Search results for: artificial neural network.
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 3499

Search results for: artificial neural network.

2569 Optimal Placement of DG in Distribution System to Mitigate Power Quality Disturbances

Authors: G.V.K Murthy, S. Sivanagaraju, S. Satyanarayana, B. Hanumantha Rao

Abstract:

Distributed Generation (DG) systems are considered an integral part in future distribution system planning. Appropriate size and location of distributed generation plays a significant role in minimizing power losses in distribution systems. Among the benefits of distributed generation is the reduction in active power losses, which can improve the system performance, reliability and power quality. In this paper, Artificial Bee Colony (ABC) algorithm is proposed to determine the optimal DG-unit size and location by loss sensitivity index in order to minimize the real power loss, total harmonic distortion (THD) and voltage sag index improvement. Simulation study is conducted on 69-bus radial test system to verify the efficacy of the proposed method.

Keywords: Distributed generation, artificial bee colony method, loss reduction, radial distribution network.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2859
2568 A Neural Network Based Facial Expression Analysis using Gabor Wavelets

Authors: Praseeda Lekshmi.V, Dr.M.Sasikumar

Abstract:

Facial expression analysis is rapidly becoming an area of intense interest in computer science and human-computer interaction design communities. The most expressive way humans display emotions is through facial expressions. In this paper we present a method to analyze facial expression from images by applying Gabor wavelet transform (GWT) and Discrete Cosine Transform (DCT) on face images. Radial Basis Function (RBF) Network is used to classify the facial expressions. As a second stage, the images are preprocessed to enhance the edge details and non uniform down sampling is done to reduce the computational complexity and processing time. Our method reliably works even with faces, which carry heavy expressions.

Keywords: Face Expression, Radial Basis Function, GaborWavelet Transform, Human Computer Interaction.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2107
2567 A Study on the Application of Machine Learning and Deep Learning Techniques for Skin Cancer Detection

Authors: Hritwik Ghosh, Irfan Sadiq Rahat, Sachi Nandan Mohanty, J. V. R. Ravindra, Abdus Sobur

Abstract:

In the rapidly evolving landscape of medical diagnostics, the early detection and accurate classification of skin cancer remain paramount for effective treatment outcomes. This research delves into the transformative potential of artificial intelligence (AI), specifically deep learning (DL), as a tool for discerning and categorizing various skin conditions. Utilizing a diverse dataset of 3,000 images, representing nine distinct skin conditions, we confront the inherent challenge of class imbalance. This imbalance, where conditions like melanomas are over-represented, is addressed by incorporating class weights during the model training phase, ensuring an equitable representation of all conditions in the learning process. Our approach presents a hybrid model, amalgamating the strengths of two renowned convolutional neural networks (CNNs), VGG16 and ResNet50. These networks, pre-trained on the ImageNet dataset, are adept at extracting intricate features from images. By synergizing these models, our research aims to capture a holistic set of features, thereby bolstering classification performance. Preliminary findings underscore the hybrid model's superiority over individual models, showcasing its prowess in feature extraction and classification. Moreover, the research emphasizes the significance of rigorous data pre-processing, including image resizing, color normalization, and segmentation, in ensuring data quality and model reliability. In essence, this study illuminates the promising role of AI and DL in revolutionizing skin cancer diagnostics, offering insights into its potential applications in broader medical domains.

Keywords: Artificial intelligence, machine learning, deep learning, skin cancer, dermatology, convolutional neural networks, image classification, computer vision, healthcare technology, cancer detection, medical imaging.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1454
2566 Profitability Assessment of Granite Aggregate Production and the Development of a Profit Assessment Model

Authors: Melodi Mbuyi Mata, Blessing Olamide Taiwo, Afolabi Ayodele David

Abstract:

The purpose of this research is to create empirical models for assessing the profitability of granite aggregate production in Akure, Ondo state aggregate quarries. In addition, an Artificial Neural Network (ANN) model and multivariate predicting models for granite profitability were developed in the study. A formal survey questionnaire was used to collect data for the study. The data extracted from the case study mine for this study include granite marketing operations, royalty, production costs, and mine production information. The following methods were used to achieve the goal of this study: descriptive statistics, MATLAB 2017, and SPSS16.0 software in analyzing and modeling the data collected from granite traders in the study areas. The ANN and Multi Variant Regression models' prediction accuracy was compared using a coefficient of determination (R2), Root Mean Square Error (RMSE), and mean square error (MSE). Due to the high prediction error, the model evaluation indices revealed that the ANN model was suitable for predicting generated profit in a typical quarry. More quarries in Nigeria's southwest region and other geopolitical zones should be considered to improve ANN prediction accuracy.

Keywords: National development, granite, profitability assessment, ANN models.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 83
2565 Connectivity Estimation from the Inverse Coherence Matrix in a Complex Chaotic Oscillator Network

Authors: Won Sup Kim, Xue-Mei Cui, Seung Kee Han

Abstract:

We present on the method of inverse coherence matrix for the estimation of network connectivity from multivariate time series of a complex system. In a model system of coupled chaotic oscillators, it is shown that the inverse coherence matrix defined as the inverse of cross coherence matrix is proportional to the network connectivity. Therefore the inverse coherence matrix could be used for the distinction between the directly connected links from indirectly connected links in a complex network. We compare the result of network estimation using the method of the inverse coherence matrix with the results obtained from the coherence matrix and the partial coherence matrix.

Keywords: Chaotic oscillator, complex network, inverse coherence matrix, network estimation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2004
2564 Computer Aided Diagnosis of Polycystic Kidney Disease Using ANN

Authors: Anjan Babu G, Sumana G, Rajasekhar M

Abstract:

Many inherited diseases and non-hereditary disorders are common in the development of renal cystic diseases. Polycystic kidney disease (PKD) is a disorder developed within the kidneys in which grouping of cysts filled with water like fluid. PKD is responsible for 5-10% of end-stage renal failure treated by dialysis or transplantation. New experimental models, application of molecular biology techniques have provided new insights into the pathogenesis of PKD. Researchers are showing keen interest for developing an automated system by applying computer aided techniques for the diagnosis of diseases. In this paper a multilayered feed forward neural network with one hidden layer is constructed, trained and tested by applying back propagation learning rule for the diagnosis of PKD based on physical symptoms and test results of urinalysis collected from the individual patients. The data collected from 50 patients are used to train and test the network. Among these samples, 75% of the data used for training and remaining 25% of the data are used for testing purpose. Further, this trained network is used to implement for new samples. The output results in normality and abnormality of the patient.

Keywords: Dialysis, Hereditary, Transplantation, Polycystic, Pathogenesis.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2004
2563 Development of Prediction Models of Day-Ahead Hourly Building Electricity Consumption and Peak Power Demand Using the Machine Learning Method

Authors: Dalin Si, Azizan Aziz, Bertrand Lasternas

Abstract:

To encourage building owners to purchase electricity at the wholesale market and reduce building peak demand, this study aims to develop models that predict day-ahead hourly electricity consumption and demand using artificial neural network (ANN) and support vector machine (SVM). All prediction models are built in Python, with tool Scikit-learn and Pybrain. The input data for both consumption and demand prediction are time stamp, outdoor dry bulb temperature, relative humidity, air handling unit (AHU), supply air temperature and solar radiation. Solar radiation, which is unavailable a day-ahead, is predicted at first, and then this estimation is used as an input to predict consumption and demand. Models to predict consumption and demand are trained in both SVM and ANN, and depend on cooling or heating, weekdays or weekends. The results show that ANN is the better option for both consumption and demand prediction. It can achieve 15.50% to 20.03% coefficient of variance of root mean square error (CVRMSE) for consumption prediction and 22.89% to 32.42% CVRMSE for demand prediction, respectively. To conclude, the presented models have potential to help building owners to purchase electricity at the wholesale market, but they are not robust when used in demand response control.

Keywords: Building energy prediction, data mining, demand response, electricity market.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2205
2562 GRNN Application in Power Systems Simulation for Integrated SOFC Plant Dynamic Model

Authors: N. Nim-on, A. Oonsivilai

Abstract:

In this paper, the application of GRNN in modeling of SOFC fuel cells were studied. The parameters are of interested as voltage and power value and the current changes are investigated. In addition, the comparison between GRNN neural network application and conventional method was made. The error value showed the superlative results.

Keywords: SOFC, GRNN, Fuel cells.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2100
2561 An Improved Conjugate Gradient Based Learning Algorithm for Back Propagation Neural Networks

Authors: N. M. Nawi, R. S. Ransing, M. R. Ransing

Abstract:

The conjugate gradient optimization algorithm is combined with the modified back propagation algorithm to yield a computationally efficient algorithm for training multilayer perceptron (MLP) networks (CGFR/AG). The computational efficiency is enhanced by adaptively modifying initial search direction as described in the following steps: (1) Modification on standard back propagation algorithm by introducing a gain variation term in the activation function, (2) Calculation of the gradient descent of error with respect to the weights and gains values and (3) the determination of a new search direction by using information calculated in step (2). The performance of the proposed method is demonstrated by comparing accuracy and computation time with the conjugate gradient algorithm used in MATLAB neural network toolbox. The results show that the computational efficiency of the proposed method was better than the standard conjugate gradient algorithm.

Keywords: Adaptive gain variation, back-propagation, activation function, conjugate gradient, search direction.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1521
2560 Fast Forecasting of Stock Market Prices by using New High Speed Time Delay Neural Networks

Authors: Hazem M. El-Bakry, Nikos Mastorakis

Abstract:

Fast forecasting of stock market prices is very important for strategic planning. In this paper, a new approach for fast forecasting of stock market prices is presented. Such algorithm uses new high speed time delay neural networks (HSTDNNs). The operation of these networks relies on performing cross correlation in the frequency domain between the input data and the input weights of neural networks. It is proved mathematically and practically that the number of computation steps required for the presented HSTDNNs is less than that needed by traditional time delay neural networks (TTDNNs). Simulation results using MATLAB confirm the theoretical computations.

Keywords: Fast Forecasting, Stock Market Prices, Time Delay NeuralNetworks, Cross Correlation, Frequency Domain.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2068
2559 Improved Exponential Stability Analysis for Delayed Recurrent Neural Networks

Authors: Miaomiao Yang, Shouming Zhong

Abstract:

This paper studies the problem of exponential stability analysis for recurrent neural networks with time-varying delay.By establishing a suitable augmented LyapunovCKrasovskii function and a novel sufficient condition is obtained to guarantee the exponential stability of the considered system.In order to get a less conservative results of the condition,zero equalities and reciprocally convex approach are employed. The several exponential stability criterion proposed in this paper is simpler and effective. A numerical example is provided to demonstrate the feasibility and effectiveness of our results.

Keywords: Exponential stability , Neural networks, Linear matrix inequality, Lyapunov-Krasovskii, Time-varying.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1767
2558 Analysis of Linguistic Disfluencies in Bilingual Children’s Discourse

Authors: Sheena Christabel Pravin, M. Palanivelan

Abstract:

Speech disfluencies are common in spontaneous speech. The primary purpose of this study was to distinguish linguistic disfluencies from stuttering disfluencies in bilingual Tamil–English (TE) speaking children. The secondary purpose was to determine whether their disfluencies are mediated by native language dominance and/or on an early onset of developmental stuttering at childhood. A detailed study was carried out to identify the prosodic and acoustic features that uniquely represent the disfluent regions of speech. This paper focuses on statistical modeling of repetitions, prolongations, pauses and interjections in the speech corpus encompassing bilingual spontaneous utterances from school going children – English and Tamil. Two classifiers including Hidden Markov Models (HMM) and the Multilayer Perceptron (MLP), which is a class of feed-forward artificial neural network, were compared in the classification of disfluencies. The results of the classifiers document the patterns of disfluency in spontaneous speech samples of school-aged children to distinguish between Children Who Stutter (CWS) and Children with Language Impairment CLI). The ability of the models in classifying the disfluencies was measured in terms of F-measure, Recall, and Precision.

Keywords: Bilingual, children who stutter, children with language impairment, Hidden Markov Models, multi-layer perceptron, linguistic disfluencies, stuttering disfluencies.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1029
2557 Quality of Service Evaluation using a Combination of Fuzzy C-Means and Regression Model

Authors: Aboagela Dogman, Reza Saatchi, Samir Al-Khayatt

Abstract:

In this study, a network quality of service (QoS) evaluation system was proposed. The system used a combination of fuzzy C-means (FCM) and regression model to analyse and assess the QoS in a simulated network. Network QoS parameters of multimedia applications were intelligently analysed by FCM clustering algorithm. The QoS parameters for each FCM cluster centre were then inputted to a regression model in order to quantify the overall QoS. The proposed QoS evaluation system provided valuable information about the network-s QoS patterns and based on this information, the overall network-s QoS was effectively quantified.

Keywords: Fuzzy C-means; regression model, network quality of service

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1720
2556 Social Network Management Enhances Customer Relationship

Authors: Srisawas Siriporn, Rotchanakitumnuai Siriluck

Abstract:

The study aims to develop a framework of social network management to enhance customer relationship. Social network management of this research is derived from social network site management, individual and organization social network usage motivation. The survey was conducted with organization employees who have used social network to interact with customers. The results reveal that content, link, privacy and security, page design and interactivity are the major issues of social network site management. Content, link, privacy and security, individual and organization motivation have major impacts on encouraging business knowledge sharing among employees. Moreover, Page design and interactivity, content, organization motivation and knowledge sharing can improve customer relationships.

Keywords: Social network management, social network site, motivation, knowledge sharing, customer relationship

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2155
2555 Home-Network Security Model in Ubiquitous Environment

Authors: Dong-Young Yoo, Jong-Whoi Shin, Jin-Young Choi

Abstract:

Social interest and demand on Home-Network has been increasing greatly. Although various services are being introduced to respond to such demands, they can cause serious security problems when linked to the open network such as Internet. This paper reviews the security requirements to protect the service users with assumption that the Home-Network environment is connected to Internet and then proposes the security model based on the requirement. The proposed security model can satisfy most of the requirements and further can be dynamically applied to the future ubiquitous Home-Networks.

Keywords: Home-Network, Security, Vulnerability, Response, Countermeasure.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1606
2554 Stability Analysis of Neural Networks with Leakage, Discrete and Distributed Delays

Authors: Qingqing Wang, Baocheng Chen, Shouming Zhong

Abstract:

This paper deals with the problem of stability of neural networks with leakage, discrete and distributed delays. A new Lyapunov functional which contains some new double integral terms are introduced. By using appropriate model transformation that shifts the considered systems into the neutral-type time-delay system, and by making use of some inequality techniques, delay-dependent criteria are developed to guarantee the stability of the considered system. Finally, numerical examples are provided to illustrate the usefulness of the proposed main results.

Keywords: Neural networks, Stability, Time-varying delays, Linear matrix inequality.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1618
2553 Neuroplasticity: A Fresh Beginning for Life

Authors: Leila Maleki, Ezatollah Ahmadi

Abstract:

Neuroplasticity or the flexibility of the neural system is the ability of the brain to adapt to the lack or deterioration of sense and the capability of the neural system to modify itself through changing shape and function. Not only have studies revealed that neuroplasticity does not end in childhood, but also they have proven that it continues till the end of life and is not limited to the neural system and covers the cognitive system as well. In the field of cognition, neuroplasticity is defined as the ability to change old thoughts according to new conditions and the individuals' differences in using various styles of cognitive regulation inducing several social, emotional and cognitive outcomes. This paper attempts to discuss and define major theories and principles of neuroplasticity and elaborate on nature or nurture.

Keywords: Neuroplasticity, Cognitive plasticity, Plasticity theories, Plasticity mechanisms.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2550
2552 ANN Based Currency Recognition System using Compressed Gray Scale and Application for Sri Lankan Currency Notes - SLCRec

Authors: D. A. K. S. Gunaratna, N. D. Kodikara, H. L. Premaratne

Abstract:

Automatic currency note recognition invariably depends on the currency note characteristics of a particular country and the extraction of features directly affects the recognition ability. Sri Lanka has not been involved in any kind of research or implementation of this kind. The proposed system “SLCRec" comes up with a solution focusing on minimizing false rejection of notes. Sri Lankan currency notes undergo severe changes in image quality in usage. Hence a special linear transformation function is adapted to wipe out noise patterns from backgrounds without affecting the notes- characteristic images and re-appear images of interest. The transformation maps the original gray scale range into a smaller range of 0 to 125. Applying Edge detection after the transformation provided better robustness for noise and fair representation of edges for new and old damaged notes. A three layer back propagation neural network is presented with the number of edges detected in row order of the notes and classification is accepted in four classes of interest which are 100, 500, 1000 and 2000 rupee notes. The experiments showed good classification results and proved that the proposed methodology has the capability of separating classes properly in varying image conditions.

Keywords: Artificial intelligence, linear transformation and pattern recognition.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2834
2551 Optimization Modeling of the Hybrid Antenna Array for the DoA Estimation

Authors: Somayeh Komeylian

Abstract:

The direction of arrival (DoA) estimation is the crucial aspect of the radar technologies for detecting and dividing several signal sources. In this scenario, the antenna array output modeling involves numerous parameters including noise samples, signal waveform, signal directions, signal number, and signal to noise ratio (SNR), and thereby the methods of the DoA estimation rely heavily on the generalization characteristic for establishing a large number of the training data sets. Hence, we have analogously represented the two different optimization models of the DoA estimation; (1) the implementation of the decision directed acyclic graph (DDAG) for the multiclass least-squares support vector machine (LS-SVM), and (2) the optimization method of the deep neural network (DNN) radial basis function (RBF). We have rigorously verified that the LS-SVM DDAG algorithm is capable of accurately classifying DoAs for the three classes. However, the accuracy and robustness of the DoA estimation are still highly sensitive to technological imperfections of the antenna arrays such as non-ideal array design and manufacture, array implementation, mutual coupling effect, and background radiation and thereby the method may fail in representing high precision for the DoA estimation. Therefore, this work has a further contribution on developing the DNN-RBF model for the DoA estimation for overcoming the limitations of the non-parametric and data-driven methods in terms of array imperfection and generalization. The numerical results of implementing the DNN-RBF model have confirmed the better performance of the DoA estimation compared with the LS-SVM algorithm. Consequently, we have analogously evaluated the performance of utilizing the two aforementioned optimization methods for the DoA estimation using the concept of the mean squared error (MSE).

Keywords: DoA estimation, adaptive antenna array, Deep Neural Network, LS-SVM optimization model, radial basis function, MSE.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 540
2550 Feasibility Investigation of Near Infrared Spectrometry for Particle Size Estimation of Nano Structures

Authors: A. Bagheri Garmarudi, M. Khanmohammadi, N. Khoddami, K. Shabani

Abstract:

Determination of nano particle size is substantial since the nano particle size exerts a significant effect on various properties of nano materials. Accordingly, proposing non-destructive, accurate and rapid techniques for this aim is of high interest. There are some conventional techniques to investigate the morphology and grain size of nano particles such as scanning electron microscopy (SEM), atomic force microscopy (AFM) and X-ray diffractometry (XRD). Vibrational spectroscopy is utilized to characterize different compounds and applied for evaluation of the average particle size based on relationship between particle size and near infrared spectra [1,4] , but it has never been applied in quantitative morphological analysis of nano materials. So far, the potential application of nearinfrared (NIR) spectroscopy with its ability in rapid analysis of powdered materials with minimal sample preparation, has been suggested for particle size determination of powdered pharmaceuticals. The relationship between particle size and diffuse reflectance (DR) spectra in near infrared region has been applied to introduce a method for estimation of particle size. Back propagation artificial neural network (BP-ANN) as a nonlinear model was applied to estimate average particle size based on near infrared diffuse reflectance spectra. Thirty five different nano TiO2 samples with different particle size were analyzed by DR-FTNIR spectrometry and the obtained data were processed by BP- ANN.

Keywords: near infrared, particle size, chemometrics, neuralnetwork, nano structure.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1842
2549 Design of Distribution Network for Gas Cylinders in Jordan

Authors: Hazem J. Smadi

Abstract:

Performance of a supply chain is directly related to a distribution network that entails the location of storing materials or products and how products are delivered to the end customer through different stages in the supply chain. This study analyses the current distribution network used for delivering gas cylinders to end customer in Jordan. Evaluation of current distribution has been conducted across customer service components. A modification on the current distribution network in terms of central warehousing in each city in the country improves the response time and customer experience. 

Keywords: Distribution network, gas cylinder, Jordan, supply chain.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1693
2548 The Performance of an 802.11g/Wi-Fi Network Whilst Streaming Voice Content

Authors: P. O. Umenne, Odhiambo Marcel O.

Abstract:

A simple network model is developed in OPNET to study the performance of the Wi-Fi protocol. The model is simulated in OPNET and performance factors such as load, throughput and delay are analysed from the model. Four applications such as oracle, http, ftp and voice are applied over the Wireless LAN network to determine the throughput. The voice application utilises a considerable amount of bandwidth of up to 5Mbps, as a result the 802.11g standard of the Wi-Fi protocol was chosen which can support a data rate of up to 54Mbps. Results indicate that when the load in the Wi-Fi network is increased the queuing delay on the point-to-point links in the Wi-Fi network significantly reduces until it is comparable to that of WiMAX. In conclusion, the queuing delay of the Wi-Fi protocol for the network model simulated was about 0.00001secs comparable to WiMAX network values.

Keywords: WLAN-Wireless Local Area Network, MIMO-Multiple Input Multiple Output, Queuing delay, Throughput, AP-Access Point, IP-Internet protocol, TOS-Type of Service.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2132
2547 Enhanced Ant Colony Based Algorithm for Routing in Mobile Ad Hoc Network

Authors: Cauvery N. K., K. V. Viswanatha

Abstract:

Mobile Ad hoc network consists of a set of mobile nodes. It is a dynamic network which does not have fixed topology. This network does not have any infrastructure or central administration, hence it is called infrastructure-less network. The change in topology makes the route from source to destination as dynamic fixed and changes with respect to time. The nature of network requires the algorithm to perform route discovery, maintain route and detect failure along the path between two nodes [1]. This paper presents the enhancements of ARA [2] to improve the performance of routing algorithm. ARA [2] finds route between nodes in mobile ad-hoc network. The algorithm is on-demand source initiated routing algorithm. This is based on the principles of swarm intelligence. The algorithm is adaptive, scalable and favors load balancing. The improvements suggested in this paper are handling of loss ants and resource reservation.

Keywords: Ad hoc networks, On-demand routing, Swarmintelligence.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1835
2546 Satellite Imagery Classification Based on Deep Convolution Network

Authors: Zhong Ma, Zhuping Wang, Congxin Liu, Xiangzeng Liu

Abstract:

Satellite imagery classification is a challenging problem with many practical applications. In this paper, we designed a deep convolution neural network (DCNN) to classify the satellite imagery. The contributions of this paper are twofold — First, to cope with the large-scale variance in the satellite image, we introduced the inception module, which has multiple filters with different size at the same level, as the building block to build our DCNN model. Second, we proposed a genetic algorithm based method to efficiently search the best hyper-parameters of the DCNN in a large search space. The proposed method is evaluated on the benchmark database. The results of the proposed hyper-parameters search method show it will guide the search towards better regions of the parameter space. Based on the found hyper-parameters, we built our DCNN models, and evaluated its performance on satellite imagery classification, the results show the classification accuracy of proposed models outperform the state of the art method.

Keywords: Satellite imagery classification, deep convolution network, genetic algorithm, hyper-parameter optimization.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2346
2545 A Model-following Adaptive Controller for Linear/Nonlinear Plantsusing Radial Basis Function Neural Networks

Authors: Yuichi Masukake, Yoshihisa Ishida

Abstract:

In this paper, we proposed a method to design a model-following adaptive controller for linear/nonlinear plants. Radial basis function neural networks (RBF-NNs), which are known for their stable learning capability and fast training, are used to identify linear/nonlinear plants. Simulation results show that the proposed method is effective in controlling both linear and nonlinear plants with disturbance in the plant input.

Keywords: Linear/nonlinear plants, neural networks, radial basisfunction networks.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1482
2544 Stability Criteria for Uncertainty Markovian Jumping Parameters of BAM Neural Networks with Leakage and Discrete Delays

Authors: Qingqing Wang, Baocheng Chen, Shouming Zhong

Abstract:

In this paper, the problem of stability criteria for Markovian jumping BAM neural networks with leakage and discrete delays has been investigated. Some new sufficient condition are derived based on a novel Lyapunov-Krasovskii functional approach. These new criteria based on delay partitioning idea are proved to be less conservative because free-weighting matrices method and a convex optimization approach are considered. Finally, one numerical example is given to illustrate the the usefulness and feasibility of the proposed main results.

Keywords: Stability, Markovian jumping neural networks, Timevarying delays, Linear matrix inequality.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 5140
2543 Inverse Heat Conduction Analysis of Cooling on Run Out Tables

Authors: M. S. Gadala, Khaled Ahmed, Elasadig Mahdi

Abstract:

In this paper, we introduced a gradient-based inverse solver to obtain the missing boundary conditions based on the readings of internal thermocouples. The results show that the method is very sensitive to measurement errors, and becomes unstable when small time steps are used. The artificial neural networks are shown to be capable of capturing the whole thermal history on the run-out table, but are not very effective in restoring the detailed behavior of the boundary conditions. Also, they behave poorly in nonlinear cases and where the boundary condition profile is different. GA and PSO are more effective in finding a detailed representation of the time-varying boundary conditions, as well as in nonlinear cases. However, their convergence takes longer. A variation of the basic PSO, called CRPSO, showed the best performance among the three versions. Also, PSO proved to be effective in handling noisy data, especially when its performance parameters were tuned. An increase in the self-confidence parameter was also found to be effective, as it increased the global search capabilities of the algorithm. RPSO was the most effective variation in dealing with noise, closely followed by CRPSO. The latter variation is recommended for inverse heat conduction problems, as it combines the efficiency and effectiveness required by these problems.

Keywords: Inverse Analysis, Function Specification, Neural Net Works, Particle Swarm, Run Out Table.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1699
2542 Delay-Dependent Stability Analysis for Neutral Type Neural Networks with Uncertain Parameters and Time-Varying Delay

Authors: Qingqing Wang, Shouming Zhong

Abstract:

In this paper, delay-dependent stability analysis for neutral type neural networks with uncertain paramters and time-varying delay is studied. By constructing new Lyapunov-Krasovskii functional and dividing the delay interval into multiple segments, a novel sufficient condition is established to guarantee the globally asymptotically stability of the considered system. Finally, a numerical example is provided to illustrate the usefulness of the proposed main results.

Keywords: Neutral type neural networks, Time-varying delay, Stability, Linear matrix inequality(LMI).

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1819
2541 Stability Analysis of Impulsive BAM Fuzzy Cellular Neural Networks with Distributed Delays and Reaction-diffusion Terms

Authors: Xinhua Zhang, Kelin Li

Abstract:

In this paper, a class of impulsive BAM fuzzy cellular neural networks with distributed delays and reaction-diffusion terms is formulated and investigated. By employing the delay differential inequality and inequality technique developed by Xu et al., some sufficient conditions ensuring the existence, uniqueness and global exponential stability of equilibrium point for impulsive BAM fuzzy cellular neural networks with distributed delays and reaction-diffusion terms are obtained. In particular, the estimate of the exponential convergence rate is also provided, which depends on system parameters, diffusion effect and impulsive disturbed intention. It is believed that these results are significant and useful for the design and applications of BAM fuzzy cellular neural networks. An example is given to show the effectiveness of the results obtained here.

Keywords: Bi-directional associative memory, fuzzy cellular neuralnetworks, reaction-diffusion, delays, impulses, global exponentialstability.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1543
2540 An Approach for Reducing the Computational Complexity of LAMSTAR Intrusion Detection System using Principal Component Analysis

Authors: V. Venkatachalam, S. Selvan

Abstract:

The security of computer networks plays a strategic role in modern computer systems. Intrusion Detection Systems (IDS) act as the 'second line of defense' placed inside a protected network, looking for known or potential threats in network traffic and/or audit data recorded by hosts. We developed an Intrusion Detection System using LAMSTAR neural network to learn patterns of normal and intrusive activities, to classify observed system activities and compared the performance of LAMSTAR IDS with other classification techniques using 5 classes of KDDCup99 data. LAMSAR IDS gives better performance at the cost of high Computational complexity, Training time and Testing time, when compared to other classification techniques (Binary Tree classifier, RBF classifier, Gaussian Mixture classifier). we further reduced the Computational Complexity of LAMSTAR IDS by reducing the dimension of the data using principal component analysis which in turn reduces the training and testing time with almost the same performance.

Keywords: Binary Tree Classifier, Gaussian Mixture, IntrusionDetection System, LAMSTAR, Radial Basis Function.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1748