Search results for: Building energy prediction
3788 C4H6 Adsorption on the Surface of a BN Nanotube: DFT Studies
Authors: Maziar Noei
Abstract:
Adsorption of a boron nitride nanotube (BNNT) was examined toward ethylacetylene (C4H6) molecule by using density functional theory (DFT) calculations at the B3LYP/6-31G (d) level, and it was found that the adsorption energy (Ead) of ethylacetylene the pristine nanotubes is about -1.60kcal/mol. But when nanotube has been doped with Si and Al atoms, the adsorption energy of ethylacetylene molecule was increased. Calculation showed that when the nanotube is doping by Al, the adsorption energy is about - 24.19kcal/mol and also the amount of HOMO/LUMO energy gap (Eg) will reduce significantly. Boron nitride nanotube is a suitable adsorbent for ethylacetylene and can be used in separation processes ethylacetylene. It is seem that nanotube (BNNT) is a suitable semiconductor after doping, and the doped BNNT in the presence of ethylacetylene an electrical signal is generating directly and therefore can potentially be used for ethylacetylene sensors.
Keywords: Sensor, Nanotube, DFT, Ethylacetylene.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 25713787 Mining of Interesting Prediction Rules with Uniform Two-Level Genetic Algorithm
Authors: Bilal Alatas, Ahmet Arslan
Abstract:
The main goal of data mining is to extract accurate, comprehensible and interesting knowledge from databases that may be considered as large search spaces. In this paper, a new, efficient type of Genetic Algorithm (GA) called uniform two-level GA is proposed as a search strategy to discover truly interesting, high-level prediction rules, a difficult problem and relatively little researched, rather than discovering classification knowledge as usual in the literatures. The proposed method uses the advantage of uniform population method and addresses the task of generalized rule induction that can be regarded as a generalization of the task of classification. Although the task of generalized rule induction requires a lot of computations, which is usually not satisfied with the normal algorithms, it was demonstrated that this method increased the performance of GAs and rapidly found interesting rules.
Keywords: Classification rule mining, data mining, genetic algorithms.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15923786 A Statistical Prediction of Likely Distress in Nigeria Banking Sector Using a Neural Network Approach
Authors: D. A. Farinde
Abstract:
One of the most significant threats to the economy of a nation is the bankruptcy of its banks. This study evaluates the susceptibility of Nigerian banks to failure with a view to identifying ratios and financial data that are sensitive to solvency of the bank. Further, a predictive model is generated to guide all stakeholders in the industry. Thirty quoted banks that had published Annual Reports for the year preceding the consolidation i.e. year 2004 were selected. They were examined for distress using the Multilayer Perceptron Neural Network Analysis. The model was used to analyze further reforms by the Central Bank of Nigeria using published Annual Reports of twenty quoted banks for the year 2008 and 2011. The model can thus be used for future prediction of failure in the Nigerian banking system.
Keywords: Bank, Bankruptcy, Financial Ratios, Neural Network, Multilayer Perceptron, Predictive Model
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 27033785 A New Technique for Solar Activity Forecasting Using Recurrent Elman Networks
Authors: Salvatore Marra, Francesco C. Morabito
Abstract:
In this paper we present an efficient approach for the prediction of two sunspot-related time series, namely the Yearly Sunspot Number and the IR5 Index, that are commonly used for monitoring solar activity. The method is based on exploiting partially recurrent Elman networks and it can be divided into three main steps: the first one consists in a “de-rectification" of the time series under study in order to obtain a new time series whose appearance, similar to a sum of sinusoids, can be modelled by our neural networks much better than the original dataset. After that, we normalize the derectified data so that they have zero mean and unity standard deviation and, finally, train an Elman network with only one input, a recurrent hidden layer and one output using a back-propagation algorithm with variable learning rate and momentum. The achieved results have shown the efficiency of this approach that, although very simple, can perform better than most of the existing solar activity forecasting methods.
Keywords: Elman neural networks, sunspot, solar activity, time series prediction.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 18533784 CFD Analysis on Aerodynamic Design Optimization of Wind Turbine Rotor Blades
Authors: R.S. Amano, R.J. Malloy
Abstract:
Wind energy has been shown to be one of the most viable sources of renewable energy. With current technology, the low cost of wind energy is competitive with more conventional sources of energy such as coal. Most blades available for commercial grade wind turbines incorporate a straight span-wise profile and airfoil shaped cross sections. These blades are found to be very efficient at lower wind speeds in comparison to the potential energy that can be extracted. However as the oncoming wind speed increases the efficiency of the blades decreases as they approach a stall point. This paper explores the possibility of increasing the efficiency of the blades at higher wind speeds while maintaining efficiency at the lower wind speeds. The design intends to maintain efficiency at lower wind speeds by selecting the appropriate orientation and size of the airfoil cross sections based on a low oncoming wind speed and given constant rotation rate. The blades will be made more efficient at higher wind speeds by implementing a swept blade profile. Performance was investigated using the computational fluid dynamics (CFD).Keywords: CFD, wind turbine blade, renewable energy.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 38053783 A Comparison between Hybrid and Experimental Extended Polars for the Numerical Prediction of Vertical-Axis Wind Turbine Performance using Blade Element-Momentum Algorithm
Authors: Gabriele Bedon, Marco Raciti Castelli, Ernesto Benini
Abstract:
A dynamic stall-corrected Blade Element-Momentum algorithm based on a hybrid polar is validated through the comparison with Sandia experimental measurements on a 5-m diameter wind turbine of Troposkien shape. Different dynamic stall models are evaluated. The numerical predictions obtained using the extended aerodynamic coefficients provided by both Sheldal and Klimas and Raciti Castelli et al. are compared to experimental data, determining the potential of the hybrid database for the numerical prediction of vertical-axis wind turbine performances.
Keywords: Darrieus wind turbine, Blade Element-Momentum Theory, extended airfoil database, hybrid database, Sandia 5-m wind turbine.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 25593782 Porous Ni and Ni-Co Electrodeposits for Alkaline Water Electrolysis – Energy Saving
Authors: I. Herraiz-Cardona, C. González-Buch, E. Ortega, V. Pérez-Herranz, J. García-Antón
Abstract:
Hydrogen is considered to be the most promising candidate as a future energy carrier. One of the most used technologies for the electrolytic hydrogen production is alkaline water electrolysis. However, due to the high energy requirements, the cost of hydrogen produced in such a way is high. In continuous search to improve this process using advanced electrocatalytic materials for the hydrogen evolution reaction (HER), Ni type Raney and macro-porous Ni-Co electrodes were prepared on AISI 304 stainless steel substrates by electrodeposition. The developed electrodes were characterized by SEM and confocal laser scanning microscopy. HER on these electrodes was evaluated in 30 wt.% KOH solution by means of hydrogen discharge curves and galvanostatic tests. Results show that the developed electrodes present a most efficient behaviour for HER when comparing with the smooth Ni cathode. It has been reported a reduction in the energy consumption of the electrolysis cell of about 25% by using the developed coatings as cathodes.Keywords: Alkaline water electrolysis, energy efficiency, porous nickel electrodes
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 32393781 Intelligent Heart Disease Prediction System Using CANFIS and Genetic Algorithm
Authors: Latha Parthiban, R. Subramanian
Abstract:
Heart disease (HD) is a major cause of morbidity and mortality in the modern society. Medical diagnosis is an important but complicated task that should be performed accurately and efficiently and its automation would be very useful. All doctors are unfortunately not equally skilled in every sub specialty and they are in many places a scarce resource. A system for automated medical diagnosis would enhance medical care and reduce costs. In this paper, a new approach based on coactive neuro-fuzzy inference system (CANFIS) was presented for prediction of heart disease. The proposed CANFIS model combined the neural network adaptive capabilities and the fuzzy logic qualitative approach which is then integrated with genetic algorithm to diagnose the presence of the disease. The performances of the CANFIS model were evaluated in terms of training performances and classification accuracies and the results showed that the proposed CANFIS model has great potential in predicting the heart disease.
Keywords: CANFIS, genetic algorithms, heart disease, membership function.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 39903780 Heat Recovery System from Air-Cooled Chillers in Iranian Hospitals
Authors: Saeed Vahidifar, Mohammad Nakhaee Sharif, Mohammad Ghaffari
Abstract:
Few people would dispute the fact that one of the most common applications of energy is creating comfort in buildings, so it is probably true to say that management of energy consumption is required due to the environmental issues and increasing the efficiency of mechanical systems. From the geographical point of view, Iran is located in a warm and semi-arid region; therefore, air-cooled chillers are usually used for cooling residential buildings, commercial buildings, medical buildings, etc. In this study, a heat exchanger was designed for providing laundry hot water by utilizing condenser heat lost base on analytical results of a 540-bed hospital in the city of Mashhad in Iran. In this paper, by using the analytical method, energy consumption reduces about 13%, and coefficient of performance increases a bit. Results show that this method can help in the management of energy consumption a lot.Keywords: Energy management, air-cooled chiller, heat exchanger, hospital laundry system.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 9243779 Energy Efficient In-Network Data Processing in Sensor Networks
Authors: Prakash G L, Thejaswini M, S H Manjula, K R Venugopal, L M Patnaik
Abstract:
The Sensor Network consists of densely deployed sensor nodes. Energy optimization is one of the most important aspects of sensor application design. Data acquisition and aggregation techniques for processing data in-network should be energy efficient. Due to the cross-layer design, resource-limited and noisy nature of Wireless Sensor Networks(WSNs), it is challenging to study the performance of these systems in a realistic setting. In this paper, we propose optimizing queries by aggregation of data and data redundancy to reduce energy consumption without requiring all sensed data and directed diffusion communication paradigm to achieve power savings, robust communication and processing data in-network. To estimate the per-node power consumption POWERTossim mica2 energy model is used, which provides scalable and accurate results. The performance analysis shows that the proposed methods overcomes the existing methods in the aspects of energy consumption in wireless sensor networks.Keywords: Data Aggregation, Directed Diffusion, Partial Aggregation, Packet Merging, Query Plan.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 18313778 A Proposal for a Secure and Interoperable Data Framework for Energy Digitalization
Authors: Hebberly Ahatlan
Abstract:
The process of digitizing energy systems involves transforming traditional energy infrastructure into interconnected, data-driven systems that enhance efficiency, sustainability, and responsiveness. As smart grids become increasingly integral to the efficient distribution and management of electricity from both fossil and renewable energy sources, the energy industry faces strategic challenges associated with digitalization and interoperability — particularly in the context of modern energy business models, such as virtual power plants (VPPs). The critical challenge in modern smart grids is to seamlessly integrate diverse technologies and systems, including virtualization, grid computing and service-oriented architecture (SOA), across the entire energy ecosystem. Achieving this requires addressing issues like semantic interoperability, Information Technology (IT) and Operational Technology (OT) convergence, and digital asset scalability, all while ensuring security and risk management. This paper proposes a four-layer digitalization framework to tackle these challenges, encompassing persistent data protection, trusted key management, secure messaging, and authentication of IoT resources. Data assets generated through this framework enable AI systems to derive insights for improving smart grid operations, security, and revenue generation. Furthermore, this paper also proposes a Trusted Energy Interoperability Alliance as a universal guiding standard in the development of this digitalization framework to support more dynamic and interoperable energy markets.
Keywords: Digitalization, IT/OT convergence, semantic interoperability, TEIA alliance, VPP.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1153777 Mutational Effect to Particular Interaction Energy of Cycloguanil Drug to Plasmodium Plasmodium Falciparum Dihydrofolate Reductase Enzymes
Authors: A. Maitarad, P. Maitarad
Abstract:
In order to find the particular interaction energy between cylcloguanil and the amino acids surrounding the pocket of wild type and quadruple mutant type PfDHFR enzymes, the MP2 method with basis set 6-31G(d,p) level of calculations was performed. The obtained interaction energies found that Asp54 has the strongest interaction energy to both wild type and mutant type of - 12.439 and -11.250 kcal/mol, respectively and three amino acids; Asp54, Ile164 and Ile14 formed the H-bonding with cycloguanil drug. Importantly, the mutation at Ser108Asn was the key important of cycloguanil resistant with showing repulsive interaction energy.Keywords: Cycloguanil, DHFR, malaria disease, interactionenergy, quantum calculations
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 14113776 An Approximation Method for Three Quark Systems in the Hyper-Spherical Approach
Authors: B. Rezaei, G. R. Boroun, M. Abdolmaleki
Abstract:
The bound state energy of three quark systems is studied in the framework of a non- relativistic spin independent phenomenological model. The hyper- spherical coordinates are considered for the solution this system. According to Jacobi coordinate, we determined the bound state energy for (uud) and (ddu) quark systems, as quarks are flavorless mass, and it is restrict that choice potential at low and high range in nucleon bag for a bound state.
Keywords: Adiabatic expansion, grand angular momentum, binding energy, perturbation, baryons.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 14323775 Nonlinear Evolution of Electron Density Under High-Energy-Density Conditions
Authors: Shi Chen, Zi Y. Chen, Jian K. Dan, Jian F. Li
Abstract:
Evolution of one-dimensional electron system under high-energy-density (HED) conditions is investigated, using the principle of least-action and variational method. In a single-mode modulation model, the amplitude and spatial wavelength of the modulation are chosen to be general coordinates. Equations of motion are derived by considering energy conservation and force balance. Numerical results show that under HED conditions, electron density modulation could exist. Time dependences of amplitude and wavelength are both positively related to the rate of energy input. Besides, initial loading speed has a significant effect on modulation amplitude, while wavelength relies more on loading duration.Keywords: Electron density modulation, HED, nonlinearevolution, plasmas.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 14133774 Comparison of MODIS-Based Rice Extent Map and Landsat-Based Rice Classification Map in Determining Biomass Energy Potential of Rice Hull in Nueva Ecija, Philippines
Authors: Klathea Sevilla, Marjorie Remolador, Bryan Baltazar, Imee Saladaga, Loureal Camille Inocencio, Ma. Rosario Concepcion Ang
Abstract:
The underutilization of biomass resources in the Philippines, combined with its growing population and the rise in fossil fuel prices confirms demand for alternative energy sources. The goal of this paper is to provide a comparison of MODIS-based and Landsat-based agricultural land cover maps when used in the estimation of rice hull’s available energy potential. Biomass resource assessment was done using mathematical models and remote sensing techniques employed in a GIS platform.Keywords: Biomass, geographic information system, GIS, renewable energy.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 22413773 Statistical Assessment of Models for Determination of Soil – Water Characteristic Curves of Sand Soils
Authors: S. J. Matlan, M. Mukhlisin, M. R. Taha
Abstract:
Characterization of the engineering behavior of unsaturated soil is dependent on the soil-water characteristic curve (SWCC), a graphical representation of the relationship between water content or degree of saturation and soil suction. A reasonable description of the SWCC is thus important for the accurate prediction of unsaturated soil parameters. The measurement procedures for determining the SWCC, however, are difficult, expensive, and timeconsuming. During the past few decades, researchers have laid a major focus on developing empirical equations for predicting the SWCC, with a large number of empirical models suggested. One of the most crucial questions is how precisely existing equations can represent the SWCC. As different models have different ranges of capability, it is essential to evaluate the precision of the SWCC models used for each particular soil type for better SWCC estimation. It is expected that better estimation of SWCC would be achieved via a thorough statistical analysis of its distribution within a particular soil class. With this in view, a statistical analysis was conducted in order to evaluate the reliability of the SWCC prediction models against laboratory measurement. Optimization techniques were used to obtain the best-fit of the model parameters in four forms of SWCC equation, using laboratory data for relatively coarse-textured (i.e., sandy) soil. The four most prominent SWCCs were evaluated and computed for each sample. The result shows that the Brooks and Corey model is the most consistent in describing the SWCC for sand soil type. The Brooks and Corey model prediction also exhibit compatibility with samples ranging from low to high soil water content in which subjected to the samples that evaluated in this study.
Keywords: Soil-water characteristic curve (SWCC), statistical analysis, unsaturated soil.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 26643772 Experimental Characterization of the Thermal Behavior of a Sawdust Mortar
Authors: F. Taouche-Kheloui, O. Fedaoui-Akmoussi, K. Ait tahar, Li. Alex
Abstract:
Currently, the reduction of energy consumption, through the use of abundant and recyclable natural materials, for better thermal insulation represents an important area of research. To this end, the use of bio-sourced materials has been identified as one of the green sectors with a very high economic development potential for the future. Because of its role in reducing the consumption of fossil-based raw materials, it contributes significantly to the storage of atmospheric carbon, limits greenhouse gas emissions and creates new economic opportunities. This study constitutes a contribution to the elaboration and the experimental characterization of the thermal behavior of a sawdust-reduced mortar matrix. We have taken into account the influence of the size of the grain fibers of sawdust, hence the use of three different ranges and also different percentage in the different confections. The intended practical application consists of producing a light weight compound at a lower cost to ensure a better thermal and acoustic behavior compared to that existing in the field, in addition to the desired resistances. Improving energy performance, while reducing greenhouse gas emissions from the building sector, is amongst the objectives to be achieved. The results are very encouraging and highlight the value of the proposed design of organic-source mortar panels which have specific mechanical properties acceptable for their use, low densities, lower cost of manufacture and labor, and above all a positive impact on the environment.
Keywords: Mortar, sawdust waste, thermal, experimental, analysis.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 5933771 A Wall Law for Two-Phase Turbulent Boundary Layers
Authors: Dhahri Maher, Aouinet Hana
Abstract:
The presence of bubbles in the boundary layer introduces corrections into the log law, which must be taken into account. In this work, a logarithmic wall law was presented for bubbly two phase flows. The wall law presented in this work was based on the postulation of additional turbulent viscosity associated with bubble wakes in the boundary layer. The presented wall law contained empirical constant accounting both for shear induced turbulence interaction and for non-linearity of bubble. This constant was deduced from experimental data. The wall friction prediction achieved with the wall law was compared to the experimental data, in the case of a turbulent boundary layer developing on a vertical flat plate in the presence of millimetric bubbles. A very good agreement between experimental and numerical wall friction prediction was verified. The agreement was especially noticeable for the low void fraction when bubble induced turbulence plays a significant role.Keywords: Bubbly flows, log law, boundary layer.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 11253770 Planning the Building Evacuation Routes by a Spatial Network
Authors: Hsin-Yun Lee
Abstract:
The previous proposed evacuation routing approaches usually divide the space into multiple interlinked zones. However, it may be harder to clearly and objectively define the margins of each zone. This paper proposes an approach that connects locations of necessary guidance into a spatial network. In doing so, evacuation routes can be constructed based on the links between starting points, turning nodes, and terminal points. This approach more conforms to the real-life evacuation behavior. The feasibility of the proposed approach is evaluated through a case of one floor in a hospital building. Results indicate that the proposed approach provides valuable suggestions for evacuation planning.
Keywords: Evacuation, spatial network, simulation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 14263769 Ramification of Oil Prices on Renewable Energy Deployment
Authors: Osamah A. Alsayegh
Abstract:
This paper contributes to the literature by updating the analysis of the impact of the recent oil prices fall on the renewable energy (RE) industry and deployment. The research analysis uses the Renewable Energy Industrial Index (RENIXX), which tracks the world’s 30 largest publicly traded companies and oil prices daily data from January 2003 to March 2016. RENIXX represents RE industries developing solar, wind, geothermal, bioenergy, hydropower and fuel cells technologies. This paper tests the hypothesis that claims high oil prices encourage the substitution of alternate energy sources for conventional energy sources. Furthermore, it discusses RENIXX performance behavior with respect to the governments’ policies factor that investors should take into account. Moreover, the paper proposes a theoretical model that relates RE industry progress with oil prices and policies through the fuzzy logic system.
Keywords: Fuzzy logic, investment, policy, stock exchange index.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 13273768 Prediction of Optimum Cutting Parameters to obtain Desired Surface in Finish Pass end Milling of Aluminium Alloy with Carbide Tool using Artificial Neural Network
Authors: Anjan Kumar Kakati, M. Chandrasekaran, Amitava Mandal, Amit Kumar Singh
Abstract:
End milling process is one of the common metal cutting operations used for machining parts in manufacturing industry. It is usually performed at the final stage in manufacturing a product and surface roughness of the produced job plays an important role. In general, the surface roughness affects wear resistance, ductility, tensile, fatigue strength, etc., for machined parts and cannot be neglected in design. In the present work an experimental investigation of end milling of aluminium alloy with carbide tool is carried out and the effect of different cutting parameters on the response are studied with three-dimensional surface plots. An artificial neural network (ANN) is used to establish the relationship between the surface roughness and the input cutting parameters (i.e., spindle speed, feed, and depth of cut). The Matlab ANN toolbox works on feed forward back propagation algorithm is used for modeling purpose. 3-12-1 network structure having minimum average prediction error found as best network architecture for predicting surface roughness value. The network predicts surface roughness for unseen data and found that the result/prediction is better. For desired surface finish of the component to be produced there are many different combination of cutting parameters are available. The optimum cutting parameter for obtaining desired surface finish, to maximize tool life is predicted. The methodology is demonstrated, number of problems are solved and algorithm is coded in Matlab®.Keywords: End milling, Surface roughness, Neural networks.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 21623767 Low Energy Method for Data Delivery in Ubiquitous Network
Authors: Tae Kyung Kim, Hee Suk Seo
Abstract:
Recent advances in wireless sensor networks have led to many routing methods designed for energy-efficiency in wireless sensor networks. Despite that many routing methods have been proposed in USN, a single routing method cannot be energy-efficient if the environment of the ubiquitous sensor network varies. We present the controlling network access to various hosts and the services they offer, rather than on securing them one by one with a network security model. When ubiquitous sensor networks are deployed in hostile environments, an adversary may compromise some sensor nodes and use them to inject false sensing reports. False reports can lead to not only false alarms but also the depletion of limited energy resource in battery powered networks. The interleaved hop-by-hop authentication scheme detects such false reports through interleaved authentication. This paper presents a LMDD (Low energy method for data delivery) algorithm that provides energy-efficiency by dynamically changing protocols installed at the sensor nodes. The algorithm changes protocols based on the output of the fuzzy logic which is the fitness level of the protocols for the environment.Keywords: Data delivery, routing, simulation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 13443766 Stochastic Risk Analysis Framework for Building Construction Projects
Authors: Abdulkadir Abu Lawal
Abstract:
The study was carried out to establish the probability density function of some selected building construction projects of similar complexity delivered using Bill of Quantities (BQ) and Lump Sum (LS) forms of contract, and to draw a reliability scenario for each form of contract. 30 of such delivered projects are analyzed for each of the contract forms using Weibull Analysis, and their Weibull functions (α, and β) are determined based on their completion times. For the BQ form of contract delivered projects, α is calculated as 1.6737E20 and β as + 0.0115 and for the LS form, α is found to be 5.6556E03 and β is determined as + 0.4535. Using these values, respective probability density functions are calculated and plotted, as handy tool for risk analysis of future projects of similar characteristics. By input of variables from other projects, decision making processes can be made for a whole project or its components using EVM Analysis in project evaluation and review techniques. This framework, as a quantitative approach, depends on the assumption of normality in projects completion time, it can help greatly in determining the completion time probability for veritable projects using any of the contract forms under consideration. Projects aspects that are not amenable to measurement, on the other hand, can be analyzed using fuzzy sets and fuzzy logic. This scenario can be drawn for different types of building construction projects, and using different suitable forms of contract in projects delivery.
Keywords: Building construction, Projects, Forms of contract, Probability density function, Reliability scenario.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 7803765 An Artificial Neural Network Model for Earthquake Prediction and Relations between Environmental Parameters and Earthquakes
Authors: S. Niksarlioglu, F. Kulahci
Abstract:
Earthquakes are natural phenomena that occur with influence of a lot of parameters such as seismic activity, changing in the ground waters' motion, changing in the water-s temperature, etc. On the other hand, the radon gas concentrations in soil vary as nonlinear generally with earthquakes. Continuous measurement of the soil radon gas is very important for determination of characteristic of the seismic activity. The radon gas changes as continuous with strain occurring within the Earth-s surface during an earthquake and effects from the physical and the chemical processes such as soil structure, soil permeability, soil temperature, the barometric pressure, etc. Therefore, at the modeling researches are notsufficient to knowthe concentration ofradon gas. In this research, we determined relationships between radon emissions based on the environmental parameters and earthquakes occurring along the East Anatolian Fault Zone (EAFZ), Turkiye and predicted magnitudes of some earthquakes with the artificial neural network (ANN) model.
Keywords: Earthquake, Modeling, Prediction, Radon.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 30113764 Seismic Behaviour of Steel Frames Investigation with Knee Brace Based on Pushover Analysis
Authors: Mahmoud Miri, Abdolreza Zare, Hossein Abbas zadeh
Abstract:
The knee bracing steel frame (KBF) is a new kind of energy dissipating frame, which combines excellent ductility and lateral stiffness. In this framing system, a special form of diagonal brace connected to a knee element instead of beam-column joint, is investigated. Recently, a similar system was proposed and named as chevron knee bracing system (CKB) which in comparison with the former system has a better energy absorption characteristic and at the same time retains the elastic nature of the structures. Knee bracing can provide a stiffer bracing system but reduces the ductility of the steel frame. Chevron knee bracing can be employed to provide the desired ductility level for a design. In this article, relation between seismic performance and structural parameters of the two above mentioned systems are investigated and compared. Frames with similar dimensions but various heights in both systems are designed according to Iranian code of practice for seismic resistant design of building, and then based on a non-linear push over static analysis; the seismic parameters such as behavior factor and performance levels are compared.
Keywords: Seismic behaviour, ordinary knee bracing frame, Chevron knee brace, behaviour factor, performance level.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 42553763 Recent Advances in Energy Materials for Hot Sections of Modern Gas-Turbine Engines
Authors: Zainul Huda
Abstract:
This presentation reviews recent advances in superalloys and thermal barrier coating (TBC) for application in hot sections of energy-efficient gas-turbine engines. It has been reviewed that in the modern combined-cycle gas turbines (CCGT) applying single-crystal energy materials (SC superalloys) and thermal barrier coatings (TBC), and – in one design – closed-loop steam cooling, thermal efficiency can reach more than 60%. These technological advancements contribute to profitable and clean power generation with reduced emission. Alternatively, the use of advanced superalloys (e.g. GTD-111 superalloy, Allvac 718Plus superalloy) and advanced thermal barrier coatings (TBC) in modern gas-turbines has been shown to yield higher energy-efficiency in power generation.
Keywords: Energy materials, gas turbine engines, superalloy, thermal barrier coating
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 27393762 Forecasting Stock Indexes Using Bayesian Additive Regression Tree
Authors: Darren Zou
Abstract:
Forecasting the stock market is a very challenging task. Various economic indicators such as GDP, exchange rates, interest rates, and unemployment have a substantial impact on the stock market. Time series models are the traditional methods used to predict stock market changes. In this paper, a machine learning method, Bayesian Additive Regression Tree (BART) is used in predicting stock market indexes based on multiple economic indicators. BART can be used to model heterogeneous treatment effects, and thereby works well when models are misspecified. It also has the capability to handle non-linear main effects and multi-way interactions without much input from financial analysts. In this research, BART is proposed to provide a reliable prediction on day-to-day stock market activities. By comparing the analysis results from BART and with time series method, BART can perform well and has better prediction capability than the traditional methods.
Keywords: Bayesian, Forecast, Stock, BART.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 7333761 Eukaryotic Gene Prediction by an Investigation of Nonlinear Dynamical Modeling Techniques on EIIP Coded Sequences
Authors: Mai S. Mabrouk, Nahed H. Solouma, Abou-Bakr M. Youssef, Yasser M. Kadah
Abstract:
Many digital signal processing, techniques have been used to automatically distinguish protein coding regions (exons) from non-coding regions (introns) in DNA sequences. In this work, we have characterized these sequences according to their nonlinear dynamical features such as moment invariants, correlation dimension, and largest Lyapunov exponent estimates. We have applied our model to a number of real sequences encoded into a time series using EIIP sequence indicators. In order to discriminate between coding and non coding DNA regions, the phase space trajectory was first reconstructed for coding and non-coding regions. Nonlinear dynamical features are extracted from those regions and used to investigate a difference between them. Our results indicate that the nonlinear dynamical characteristics have yielded significant differences between coding (CR) and non-coding regions (NCR) in DNA sequences. Finally, the classifier is tested on real genes where coding and non-coding regions are well known.
Keywords: Gene prediction, nonlinear dynamics, correlation dimension, Lyapunov exponent.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 18243760 Mapping of Solar Radiation Anomalies Based on Climate Change
Authors: Elison Eduardo Jardim Bierhals, Claudineia Brazil, Francisco Pereira, Elton Rossini
Abstract:
The use of alternative energy sources to meet energy demand reduces environmental damage. To diversify an energy matrix and to minimize global warming, a solar energy is gaining space, being an important source of renewable energy, and its potential depends on the climatic conditions of the region. Brazil presents a great solar potential for a generation of electric energy, so the knowledge of solar radiation and its characteristics are fundamental for the study of energy use. Due to the above reasons, this article aims to verify the climatic variability corresponding to the variations in solar radiation anomalies, in the face of climate change scenarios. The data used in this research are part of the Intercomparison of Interconnected Models, Phase 5 (CMIP5), which contributed to the preparation of the fifth IPCC-AR5 report. The solar radiation data were extracted from The Australian Community Climate and Earth System Simulator (ACCESS) model using the RCP 4.5 and RCP 8.5 scenarios that represent an intermediate structure and a pessimistic framework, the latter being the most worrisome in all cases. In order to allow the use of solar radiation as a source of energy in a given location and/or region, it is important, first, to determine its availability, thus justifying the importance of the study. The results pointed out, for the 75-year period (2026-2100), based on a pessimistic scenario, indicate a drop in solar radiation of the approximately 12% in the eastern region of Rio Grande do Sul. Factors that influence the pessimistic prospects of this scenario should be better observed by the responsible authorities, since they can affect the possibility to produce electricity from solar radiation.
Keywords: Climate change, solar radiation, energy utilization.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 9913759 Time Series Modelling and Prediction of River Runoff: Case Study of Karkheh River, Iran
Authors: Karim Hamidi Machekposhti, Hossein Sedghi, Abdolrasoul Telvari, Hossein Babazadeh
Abstract:
Rainfall and runoff phenomenon is a chaotic and complex outcome of nature which requires sophisticated modelling and simulation methods for explanation and use. Time Series modelling allows runoff data analysis and can be used as forecasting tool. In the paper attempt is made to model river runoff data and predict the future behavioural pattern of river based on annual past observations of annual river runoff. The river runoff analysis and predict are done using ARIMA model. For evaluating the efficiency of prediction to hydrological events such as rainfall, runoff and etc., we use the statistical formulae applicable. The good agreement between predicted and observation river runoff coefficient of determination (R2) display that the ARIMA (4,1,1) is the suitable model for predicting Karkheh River runoff at Iran.
Keywords: Time series modelling, ARIMA model, River runoff, Karkheh River, CLS method.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 798