimum mean square error (MMSE) nulling is used at the relays to perfectly detect the joint signals from multiple source terminals. The performance is analyzed using binary phase shift keying (BPSK) modulation scheme and investigated over independent and identical (i.i.d) Rayleigh, Ricean-K and Nakagami-m fading environments. Subsequently, simulation results show that the proposed scheme can provide better signal quality of uplink users in a cooperative communication system using hybrid FDMATDMA technique.

Keywords: Cooperation Diversity, Best Channel Selectionscheme, MIMO relay networks, V-BLAST, QRdecomposition, and MMSE.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2002
503 Efficient Lossless Compression of Weather Radar Data

Authors: Wei-hua Ai, Wei Yan, Xiang Li

Abstract:

Data compression is used operationally to reduce bandwidth and storage requirements. An efficient method for achieving lossless weather radar data compression is presented. The characteristics of the data are taken into account and the optical linear prediction is used for the PPI images in the weather radar data in the proposed method. The next PPI image is identical to the current one and a dramatic reduction in source entropy is achieved by using the prediction algorithm. Some lossless compression methods are used to compress the predicted data. Experimental results show that for the weather radar data, the method proposed in this paper outperforms the other methods.

Keywords: Lossless compression, weather radar data, optical linear prediction, PPI image

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2257
502 New Corneal Reflection Removal Method Used In Iris Recognition System

Authors: Walid Aydi, Nouri Masmoudi, Lotfi Kamoun

Abstract:

Images of human iris contain specular highlights due to the reflective properties of the cornea. This corneal reflection causes many errors not only in iris and pupil center estimation but also to locate iris and pupil boundaries especially for methods that use active contour. Each iris recognition system has four steps: Segmentation, Normalization, Encoding and Matching. In order to address the corneal reflection, a novel reflection removal method is proposed in this paper. Comparative experiments of two existing methods for reflection removal method are evaluated on CASIA iris image databases V3. The experimental results reveal that the proposed algorithm provides higher performance in reflection removal.

Keywords: iris, pupil, specular highlights, reflection removal

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3208
501 Optimized Vector Quantization for Bayer Color Filter Array

Authors: M. Lakshmi, J. Senthil Kumar

Abstract:

Digital cameras to reduce cost, use an image sensor to capture color images. Color Filter Array (CFA) in digital cameras permits only one of the three primary (red-green-blue) colors to be sensed in a pixel and interpolates the two missing components through a method named demosaicking. Captured data is interpolated into a full color image and compressed in applications. Color interpolation before compression leads to data redundancy. This paper proposes a new Vector Quantization (VQ) technique to construct a VQ codebook with Differential Evolution (DE) Algorithm. The new technique is compared to conventional Linde- Buzo-Gray (LBG) method.

Keywords: Color Filter Array (CFA), Biorthogonal Wavelet, Vector Quantization (VQ), Differential Evolution (DE).

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1906
500 Density Estimation using Generalized Linear Model and a Linear Combination of Gaussians

Authors: Aly Farag, Ayman El-Baz, Refaat Mohamed

Abstract:

In this paper we present a novel approach for density estimation. The proposed approach is based on using the logistic regression model to get initial density estimation for the given empirical density. The empirical data does not exactly follow the logistic regression model, so, there will be a deviation between the empirical density and the density estimated using logistic regression model. This deviation may be positive and/or negative. In this paper we use a linear combination of Gaussian (LCG) with positive and negative components as a model for this deviation. Also, we will use the expectation maximization (EM) algorithm to estimate the parameters of LCG. Experiments on real images demonstrate the accuracy of our approach.

Keywords: Logistic regression model, Expectationmaximization, Segmentation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1733
499 Top-Down Influences to Multistable Perception: Evidence from Temporal Dynamics

Authors: Daria N. Podvigina, Tatiana V. Chernigovskaya

Abstract:

We have studied the temporal characteristics of bistable perception of the stimuli of two types: one involves alterations in a perceived depth and another one has an ambiguous content. We used the Necker lattice and lines of shadowed circles ambiguously perceived either as spheres or holes as stimuli of the first type. The Winson figure (the Eskimo/Indian picture) was a stimulus of the second type. We have analyzed how often the reversals occurred (reversal rate) and for how long each of the two interpretations, or percepts, was observed during one presentation (stability durations). For all three ambiguous images the reversal rate and the stability durations had similar values, which provide another evidence for a significant role of top-down processes in multistable perception.

Keywords: Multistable perception, perceived depth, reversal rate, top-down processes.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2436
498 Visual Object Tracking in 3D with Color Based Particle Filter

Authors: Pablo Barrera, Jose M. Canas, Vicente Matellan

Abstract:

This paper addresses the problem of determining the current 3D location of a moving object and robustly tracking it from a sequence of camera images. The approach presented here uses a particle filter and does not perform any explicit triangulation. Only the color of the object to be tracked is required, but not any precisemotion model. The observation model we have developed avoids the color filtering of the entire image. That and the Monte Carlotechniques inside the particle filter provide real time performance.Experiments with two real cameras are presented and lessons learned are commented. The approach scales easily to more than two cameras and new sensor cues.

Keywords: Monte Carlo sampling, multiple view, particle filters, visual tracking.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1931