Search results for: Range of motion (ROM)
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 2537

Search results for: Range of motion (ROM)

1637 Influence of Non-Structural Elements on Dynamic Response of Multi-Storey Rc Building to Mining Shock

Authors: Joanna M. Dulińska, Maria Fabijańska

Abstract:

In the paper the results of calculations of the dynamic response of a multi-storey reinforced concrete building to a strong mining shock originated from the main region of mining activity in Poland (i.e. the Legnica-Glogow Copper District) are presented. The representative time histories of accelerations registered in three directions were used as ground motion data in calculations of the dynamic response of the structure. Two variants of a numerical model were applied: the model including only structural elements of the building and the model including both structural and non-structural elements (i.e. partition walls and ventilation ducts made of brick). It turned out that non-structural elements of multi-storey RC buildings have a small impact of about 10 % on natural frequencies of these structures. It was also proved that the dynamic response of building to mining shock obtained in case of inclusion of all non-structural elements in the numerical model is about 20 % smaller than in case of consideration of structural elements only. The principal stresses obtained in calculations of dynamic response of multi-storey building to strong mining shock are situated on the level of about 30% of values obtained from static analysis (dead load).

Keywords: Dynamic characteristics of buildings, mining shocks, dynamic response of buildings, non-structural elements

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1885
1636 Coupled Spacecraft Orbital and Attitude Modeling and Simulation in Multi-Complex Modes

Authors: Amr Abdel Azim Ali, G. A. Elsheikh, Moutaz Hegazy

Abstract:

This paper presents verification of a modeling and simulation for a Spacecraft (SC) attitude and orbit control system. Detailed formulation of coupled SC orbital and attitude equations of motion is performed in order to achieve accepted accuracy to meet the requirements of multitargets tracking and orbit correction complex modes. Correction of the target parameter based on the estimated state vector during shooting time to enhance pointing accuracy is considered. Time-optimal nonlinear feedback control technique was used in order to take full advantage of the maximum torques that the controller can deliver. This simulation provides options for visualizing SC trajectory and attitude in a 3D environment by including an interface with V-Realm Builder and VR Sink in Simulink/MATLAB. Verification data confirms the simulation results, ensuring that the model and the proposed control law can be used successfully for large and fast tracking and is robust enough to keep the pointing accuracy within the desired limits with considerable uncertainty in inertia and control torque.

Keywords: Attitude and orbit control, time-optimal nonlinear feedback control, modeling and simulation, pointing accuracy, maximum torques.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1313
1635 Simulation for Squat Exercise of an Active Controlled Vibration Isolation and Stabilization System for Astronaut’s Exercise Platform

Authors: Ziraguen O. Williams, Shield B. Lin, Fouad N. Matari, Leslie J. Quiocho

Abstract:

In a task to assist NASA in analyzing the dynamic forces caused by operational countermeasures of an astronaut’s exercise platform impacting the spacecraft, feedback delay and signal noise were added to a simulation model of an active controlled vibration isolation and stabilization system to regulate the movement of the exercise platform. Two additional simulation tools used in this study were Trick and MBDyn, software simulation environments developed at the NASA Johnson Space Center. Simulation results obtained from these three tools were very similar. All simulation results support the hypothesis that an active controlled vibration isolation and stabilization system outperforms a passive controlled system even with the addition of feedback delay and signal noise to the active controlled system. In this paper, squat exercise was used in creating excited force to the simulation model. The exciter force from squat exercise was calculated from motion capture of an exerciser. The simulation results demonstrate much greater transmitted force reduction in the active controlled system than the passive controlled system.

Keywords: Astronaut, counterweight, stabilization, vibration.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 459
1634 Spreading of Swirling Double–Concentric Jets at Low and High Pulsation Intensities

Authors: Shiferaw R. Jufar, Rong F. Huang, Ching M. Hsu

Abstract:

The spreading characteristics of acoustically excited swirling double-concentric jets were studied experimentally. The central jet was acoustically excited at low and high pulsation intensities. A smoke wire flow visualization and a hot-wire anemometer velocity measurement results show that excitation forces a vortex ring to roll-up from the edge of the central tube during each excitation period. At low pulsation intensities, the vortex ring evolves downstream, and eventually breaks up into turbulent eddies. At high pulsation intensities, the primary vortex ring evolves and a series of trailing vortex rings form during the same period of excitation. The trailing vortex rings accelerate while evolving downstream and overtake the primary vortex ring within the same cycle. In the process, the primary vortex ring becomes unstable and breaks up early. The effect of the fast traveling trailing vortex rings combined with the swirl motion of the annular flow improve jet spreading compared with the naturally evolving jets.

Keywords: Acoustic excitation, double–concentric jets, flow control, swirling jet.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1981
1633 On-line Recognition of Isolated Gestures of Flight Deck Officers (FDO)

Authors: Deniz T. Sodiri, Venkat V S S Sastry

Abstract:

The paper presents an on-line recognition machine (RM) for continuous/isolated, dynamic and static gestures that arise in Flight Deck Officer (FDO) training. RM is based on generic pattern recognition framework. Gestures are represented as templates using summary statistics. The proposed recognition algorithm exploits temporal and spatial characteristics of gestures via dynamic programming and Markovian process. The algorithm predicts corresponding index of incremental input data in the templates in an on-line mode. Accumulated consistency in the sequence of prediction provides a similarity measurement (Score) between input data and the templates. The algorithm provides an intuitive mechanism for automatic detection of start/end frames of continuous gestures. In the present paper, we consider isolated gestures. The performance of RM is evaluated using four datasets - artificial (W TTest), hand motion (Yang) and FDO (tracker, vision-based ). RM achieves comparable results which are in agreement with other on-line and off-line algorithms such as hidden Markov model (HMM) and dynamic time warping (DTW). The proposed algorithm has the additional advantage of providing timely feedback for training purposes.

Keywords: On-line Recognition Algorithm, IsolatedDynamic/Static Gesture Recognition, On-line Markovian/DynamicProgramming, Training in Virtual Environments.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1329
1632 CFD Study of Subcooled Boiling Flow at Elevated Pressure Using a Mechanistic Wall Heat Partitioning Model

Authors: Machimontorn Promtong, Sherman C. P. Cheung, Guan H. Yeoh, Sara Vahaji, Jiyuan Tu

Abstract:

The wide range of industrial applications involved with boiling flows promotes the necessity of establishing fundamental knowledge in boiling flow phenomena. For this purpose, a number of experimental and numerical researches have been performed to elucidate the underlying physics of this flow. In this paper, the improved wall boiling models, implemented on ANSYS CFX 14.5, were introduced to study subcooled boiling flow at elevated pressure. At the heated wall boundary, the Fractal model, Force balance approach and Mechanistic frequency model are given for predicting the nucleation site density, bubble departure diameter, and bubble departure frequency. The presented wall heat flux partitioning closures were modified to consider the influence of bubble sliding along the wall before the lift-off, which usually happens in the flow boiling. The simulation was performed based on the Two-fluid model, where the standard k-ω SST model was selected for turbulence modelling. Existing experimental data at around 5 bars were chosen to evaluate the accuracy of the presented mechanistic approach. The void fraction and Interfacial Area Concentration (IAC) are in good agreement with the experimental data. However, the predicted bubble velocity and Sauter Mean Diameter (SMD) are over-predicted. This over-prediction may be caused by consideration of only dispersed and spherical bubbles in the simulations. In the future work, the important physical mechanisms of bubbles, such as merging and shrinking during sliding on the heated wall will be incorporated into this mechanistic model to enhance its capability for a wider range of flow prediction.

Keywords: CFD, mechanistic model, subcooled boiling flow, two-fluid model.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1269
1631 Efficient Web-Learning Collision Detection Tool on Five-Axis Machine

Authors: Chia-Jung Chen, Rong-Shine Lin, Rong-Guey Chang

Abstract:

As networking has become popular, Web-learning tends to be a trend while designing a tool. Moreover, five-axis machining has been widely used in industry recently; however, it has potential axial table colliding problems. Thus this paper aims at proposing an efficient web-learning collision detection tool on five-axis machining. However, collision detection consumes heavy resource that few devices can support, thus this research uses a systematic approach based on web knowledge to detect collision. The methodologies include the kinematics analyses for five-axis motions, separating axis method for collision detection, and computer simulation for verification. The machine structure is modeled as STL format in CAD software. The input to the detection system is the g-code part program, which describes the tool motions to produce the part surface. This research produced a simulation program with C programming language and demonstrated a five-axis machining example with collision detection on web site. The system simulates the five-axis CNC motion for tool trajectory and detects for any collisions according to the input g-codes and also supports high-performance web service benefiting from C. The result shows that our method improves 4.5 time of computational efficiency, comparing to the conventional detection method.

Keywords: Collision detection, Five-axis machining, Separating axis.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2179
1630 Dynamic Stability of Axially Moving Viscoelastic Plates under Non-Uniform In-Plane Edge Excitations

Authors: T. H. Young, S. J. Huang, Y. S. Chiu

Abstract:

This paper investigates the parametric stability of an axially moving web subjected to non-uniform in-plane edge excitations on two opposite, simply-supported edges. The web is modeled as a viscoelastic plate whose constitutive relation obeys the Kelvin-Voigt model, and the in-plane edge excitations are expressed as the sum of a static tension and a periodical perturbation. Due to the in-plane edge excitations, the moving plate may bring about parametric instability under certain situations. First, the in-plane stresses of the plate due to the non-uniform edge excitations are determined by solving the in-plane forced vibration problem. Then, the dependence on the spatial coordinates in the equation of transverse motion is eliminated by the generalized Galerkin method, which results in a set of discretized system equations in time. Finally, the method of multiple scales is utilized to solve the set of system equations analytically if the periodical perturbation of the in-plane edge excitations is much smaller as compared with the static tension of the plate, from which the stability boundaries of the moving plate are obtained. Numerical results reveal that only combination resonances of the summed-type appear under the in-plane edge excitations considered in this work.

Keywords: Axially moving viscoelastic plate, in-plane periodic excitation, non-uniformly distributed edge tension, dynamic stability.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1949
1629 Estimating Spatial Disaggregation of Urban Thermal Responsiveness on Summer Diurnal Range with a Numerical Modeling Approach in Bangkok, Thailand

Authors: Manat Srivanit, Hokao Kazunori

Abstract:

Facing the concern of the population to its environment and to climatic change, city planners are now considering the urban climate in their choices of planning. The urban climate, representing different urban morphologies across central Bangkok metropolitan area (BMA), are used to investigates the effects of both the composition and configuration of variables of urban morphology indicators on the summer diurnal range of urban climate, using correlation analyses and multiple linear regressions. Results show first indicate that approximately 92.6% of the variation in the average maximum daytime near-surface air temperature (Ta) was explained jointly by the two composition variables of urban morphology indicators including open space ratio (OSR) and floor area ratio (FAR). It has been possible to determine the membership of sample areas to the local climate zones (LCZs) using these urban morphology descriptors automatically computed with GIS and remote sensed data. Finally result found the temperature differences among zones of large separation, such as the city center could be respectively from 35.48±1.04ºC (Mean±S.D.) warmer than the outskirt of Bangkok on average for maximum daytime near surface temperature to 28.27±0.21ºC for extreme event and, can exceed as 8ºC. A spatially disaggregation of urban thermal responsiveness map would be helpful for several reasons. First, it would localize urban areas concerned by different climate behavior over summer daytime and be a good indicator of urban climate variability. Second, when overlaid with a land cover map, this map may contribute to identify possible urban management strategies to reduce heat wave effects in BMA.

Keywords: Urban climate, Urban morphology, Local climate zone, Urban planning, GIS and remote sensing

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2463
1628 Simulation-Based Optimization of a Non-Uniform Piezoelectric Energy Harvester with Stack Boundary

Authors: Alireza Keshmiri, Shahriar Bagheri, Nan Wu

Abstract:

This research presents an analytical model for the development of an energy harvester with piezoelectric rings stacked at the boundary of the structure based on the Adomian decomposition method. The model is applied to geometrically non-uniform beams to derive the steady-state dynamic response of the structure subjected to base motion excitation and efficiently harvest the subsequent vibrational energy. The in-plane polarization of the piezoelectric rings is employed to enhance the electrical power output. A parametric study for the proposed energy harvester with various design parameters is done to prepare the dataset required for optimization. Finally, simulation-based optimization technique helps to find the optimum structural design with maximum efficiency. To solve the optimization problem, an artificial neural network is first trained to replace the simulation model, and then, a genetic algorithm is employed to find the optimized design variables. Higher geometrical non-uniformity and length of the beam lowers the structure natural frequency and generates a larger power output.

Keywords: Piezoelectricity, energy harvesting, simulation-based optimization, artificial neural network, genetic algorithm.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 843
1627 Recognition Machine (RM) for On-line and Isolated Flight Deck Officer (FDO) Gestures

Authors: Deniz T. Sodiri, Venkat V S S Sastry

Abstract:

The paper presents an on-line recognition machine (RM) for continuous/isolated, dynamic and static gestures that arise in Flight Deck Officer (FDO) training. RM is based on generic pattern recognition framework. Gestures are represented as templates using summary statistics. The proposed recognition algorithm exploits temporal and spatial characteristics of gestures via dynamic programming and Markovian process. The algorithm predicts corresponding index of incremental input data in the templates in an on-line mode. Accumulated consistency in the sequence of prediction provides a similarity measurement (Score) between input data and the templates. The algorithm provides an intuitive mechanism for automatic detection of start/end frames of continuous gestures. In the present paper, we consider isolated gestures. The performance of RM is evaluated using four datasets - artificial (W TTest), hand motion (Yang) and FDO (tracker, vision-based ). RM achieves comparable results which are in agreement with other on-line and off-line algorithms such as hidden Markov model (HMM) and dynamic time warping (DTW). The proposed algorithm has the additional advantage of providing timely feedback for training purposes.

Keywords: On-line Recognition Algorithm, IsolatedDynamic/Static Gesture Recognition, On-line Markovian/DynamicProgramming, Training in Virtual Environments.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1461
1626 Effects of Double Delta Doping on Millimeter and Sub-millimeter Wave Response of Two-Dimensional Hot Electrons in GaAs Nanostructures

Authors: N. Basanta Singh, Sanjoy Deb, G. P Mishra, Subir Kumar Sarkar

Abstract:

Carrier mobility has become the most important characteristic of high speed low dimensional devices. Due to development of very fast switching semiconductor devices, speed of computer and communication equipment has been increasing day by day and will continue to do so in future. As the response of any device depends on the carrier motion within the devices, extensive studies of carrier mobility in the devices has been established essential for the growth in the field of low dimensional devices. Small-signal ac transport of degenerate two-dimensional hot electrons in GaAs quantum wells is studied here incorporating deformation potential acoustic, polar optic and ionized impurity scattering in the framework of heated drifted Fermi-Dirac carrier distribution. Delta doping is considered in the calculations to investigate the effects of double delta doping on millimeter and submillimeter wave response of two dimensional hot electrons in GaAs nanostructures. The inclusion of delta doping is found to enhance considerably the two dimensional electron density which in turn improves the carrier mobility (both ac and dc) values in the GaAs quantum wells thereby providing scope of getting higher speed devices in future.

Keywords: Carrier mobility, Delta doping, Hot carriers, Quantum wells.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1672
1625 Error Correction of Radial Displacement in Grinding Machine Tool Spindle by Optimizing Shape and Bearing Tuning

Authors: Khairul Jauhari, Achmad Widodo, Ismoyo Haryanto

Abstract:

In this article, the radial displacement error correction capability of a high precision spindle grinding caused by unbalance force was investigated. The spindle shaft is considered as a flexible rotor mounted on two sets of angular contact ball bearing. Finite element methods (FEM) have been adopted for obtaining the equation of motion of the spindle. In this paper, firstly, natural frequencies, critical frequencies, and amplitude of the unbalance response caused by residual unbalance are determined in order to investigate the spindle behaviors. Furthermore, an optimization design algorithm is employed to minimize radial displacement of the spindle which considers dimension of the spindle shaft, the dynamic characteristics of the bearings, critical frequencies and amplitude of the unbalance response, and computes optimum spindle diameters and stiffness and damping of the bearings. Numerical simulation results show that by optimizing the spindle diameters, and stiffness and damping in the bearings, radial displacement of the spindle can be reduced. A spindle about 4 μm radial displacement error can be compensated with 2 μm accuracy. This certainly can improve the accuracy of the product of machining.

Keywords: Error correction, High precision grinding, Optimization, Radial displacement, Spindle.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1793
1624 Implementation of Geo-knowledge Based Geographic Information System for Estimating Earthquake Hazard Potential at a Metropolitan Area, Gwangju, in Korea

Authors: Chang-Guk Sun, Jin-Soo Shin

Abstract:

In this study, an inland metropolitan area, Gwangju, in Korea was selected to assess the amplification potential of earthquake motion and provide the information for regional seismic countermeasure. A geographic information system-based expert system was implemented for reliably predicting the spatial geotechnical layers in the entire region of interesting by building a geo-knowledge database. Particularly, the database consists of the existing boring data gathered from the prior geotechnical projects and the surface geo-knowledge data acquired from the site visit. For practical application of the geo-knowledge database to estimate the earthquake hazard potential related to site amplification effects at the study area, seismic zoning maps on geotechnical parameters, such as the bedrock depth and the site period, were created within GIS framework. In addition, seismic zonation of site classification was also performed to determine the site amplification coefficients for seismic design at any site in the study area. KeywordsEarthquake hazard, geo-knowledge, geographic information system, seismic zonation, site period.

Keywords: Earthquake hazard, geo-knowledge, geographic information system, seismic zonation, site period.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1662
1623 Dynamic Response of Strain Rate Dependent Glass/Epoxy Composite Beams Using Finite Difference Method

Authors: M. M. Shokrieh, A. Karamnejad

Abstract:

This paper deals with a numerical analysis of the transient response of composite beams with strain rate dependent mechanical properties by use of a finite difference method. The equations of motion based on Timoshenko beam theory are derived. The geometric nonlinearity effects are taken into account with von Kármán large deflection theory. The finite difference method in conjunction with Newmark average acceleration method is applied to solve the differential equations. A modified progressive damage model which accounts for strain rate effects is developed based on the material property degradation rules and modified Hashin-type failure criteria and added to the finite difference model. The components of the model are implemented into a computer code in Mathematica 6. Glass/epoxy laminated composite beams with constant and strain rate dependent mechanical properties under dynamic load are analyzed. Effects of strain rate on dynamic response of the beam for various stacking sequences, load and boundary conditions are investigated.

Keywords: Composite beam, Finite difference method, Progressive damage modeling, Strain rate.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1989
1622 Optical Fish Tracking in Fishways using Neural Networks

Authors: Alvaro Rodriguez, Maria Bermudez, Juan R. Rabuñal, Jeronimo Puertas

Abstract:

One of the main issues in Computer Vision is to extract the movement of one or several points or objects of interest in an image or video sequence to conduct any kind of study or control process. Different techniques to solve this problem have been applied in numerous areas such as surveillance systems, analysis of traffic, motion capture, image compression, navigation systems and others, where the specific characteristics of each scenario determine the approximation to the problem. This paper puts forward a Computer Vision based algorithm to analyze fish trajectories in high turbulence conditions in artificial structures called vertical slot fishways, designed to allow the upstream migration of fish through obstructions in rivers. The suggested algorithm calculates the position of the fish at every instant starting from images recorded with a camera and using neural networks to execute fish detection on images. Different laboratory tests have been carried out in a full scale fishway model and with living fishes, allowing the reconstruction of the fish trajectory and the measurement of velocities and accelerations of the fish. These data can provide useful information to design more effective vertical slot fishways.

Keywords: Computer Vision, Neural Network, Fishway, Fish Trajectory, Tracking

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2000
1621 Design and Implementation of a 10-bit SAR ADC with A Programmable Reference

Authors: Hasmayadi Abdul Majid, Yuzman Yusoff, Noor Shelida Salleh

Abstract:

This paper presents the development of a single-ended 38.5 kS/s 10-bit programmable reference SAR ADC which is realized in MIMOS’s 0.35 µm CMOS process. The design uses a resistive DAC, a dynamic comparator with pre-amplifier and a SAR digital logic to create 10 effective bits ADC. A programmable reference circuitry allows the ADC to operate with different input range from 0.6 V to 2.1 V. The ADC consumed less than 7.5 mW power with a 3 V supply.

Keywords: Successive Approximation Register Analog-to- Digital Converter, SAR ADC, Resistive DAC, Programmable Reference.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2116
1620 Coding Structures for Seated Row Simulation of an Active Controlled Vibration Isolation and Stabilization System for Astronaut’s Exercise Platform

Authors: Ziraguen O. Williams, Shield B. Lin, Fouad N. Matari, Leslie J. Quiocho

Abstract:

Simulation for seated row exercise was a continued task to assist NASA in analyzing a one-dimensional vibration isolation and stabilization system for astronaut’s exercise platform. Feedback delay and signal noise were added to the simulation model. Simulation runs for this study were conducted in two software simulation tools, Trick and MBDyn, software simulation environments developed at the NASA Johnson Space Center. The exciter force in the simulation was calculated from motion capture of an exerciser during a seated aerobic row exercise. The simulation runs include passive control, active control using a Proportional, Integral, Derivative (PID) controller, and active control using a Piecewise Linear Integral Derivative (PWLID) controller. Output parameters include displacements of the exercise platform, the exerciser, and the counterweight; transmitted force to the wall of spacecraft; and actuator force to the platform. The simulation results showed excellent force reduction in the active controlled system compared to the passive controlled system, which showed less force reduction.

Keywords: Simulation, counterweight, exercise, vibration.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 314
1619 Modelling and Dimension Analysis of a Multipurpose Convertible Laptop Table Using Autodesk Fusion 360

Authors: Nitesh Pandey, Manish Kumar, Pankaj Gupta, Amit Kumar Srivastava

Abstract:

The convertible table is a versatile and adaptable item designed to provide numerous solutions in one. The design incorporates numerous features that offer both ease and functionality. The description of the versatile convertible table in this overview encompasses a range of features that can be tailored to accommodate various user requirements. With its changeable functionality, this piece can easily transform into a workstation, dining table, or coffee table to suit various needs. Significantly, this multipurpose convertible laptop table includes a specific section for electronic devices such as computers and tablets, offering convenience for remote workers and online learners. In addition, providing storage space for essential equipment promotes a tidy workspace by facilitating the organization of many items. The integrated flash system offers supplementary illumination for dimly lit surroundings, while the cooling fans prevent the table's surface from overheating in hot weather or during prolonged laptop usage, making it an optimal and superior choice for laptop users. In order to cater to the needs of students, painters, and other individuals who require writing tools on a regular basis, a pencil and pen stand is included, hence enhancing the versatility of the table. The scissor lift mechanism allows for easy modifications in height, making it convenient to customize usage and providing the option of using it as a standing desk. Overall, this convertible table exemplifies its ability to adapt, its user-friendly nature, and its usefulness in a wide range of situations and settings.

Keywords: Furniture design, laptop stand, study table, learning tool, furniture manufacturing, contemporary design.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 154
1618 Physico-Chemical Environment of Coastal Areas in the Vicinity of Lbod And Tidal Link Drain in Sindh, Pakistan after Cyclone 2a

Authors: Salam Khalid Al-Agha, Inamullah Bhatti, Hossam Adel Zaqoot, Shaukat Hayat Khan, Abdul Khalique Ansari

Abstract:

This paper presents the results of preliminary assessment of water quality along the coastal areas in the vicinity of Left Bank Outfall Drainage (LBOD) and Tidal Link Drain (TLD) in Sindh province after the cyclone 2A occurred in 1999. The water samples were collected from various RDs of Tidal Link Drain and lakes during September 2001 to April 2002 and were analysed for salinity, nitrite, phosphate, ammonia, silicate and suspended material in water. The results of the study showed considerable variations in water quality depending upon the location along the coast in the vicinity of LBOD and RDs. The salinity ranged between 4.39–65.25 ppt in Tidal Link Drain samples whereas 2.4–38.05 ppt in samples collected from lakes. The values of suspended material at various RDs of Tidal Link Drain ranged between 56.6–2134 ppm and at the lakes between 68–297 ppm. The data of continuous monitoring at RD–93 showed the range of PO4 (8.6–25.2 μg/l), SiO3 (554.96–1462 μg/l), NO2 (0.557.2–25.2 μg/l) and NH3 (9.38–23.62 μg/l). The concentration of nutrients in water samples collected from different RDs was found in the range of PO4 (10.85 to 11.47 μg/l), SiO3 (1624 to 2635.08 μg/l), NO2 (20.38 to 44.8 μg/l) and NH3 (24.08 to 26.6 μg/l). Sindh coastal areas which situated at the north-western boundary the Arabian Sea are highly vulnerable to flood damages due to flash floods during SW monsoon or impact of sea level rise and storm surges coupled with cyclones passing through Arabian Sea along Pakistan coast. It is hoped that the obtained data in this study would act as a database for future investigations and monitoring of LBOD and Tidal Link Drain coastal waters.

Keywords: Tidal Link Drain, Salinity, Nutrients, Nitrite salts, Coastal areas.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2235
1617 Control of an Asymmetrical Design of a Pneumatically Actuated Ambidextrous Robot Hand

Authors: Emre Akyürek, Anthony Huynh, Tatiana Kalganova

Abstract:

The Ambidextrous Robot Hand is a robotic device with the purpose to mimic either the gestures of a right or a left hand. The symmetrical behavior of its fingers allows them to bend in one way or another keeping a compliant and anthropomorphic shape. However, in addition to gestures they can reproduce on both sides, an asymmetrical mechanical design with a three tendons routing has been engineered to reduce the number of actuators. As a consequence, control algorithms must be adapted to drive efficiently the ambidextrous fingers from one position to another and to include grasping features. These movements are controlled by pneumatic muscles, which are nonlinear actuators. As their elasticity constantly varies when they are under actuation, the length of pneumatic muscles and the force they provide may differ for a same value of pressurized air. The control algorithms introduced in this paper take both the fingers asymmetrical design and the pneumatic muscles nonlinearity into account to permit an accurate control of the Ambidextrous Robot Hand. The finger motion is achieved by combining a classic PID controller with a phase plane switching control that turns the gain constants into dynamic values. The grasping ability is made possible because of a sliding mode control that makes the fingers adapt to the shape of an object before strengthening their positions.

Keywords: Ambidextrous hand, intelligent algorithms, nonlinear actuators, pneumatic muscles, robotics, sliding control.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2241
1616 The Effect of Corporate Social Responsibility in the National Commercial Bank in Saudi Arabia

Authors: Nada Azhar

Abstract:

The aim of the paper is to investigate the effect of corporate social responsibility (CSR) CSR on the National Commercial Bank (NCB) in Saudi Arabia. In order to achieve this, a case study was made of the CSR activities of this bank from the perspective of its branch managers. The NCB was chosen as it was one of the first Saudi banks to engage in CSR and currently has a wide range of CSR initiatives. A qualitative research method was used. Open-ended questionnaires were administered to eighty branch managers of the NCB, with fifty-five usable questionnaires returned and twenty managers were interviewed as part of the primary research. Data from both questionnaires and interviews were analysed using qualitative content analysis. Six themes emerged from the questionnaire findings were used to develop the interview questions. These themes are the following: Awareness of employees about CSR in the NCB; CSR activities as a type of investment; Government and media support; Increased employee loyalty in the NCB; Prestige and profit to the NCB; and View of CSR in Islam. This paper makes a theoretical contribution in that it investigates and increases understanding of the effect of CSR on the NCB in Saudi Arabia. In addition, it makes a practical contribution by making recommendations which can support the development of CSR in the NCB. A limitation of the paper is that it is a case study of only one bank. It is therefore recommended that future research could be conducted with other banks in Saudi Arabia, or indeed, with a range of other types of firm within the financial services area in Saudi Arabia. In this way, the same issues could be explored but with a greater potential generalisability of findings of CSR within the Saudi Arabian financial services industry. In addition, this paper takes a qualitative approach and it is suggested that future research be carried out using mixed methods, which could provide a greater depth of analysis.

Keywords: Branch managers, corporate social responsibility. national commercial bank, Saudi Arabia.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2149
1615 Lane Changing and Merging Maneuvers of Carlike Robots

Authors: Bibhya Sharma, Jito Vanualailai, Ravindra Rai

Abstract:

This research paper designs a unique motion planner of multiple platoons of nonholonomic car-like robots as a feasible solution to the lane changing/merging maneuvers. The decentralized planner with a leaderless approach and a path-guidance principle derived from the Lyapunov-based control scheme generates collision free avoidance and safe merging maneuvers from multiple lanes to a single lane by deploying a split/merge strategy. The fixed obstacles are the markings and boundaries of the road lanes, while the moving obstacles are the robots themselves. Real and virtual road lane markings and the boundaries of road lanes are incorporated into a workspace to achieve the desired formation and configuration of the robots. Convergence of the robots to goal configurations and the repulsion of the robots from specified obstacles are achieved by suitable attractive and repulsive potential field functions, respectively. The results can be viewed as a significant contribution to the avoidance algorithm of the intelligent vehicle systems (IVS). Computer simulations highlight the effectiveness of the split/merge strategy and the acceleration-based controllers.

Keywords: Lane merging, Lyapunov-based control scheme, path-guidance principle, split/merge strategy.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1644
1614 Determination and Assessment of Ground Motion and Spectral Parameters for Iran

Authors: G. Ghodrati Amiri, M. Khorasani, Razavian Ameri, M.Mohamadi Dehcheshmeh, S.Fathi

Abstract:

Many studies have been conducted for derivation of attenuation relationships worldwide, however few relationships have been developed to use for the seismic region of Iranian plateau and only few of these studies have been conducted for derivation of attenuation relationships for parameters such as uniform duration. Uniform duration is the total time during which the acceleration is larger than a given threshold value (default is 5% of PGA). In this study, the database was same as that used previously by Ghodrati Amiri et al. (2007) with same correction methods for earthquake records in Iran. However in this study, records from earthquakes with MS< 4.0 were excluded from this database, each record has individually filtered afterward, and therefore the dataset has been expanded. These new set of attenuation relationships for Iran are derived based on tectonic conditions with soil classification into rock and soil. Earthquake parameters were chosen to be hypocentral distance and magnitude in order to make it easier to use the relationships for seismic hazard analysis. Tehran is the capital city of Iran wit ha large number of important structures. In this study, a probabilistic approach has been utilized for seismic hazard assessment of this city. The resulting uniform duration against return period diagrams are suggested to be used in any projects in the area.

Keywords: Attenuation Relationships, Iran, Probabilistic Seismic Hazard Analysis, Tehran, Uniform Duration

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1689
1613 Ankh Key Broadband Array Antenna for 5G Applications

Authors: Noha M. Rashad, W. Swelam, M. H. Abd ElAzeem

Abstract:

A simple design of array antenna is presented in this paper, supporting millimeter wave applications which can be used in short range wireless communications such as 5G applications. This design enhances the use of V-band, according to IEEE standards, as the antenna works in the 70 GHz band with bandwidth more than 11 GHz and peak gain more than 13 dBi. The design is simulated using different numerical techniques achieving a very good agreement.

Keywords: 5G Technology, array antenna, microstrip, millimeter wave.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 961
1612 Online Pose Estimation and Tracking Approach with Siamese Region Proposal Network

Authors: Cheng Fang, Lingwei Quan, Cunyue Lu

Abstract:

Human pose estimation and tracking are to accurately identify and locate the positions of human joints in the video. It is a computer vision task which is of great significance for human motion recognition, behavior understanding and scene analysis. There has been remarkable progress on human pose estimation in recent years. However, more researches are needed for human pose tracking especially for online tracking. In this paper, a framework, called PoseSRPN, is proposed for online single-person pose estimation and tracking. We use Siamese network attaching a pose estimation branch to incorporate Single-person Pose Tracking (SPT) and Visual Object Tracking (VOT) into one framework. The pose estimation branch has a simple network structure that replaces the complex upsampling and convolution network structure with deconvolution. By augmenting the loss of fully convolutional Siamese network with the pose estimation task, pose estimation and tracking can be trained in one stage. Once trained, PoseSRPN only relies on a single bounding box initialization and producing human joints location. The experimental results show that while maintaining the good accuracy of pose estimation on COCO and PoseTrack datasets, the proposed method achieves a speed of 59 frame/s, which is superior to other pose tracking frameworks.

Keywords: Computer vision, Siamese network, pose estimation, pose tracking.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1164
1611 High Cycle Fatigue Analysis of a Lower Hopper Knuckle Connection of a Large Bulk Carrier under Dynamic Loading

Authors: Vaso K. Kapnopoulou, Piero Caridis

Abstract:

The fatigue of ship structural details is of major concern in the maritime industry as it can generate fracture issues that may compromise structural integrity. In the present study, a fatigue analysis of the lower hopper knuckle connection of a bulk carrier was conducted using the Finite Element Method by means of ABAQUS/CAE software. The fatigue life was calculated using Miner’s Rule and the long-term distribution of stress range by the use of the two-parameter Weibull distribution. The cumulative damage ratio was estimated using the fatigue damage resulting from the stress range occurring at each load condition. For this purpose, a cargo hold model was first generated, which extends over the length of two holds (the mid-hold and half of each of the adjacent holds) and transversely over the full breadth of the hull girder. Following that, a submodel of the area of interest was extracted in order to calculate the hot spot stress of the connection and to estimate the fatigue life of the structural detail. Two hot spot locations were identified; one at the top layer of the inner bottom plate and one at the top layer of the hopper plate. The IACS Common Structural Rules (CSR) require that specific dynamic load cases for each loading condition are assessed. Following this, the dynamic load case that causes the highest stress range at each loading condition should be used in the fatigue analysis for the calculation of the cumulative fatigue damage ratio. Each load case has a different effect on ship hull response. Of main concern, when assessing the fatigue strength of the lower hopper knuckle connection, was the determination of the maximum, i.e. the critical value of the stress range, which acts in a direction normal to the weld toe line. This acts in the transverse direction, that is, perpendicularly to the ship's centerline axis. The load cases were explored both theoretically and numerically in order to establish the one that causes the highest damage to the location examined. The most severe one was identified to be the load case induced by beam sea condition where the encountered wave comes from the starboard. At the level of the cargo hold model, the model was assumed to be simply supported at its ends. A coarse mesh was generated in order to represent the overall stiffness of the structure. The elements employed were quadrilateral shell elements, each having four integration points. A linear elastic analysis was performed because linear elastic material behavior can be presumed, since only localized yielding is allowed by most design codes. At the submodel level, the displacements of the analysis of the cargo hold model to the outer region nodes of the submodel acted as boundary conditions and applied loading for the submodel. In order to calculate the hot spot stress at the hot spot locations, a very fine mesh zone was generated and used. The fatigue life of the detail was found to be 16.4 years which is lower than the design fatigue life of the structure (25 years), making this location vulnerable to fatigue fracture issues. Moreover, the loading conditions that induce the most damage to the location were found to be the various ballasting conditions.

Keywords: Lower hopper knuckle, high cycle fatigue, finite element method, dynamic load cases.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 995
1610 Application of Residual Correction Method on Hyperbolic Thermoelastic Response of Hollow Spherical Medium in Rapid Transient Heat Conduction

Authors: Po-Jen Su, Huann-Ming Chou

Abstract:

In this article, we used the residual correction method to deal with transient thermoelastic problems with a hollow spherical region when the continuum medium possesses spherically isotropic thermoelastic properties. Based on linear thermoelastic theory, the equations of hyperbolic heat conduction and thermoelastic motion were combined to establish the thermoelastic dynamic model with consideration of the deformation acceleration effect and non-Fourier effect under the condition of transient thermal shock. The approximate solutions of temperature and displacement distributions are obtained using the residual correction method based on the maximum principle in combination with the finite difference method, making it easier and faster to obtain upper and lower approximations of exact solutions. The proposed method is found to be an effective numerical method with satisfactory accuracy. Moreover, the result shows that the effect of transient thermal shock induced by deformation acceleration is enhanced by non-Fourier heat conduction with increased peak stress. The influence on the stress increases with the thermal relaxation time.

Keywords: Maximum principle, non-Fourier heat conduction, residual correction method, thermo-elastic response.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1746
1609 Fundamental Theory of the Evolution Force: Gene Engineering utilizing Synthetic Evolution Artificial Intelligence

Authors: L. K. Davis

Abstract:

The effects of the evolution force are observable in nature at all structural levels ranging from small molecular systems to conversely enormous biospheric systems. However, the evolution force and work associated with formation of biological structures has yet to be described mathematically or theoretically. In addressing the conundrum, we consider evolution from a unique perspective and in doing so we introduce the “Fundamental Theory of the Evolution Force: FTEF”. We utilized synthetic evolution artificial intelligence (SYN-AI) to identify genomic building blocks and to engineer 14-3-3 ζ docking proteins by transforming gene sequences into time-based DNA codes derived from protein hierarchical structural levels. The aforementioned served as templates for random DNA hybridizations and genetic assembly. The application of hierarchical DNA codes allowed us to fast forward evolution, while dampening the effect of point mutations. Natural selection was performed at each hierarchical structural level and mutations screened using Blosum 80 mutation frequency-based algorithms. Notably, SYN-AI engineered a set of three architecturally conserved docking proteins that retained motion and vibrational dynamics of native Bos taurus 14-3-3 ζ.

Keywords: 14-3-3 docking genes, synthetic protein design, time based DNA codes, writing DNA code from scratch.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 663
1608 Tuning for a Small Engine with a Supercharger

Authors: Shinji Kajiwara, Tadamasa Fukuoka

Abstract:

The formula project of Kinki University has been involved in the student Formula SAE of Japan (JSAE) since the second year the competition was held. The vehicle developed in the project uses a ZX-6R engine, which has been manufactured by Kawasaki Heavy Industries for the JSAE competition for the eighth time. The limited performance of the concept vehicle was improved through the development of a power train. The supercharger loading, engine dry sump, and engine cooling management of the vehicle were also enhanced. The supercharger loading enabled the vehicle to achieve a maximum output of 59.6 kW (80.6 PS)/9000 rpm and a maximum torque of 70.6 Nm (7.2 kgf m)/8000 rpm. We successfully achieved 90% of the engine’s torque band (4000–10000 rpm) with 50% of the revolutions in regular engine use (2000–12000 rpm). Using a dry sump system, we periodically managed hydraulic pressure during engine operation. A system that controls engine stoppage when hydraulic pressure falls was also constructed. Using the dry sump system at 80 mm reduced the required engine load and the vehicle’s center of gravity. Even when engine motion was suspended by the electromotive force exerted by the water pump, the circulation of cooling water was still possible. These findings enabled us to create a cooling system in accordance with the requirements of the competition.

Keywords: Engine, combustion, cooling system, dry sump system, numerical simulation, power, torque, mechanical supercharger.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2124