Search results for: model data
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 12693

Search results for: model data

11823 Unsupervised Segmentation by Hidden Markov Chain with Bi-dimensional Observed Process

Authors: Abdelali Joumad, Abdelaziz Nasroallah

Abstract:

In unsupervised segmentation context, we propose a bi-dimensional hidden Markov chain model (X,Y) that we adapt to the image segmentation problem. The bi-dimensional observed process Y = (Y 1, Y 2) is such that Y 1 represents the noisy image and Y 2 represents a noisy supplementary information on the image, for example a noisy proportion of pixels of the same type in a neighborhood of the current pixel. The proposed model can be seen as a competitive alternative to the Hilbert-Peano scan. We propose a bayesian algorithm to estimate parameters of the considered model. The performance of this algorithm is globally favorable, compared to the bi-dimensional EM algorithm through numerical and visual data.

Keywords: Image segmentation, Hidden Markov chain with a bi-dimensional observed process, Peano-Hilbert scan, Bayesian approach, MCMC methods, Bi-dimensional EM algorithm.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1610
11822 A Comparison of Artificial Neural Networks for Prediction of Suspended Sediment Discharge in River- A Case Study in Malaysia

Authors: M.R. Mustafa, M.H. Isa, R.B. Rezaur

Abstract:

Prediction of highly non linear behavior of suspended sediment flow in rivers has prime importance in the field of water resources engineering. In this study the predictive performance of two Artificial Neural Networks (ANNs) namely, the Radial Basis Function (RBF) Network and the Multi Layer Feed Forward (MLFF) Network have been compared. Time series data of daily suspended sediment discharge and water discharge at Pari River was used for training and testing the networks. A number of statistical parameters i.e. root mean square error (RMSE), mean absolute error (MAE), coefficient of efficiency (CE) and coefficient of determination (R2) were used for performance evaluation of the models. Both the models produced satisfactory results and showed a good agreement between the predicted and observed data. The RBF network model provided slightly better results than the MLFF network model in predicting suspended sediment discharge.

Keywords: ANN, discharge, modeling, prediction, suspendedsediment,

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1723
11821 A Practical Model for Managing Beach Safety Focusing on Tourist Drownings in Koh Samui, Thailand

Authors: Siyathorn Khunon, Thanawit Buafai

Abstract:

This paper aims to investigate management of beach safety with a focus on tourist drownings in Samui. The data collected in this investigation will then lead to the proposal of a practical management model suitable for use in Samui. Qualitative research was conducted in the following manner: nine stakeholders from local government organizations and tourism businesses were interviewed in-depth. Additionally, a best practice case study from Phuket was applied to analyze beach safety. Twelve foreign tourists were also interviewed. Then, a focus group comprised of 32 people was used to determine practical solutions for enhancing tourists’ safety on the beach in Samui. A steering committee to coordinate between public and private organizations was proposed to manage and enhance tourists’ safety. A practical model is proposed to increase the safety level of tourists in Samui

Keywords: Beach safety, drowning, tourists, Samui.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1365
11820 A Study of Islamic Stock Indices and Macroeconomic Variables

Authors: Mohammad Irfan

Abstract:

The purpose of this paper is to investigate the relationship among the key macroeconomic variables and Islamic stock market in India. This study is based on the time series data of financial years 2009-2015 to explore the consistency of relationship between macroeconomic variables and Shariah Indices. The ADF (Augmented Dickey–Fuller Test Statistic) and PP (Phillips–Perron Test Statistic) tests are employed to check stationarity of the data. The study depicts the long run relationship between Shariah indices and macroeconomic variables by using the Johansen Co-integration test. BSE Shariah and Nifty Shariah have uni-direct Granger causality. The outcome of VECM is significantly confirming the applicability of best fitted model. Thus, Islamic stock indices are proficiently working for the development of Indian economy. It suggests that by keeping eyes on Islamic stock market which will be more interactive in the future with other macroeconomic variables.

Keywords: Indian shariah indices, macroeconomic variables, co-integration, Granger causality, Vector error correction model.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1217
11819 Degradation of Irradiated UO2 Fuel Thermal Conductivity Calculated by FRAPCON Model Due to Porosity Evolution at High Burn-Up

Authors: B. Roostaii, H. Kazeminejad, S. Khakshournia

Abstract:

The evolution of volume porosity previously obtained by using the existing low temperature high burn-up gaseous swelling model with progressive recrystallization for UO2 fuel is utilized to study the degradation of irradiated UO2 thermal conductivity calculated by the FRAPCON model of thermal conductivity. A porosity correction factor is developed based on the assumption that the fuel morphology is a three-phase type, consisting of the as-fabricated pores and pores due to intergranular bubbles whitin UO2 matrix and solid fission products. The predicted thermal conductivity demonstrates an additional degradation of 27% due to porosity formation at burn-up levels around 120 MWd/kgU which would cause an increase in the fuel temperature accordingly. Results of the calculations are compared with available data.

Keywords: Irradiation-induced recrystallization, matrix swelling, porosity evolution, UO2 thermal conductivity.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1247
11818 Optimizing of Fuzzy C-Means Clustering Algorithm Using GA

Authors: Mohanad Alata, Mohammad Molhim, Abdullah Ramini

Abstract:

Fuzzy C-means Clustering algorithm (FCM) is a method that is frequently used in pattern recognition. It has the advantage of giving good modeling results in many cases, although, it is not capable of specifying the number of clusters by itself. In FCM algorithm most researchers fix weighting exponent (m) to a conventional value of 2 which might not be the appropriate for all applications. Consequently, the main objective of this paper is to use the subtractive clustering algorithm to provide the optimal number of clusters needed by FCM algorithm by optimizing the parameters of the subtractive clustering algorithm by an iterative search approach and then to find an optimal weighting exponent (m) for the FCM algorithm. In order to get an optimal number of clusters, the iterative search approach is used to find the optimal single-output Sugenotype Fuzzy Inference System (FIS) model by optimizing the parameters of the subtractive clustering algorithm that give minimum least square error between the actual data and the Sugeno fuzzy model. Once the number of clusters is optimized, then two approaches are proposed to optimize the weighting exponent (m) in the FCM algorithm, namely, the iterative search approach and the genetic algorithms. The above mentioned approach is tested on the generated data from the original function and optimal fuzzy models are obtained with minimum error between the real data and the obtained fuzzy models.

Keywords: Fuzzy clustering, Fuzzy C-Means, Genetic Algorithm, Sugeno fuzzy systems.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3255
11817 Hierarchical Clustering Analysis with SOM Networks

Authors: Diego Ordonez, Carlos Dafonte, Minia Manteiga, Bernardino Arcayy

Abstract:

This work presents a neural network model for the clustering analysis of data based on Self Organizing Maps (SOM). The model evolves during the training stage towards a hierarchical structure according to the input requirements. The hierarchical structure symbolizes a specialization tool that provides refinements of the classification process. The structure behaves like a single map with different resolutions depending on the region to analyze. The benefits and performance of the algorithm are discussed in application to the Iris dataset, a classical example for pattern recognition.

Keywords: Neural networks, Self-organizing feature maps, Hierarchicalsystems, Pattern clustering methods.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1946
11816 Analytical Camera Model Supplemented with Influence of Temperature Variations

Authors: Peter Podbreznik, Božidar Potocnik

Abstract:

A camera in the building site is exposed to different weather conditions. Differences between images of the same scene captured with the same camera arise also due to temperature variations. The influence of temperature changes on camera parameters were modelled and integrated into existing analytical camera model. Modified camera model enables quantitatively assessing the influence of temperature variations.

Keywords: camera calibration, analytical model, intrinsic parameters, extrinsic parameters, temperature variations.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1506
11815 Replicating Brain’s Resting State Functional Connectivity Network Using a Multi-Factor Hub-Based Model

Authors: B. L. Ho, L. Shi, D. F. Wang, V. C. T. Mok

Abstract:

The brain’s functional connectivity while temporally non-stationary does express consistency at a macro spatial level. The study of stable resting state connectivity patterns hence provides opportunities for identification of diseases if such stability is severely perturbed. A mathematical model replicating the brain’s spatial connections will be useful for understanding brain’s representative geometry and complements the empirical model where it falls short. Empirical computations tend to involve large matrices and become infeasible with fine parcellation. However, the proposed analytical model has no such computational problems. To improve replicability, 92 subject data are obtained from two open sources. The proposed methodology, inspired by financial theory, uses multivariate regression to find relationships of every cortical region of interest (ROI) with some pre-identified hubs. These hubs acted as representatives for the entire cortical surface. A variance-covariance framework of all ROIs is then built based on these relationships to link up all the ROIs. The result is a high level of match between model and empirical correlations in the range of 0.59 to 0.66 after adjusting for sample size; an increase of almost forty percent. More significantly, the model framework provides an intuitive way to delineate between systemic drivers and idiosyncratic noise while reducing dimensions by more than 30 folds, hence, providing a way to conduct attribution analysis. Due to its analytical nature and simple structure, the model is useful as a standalone toolkit for network dependency analysis or as a module for other mathematical models.

Keywords: Functional magnetic resonance imaging, multivariate regression, network hubs, resting state functional connectivity.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 805
11814 Leadership Branding for Sustainable Customer Engagement

Authors: Fauziah Sh. Ahmad, Rosmini Omar, Siti Zaleha Abdul Rasid, Muslim Amin

Abstract:

The purpose of this paper is to examine the inter relationships among various leadership branding constructs of entrepreneurs in small and medium sized enterprises (SMEs). We employ a quantitative structural equation modeling through a new leadership branding engagement model comprises constructs of leader-s or entrepreneur-s personality, branding practice and customer engagement. The results confirm that there are significant relationships between the three constructs and the major fit indices indicate that the data fits the proposed model. The findings provide insights and fill in the literature gaps on statistically validated representation of leadership branding for SMEs across new economic regions of Malaysia that may implicate other economic zones with similar situations. This study extends the establishment of a leadership branding engagement model with a new mechanism of using leaders- personality as a predictor to branding practice and customer engagement performance.

Keywords: Leadership Branding, Malaysia Brands, Customer Engagement, SME Branding.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2459
11813 Multi-level Metadata Integration System: XML, RDF and RuleML

Authors: Messaouda Fareh, Omar Boussaid, Rachid Challal

Abstract:

Our work is part of the heterogeneous data integration, with the definition of a structural and semantic mediation model. Our aim is to propose architecture for the heterogeneous sources metadata mediation, represented by XML, RDF and RuleML models, providing to the user the metadata transparency. This, by including data structures, of natures fundamentally different, and allowing the decomposition of a query involving multiple sources, to queries specific to these sources, then recompose the result.

Keywords: Mediator, Metadata, Query, RDF, RuleML, XML, Xquery.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1716
11812 Modeling Concave Globoidal Cam with Swinging Roller Follower : A Case Study

Authors: Nguyen Van Tuong, Premysl Pokorny

Abstract:

This paper describes a computer-aided design for design of the concave globoidal cam with cylindrical rollers and swinging follower. Four models with different modeling methods are made from the same input data. The input data are angular input and output displacements of the cam and the follower and some other geometrical parameters of the globoidal cam mechanism. The best cam model is the cam which has no interference with the rollers when their motions are simulated in assembly conditions. The angular output displacement of the follower for the best cam is also compared with that of in the input data to check errors. In this study, Pro/ENGINEER® Wildfire 2.0 is used for modeling the cam, simulating motions and checking interference and errors of the system.

Keywords: Globoidal cam, sweep, pitch surface, modeling.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3664
11811 A Method to Predict Hemorrhage Disease of Grass Carp Tends

Authors: Zhongxu Chen, Jun Yang, Heyue Mao, Xiaoyu Zheng

Abstract:

Hemorrhage Disease of Grass Carp (HDGC) is a kind of commonly occurring illnesses in summer, and the extremely high death rate result in colossal losses to aquaculture. As the complex connections among each factor which influences aquiculture diseases, there-s no quit reasonable mathematical model to solve the problem at present.A BP neural network which with excellent nonlinear mapping coherence was adopted to establish mathematical model; Environmental factor, which can easily detected, such as breeding density, water temperature, pH and light intensity was set as the main analyzing object. 25 groups of experimental data were used for training and test, and the accuracy of using the model to predict the trend of HDGC was above 80%. It is demonstrated that BP neural network for predicating diseases in HDGC has a particularly objectivity and practicality, thus it can be spread to other aquiculture disease.

Keywords: Aquaculture, Hemorrhage Disease of Grass Carp, BP Neural Network

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1916
11810 The Model to Calculate the Cost of Money to the Breakdown of Deposits and Banking Service

Authors: Javad Elkaie Behjati, Mehrzad Minouei

Abstract:

The present study aimed to assess the cost of money based on separating deposits and identifying actions and costs affecting in the process of cost of money in EN Bank of Iran (also known as Eghtesad Novin Bank). The method to calculate the cost of money is based on Activity-Based Costing (ABC). To conduct the study, the required data including deposits in banks and absorbed costs related to the same deposits were extracted from the financial statements of the bank. In order to cost the bank services properly as well as determining the commercial strategies required by commercial units, the data are precisely studied and the cost of each deposit is calculated according to the ABC. Eventually, the factors helping to improve the cost management and also a new model to calculate the cost of money in the bank are presented by some applicable formulas. Furthermore, some offers have been provided for users of both sections, in the practical section in commercial units and the theoretical one in universities.

Keywords: The cost of money, activity-based costing, banking, bank deposits, bank fees, services bank.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 854
11809 Ultimate Load Capacity of the Cable Tower of Liede Bridge

Authors: Weifeng Wang, Xilong Chen, Xianwei Zeng

Abstract:

The cable tower of Liede Bridge is a double-column curved-lever arched-beam portal framed structure. Being novel and unique in structure, its cable tower differs in complexity from traditional ones. This paper analyzes the ultimate load capacity of cable tower by adopting the finite element calculations and model tests which indicate that constitutive relations applied here give a better simulation of actual failure process of prestressed reinforced concrete. In vertical load, horizontal load and overloading tests, the stepped loading of the tower model is of linear relationship, and the test data has good repeatability. All suggests that the cable tower has good bearing capacity, rational design and high emergency capacity.

Keywords: Cable tower of Liede Bridge, ultimate load capacity, model test, nonlinear finite element method

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2115
11808 Slug Tracking Simulation of Severe Slugging Experiments

Authors: Tor Kindsbekken Kjeldby, Ruud Henkes, Ole Jørgen Nydal

Abstract:

Experimental data from an atmospheric air/water terrain slugging case has been made available by the Shell Amsterdam research center, and has been subject to numerical simulation and comparison with a one-dimensional two-phase slug tracking simulator under development at the Norwegian University of Science and Technology. The code is based on tracking of liquid slugs in pipelines by use of a Lagrangian grid formulation implemented in Cµ by use of object oriented techniques. An existing hybrid spatial discretization scheme is tested, in which the stratified regions are modelled by the two-fluid model. The slug regions are treated incompressible, thus requiring a single momentum balance over the whole slug. Upon comparison with the experimental data, the period of the simulated severe slugging cycle is observed to be sensitive to slug generation in the horizontal parts of the system. Two different slug initiation methods have been tested with the slug tracking code, and grid dependency has been investigated.

Keywords: Hydrodynamic initiation, slug tracking, terrain slugging, two-fluid model, two-phase flow.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3220
11807 Detection of Keypoint in Press-Fit Curve Based on Convolutional Neural Network

Authors: Shoujia Fang, Guoqing Ding, Xin Chen

Abstract:

The quality of press-fit assembly is closely related to reliability and safety of product. The paper proposed a keypoint detection method based on convolutional neural network to improve the accuracy of keypoint detection in press-fit curve. It would provide an auxiliary basis for judging quality of press-fit assembly. The press-fit curve is a curve of press-fit force and displacement. Both force data and distance data are time-series data. Therefore, one-dimensional convolutional neural network is used to process the press-fit curve. After the obtained press-fit data is filtered, the multi-layer one-dimensional convolutional neural network is used to perform the automatic learning of press-fit curve features, and then sent to the multi-layer perceptron to finally output keypoint of the curve. We used the data of press-fit assembly equipment in the actual production process to train CNN model, and we used different data from the same equipment to evaluate the performance of detection. Compared with the existing research result, the performance of detection was significantly improved. This method can provide a reliable basis for the judgment of press-fit quality.

Keywords: Keypoint detection, curve feature, convolutional neural network, press-fit assembly.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 940
11806 Prediction of Compressive Strength of SCC Containing Bottom Ash using Artificial Neural Networks

Authors: Yogesh Aggarwal, Paratibha Aggarwal

Abstract:

The paper presents a comparative performance of the models developed to predict 28 days compressive strengths using neural network techniques for data taken from literature (ANN-I) and data developed experimentally for SCC containing bottom ash as partial replacement of fine aggregates (ANN-II). The data used in the models are arranged in the format of six and eight input parameters that cover the contents of cement, sand, coarse aggregate, fly ash as partial replacement of cement, bottom ash as partial replacement of sand, water and water/powder ratio, superplasticizer dosage and an output parameter that is 28-days compressive strength and compressive strengths at 7 days, 28 days, 90 days and 365 days, respectively for ANN-I and ANN-II. The importance of different input parameters is also given for predicting the strengths at various ages using neural network. The model developed from literature data could be easily extended to the experimental data, with bottom ash as partial replacement of sand with some modifications.

Keywords: Self compacting concrete, bottom ash, strength, prediction, neural network, importance factor.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2225
11805 A Video-based Algorithm for Moving Objects Detection at Signalized Intersection

Authors: Juan Li, Chunfu Shao, Chunjiao Dong, Dan Zhao, Yinhong Liu

Abstract:

Mixed-traffic (e.g., pedestrians, bicycles, and vehicles) data at an intersection is one of the essential factors for intersection design and traffic control. However, some data such as pedestrian volume cannot be directly collected by common detectors (e.g. inductive loop, sonar and microwave sensors). In this paper, a video based detection algorithm is proposed for mixed-traffic data collection at intersections using surveillance cameras. The algorithm is derived from Gaussian Mixture Model (GMM), and uses a mergence time adjustment scheme to improve the traditional algorithm. Real-world video data were selected to test the algorithm. The results show that the proposed algorithm has the faster processing speed and more accuracy than the traditional algorithm. This indicates that the improved algorithm can be applied to detect mixed-traffic at signalized intersection, even when conflicts occur.

Keywords: detection, intersection, mixed traffic, moving objects.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2032
11804 Effective Stacking of Deep Neural Models for Automated Object Recognition in Retail Stores

Authors: Ankit Sinha, Soham Banerjee, Pratik Chattopadhyay

Abstract:

Automated product recognition in retail stores is an important real-world application in the domain of Computer Vision and Pattern Recognition. In this paper, we consider the problem of automatically identifying the classes of the products placed on racks in retail stores from an image of the rack and information about the query/product images. We improve upon the existing approaches in terms of effectiveness and memory requirement by developing a two-stage object detection and recognition pipeline comprising of a Faster-RCNN-based object localizer that detects the object regions in the rack image and a ResNet-18-based image encoder that classifies  the detected regions into the appropriate classes. Each of the models is fine-tuned using appropriate data sets for better prediction and data augmentation is performed on each query image to prepare an extensive gallery set for fine-tuning the ResNet-18-based product recognition model. This encoder is trained using a triplet loss function following the strategy of online-hard-negative-mining for improved prediction. The proposed models are lightweight and can be connected in an end-to-end manner during deployment to automatically identify each product object placed in a rack image. Extensive experiments using Grozi-32k and GP-180 data sets verify the effectiveness of the proposed model.

Keywords: Retail stores, Faster-RCNN, object localization, ResNet-18, triplet loss, data augmentation, product recognition.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 581
11803 Investigation of Syngas Production from Waste Gas and Ratio Adjustment using a Fischer-Tropsch Synthesis Reactor

Authors: E.Darzi

Abstract:

In this study, a reformer model simulation to use refinery (Farashband refinery, Iran) waste natural gas. In the petroleum and allied sectors where natural gas is being encountered (in form of associated gas) without prior preparation for its positive use, its combustion (which takes place in flares, an equipment through which they are being disposed) has become a great problem because of its associated environmental problems in form of gaseous emission. The proposed model is used to product syngas from waste natural gas. A detailed steady model described by a set of ordinary differential and algebraic equations was developed to predict the behavior of the overall process. The proposed steady reactor model was validated against process data of a reformer synthesis plant recorded and a good agreement was achieved. H2/CO ratio has important effect on Fischer- Tropsch synthesis reactor product and we try to achieve this parameter with best designing reformer reactor. We study different kind of reformer reactors and then select auto thermal reforming process of natural gas in a fixed bed reformer that adjustment H2/CO ratio with CO2 and H2O injection. Finally a strategy was proposed for prevention of extra natural gas to atmosphere.

Keywords: Fischer-Tropsch, injection, reformer, syngas, waste natural gas.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1730
11802 Information Resource Management Maturity Model

Authors: Afshari H., Khosravi Sh.

Abstract:

Nowadays there are more than thirty maturity models in different knowledge areas. Maturity model is an area of interest that contributes organizations to find out where they are in a specific knowledge area and how to improve it. As Information Resource Management (IRM) is the concept that information is a major corporate resource and must be managed using the same basic principles used to manage other assets, assessment of the current IRM status and reveal the improvement points can play a critical role in developing an appropriate information structure in organizations. In this paper we proposed a framework for information resource management maturity model (IRM3) that includes ten best practices for the maturity assessment of the organizations' IRM.

Keywords: Information resource management (IRM), information resource management maturity model (IRM3), maturity model, best practice.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2383
11801 Permanence and Almost Periodic Solutions to an Epidemic Model with Delay and Feedback Control

Authors: Chenxi Yang, Zhouhong Li

Abstract:

This paper is concerned with an epidemic model with delay. By using the comparison theorem of the differential equation and constructing a suitable Lyapunov functional, Some sufficient conditions which guarantee the permeance and existence of a unique globally attractive positive almost periodic solution of the model are obtain. Finally, an example is employed to illustrate our result.

Keywords: Permanence, Almost periodic solution, Epidemic model, Delay, Feedback control.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1549
11800 Dynamic Correlations and Portfolio Optimization between Islamic and Conventional Equity Indexes: A Vine Copula-Based Approach

Authors: Imen Dhaou

Abstract:

This study examines conditional Value at Risk by applying the GJR-EVT-Copula model, and finds the optimal portfolio for eight Dow Jones Islamic-conventional pairs. Our methodology consists of modeling the data by a bivariate GJR-GARCH model in which we extract the filtered residuals and then apply the Peak over threshold model (POT) to fit the residual tails in order to model marginal distributions. After that, we use pair-copula to find the optimal portfolio risk dependence structure. Finally, with Monte Carlo simulations, we estimate the Value at Risk (VaR) and the conditional Value at Risk (CVaR). The empirical results show the VaR and CVaR values for an equally weighted portfolio of Dow Jones Islamic-conventional pairs. In sum, we found that the optimal investment focuses on Islamic-conventional US Market index pairs because of high investment proportion; however, all other index pairs have low investment proportion. These results deliver some real repercussions for portfolio managers and policymakers concerning to optimal asset allocations, portfolio risk management and the diversification advantages of these markets.

Keywords: CVaR, Dow Jones Islamic index, GJR-GARCH-EVT-pair copula, portfolio optimization.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 992
11799 Comparison of Developed Statokinesigram and Marker Data Signals by Model Approach

Authors: Boris Barbolyas, Kristina Buckova, Tomas Volensky, Cyril Belavy, Ladislav Dedik

Abstract:

Background: Based on statokinezigram, the human balance control is often studied. Approach to human postural reaction analysis is based on a combination of stabilometry output signal with retroreflective marker data signal processing, analysis, and understanding, in this study. The study shows another original application of Method of Developed Statokinesigram Trajectory (MDST), too. Methods: In this study, the participants maintained quiet bipedal standing for 10 s on stabilometry platform. Consequently, bilateral vibration stimuli to Achilles tendons in 20 s interval was applied. Vibration stimuli caused that human postural system took the new pseudo-steady state. Vibration frequencies were 20, 60 and 80 Hz. Participant's body segments - head, shoulders, hips, knees, ankles and little fingers were marked by 12 retroreflective markers. Markers positions were scanned by six cameras system BTS SMART DX. Registration of their postural reaction lasted 60 s. Sampling frequency was 100 Hz. For measured data processing were used Method of Developed Statokinesigram Trajectory. Regression analysis of developed statokinesigram trajectory (DST) data and retroreflective marker developed trajectory (DMT) data were used to find out which marker trajectories most correlate with stabilometry platform output signals. Scaling coefficients (λ) between DST and DMT by linear regression analysis were evaluated, too. Results: Scaling coefficients for marker trajectories were identified for all body segments. Head markers trajectories reached maximal value and ankle markers trajectories had a minimal value of scaling coefficient. Hips, knees and ankles markers were approximately symmetrical in the meaning of scaling coefficient. Notable differences of scaling coefficient were detected in head and shoulders markers trajectories which were not symmetrical. The model of postural system behavior was identified by MDST. Conclusion: Value of scaling factor identifies which body segment is predisposed to postural instability. Hypothetically, if statokinesigram represents overall human postural system response to vibration stimuli, then markers data represented particular postural responses. It can be assumed that cumulative sum of particular marker postural responses is equal to statokinesigram.

Keywords: Center of pressure (CoP), a method of developed statokinesigram trajectory (MDST), a model of postural system behavior, retroreflective marker data.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 760
11798 Improving the Performance of Deep Learning in Facial Emotion Recognition with Image Sharpening

Authors: Ksheeraj Sai Vepuri, Nada Attar

Abstract:

We as humans use words with accompanying visual and facial cues to communicate effectively. Classifying facial emotion using computer vision methodologies has been an active research area in the computer vision field. In this paper, we propose a simple method for facial expression recognition that enhances accuracy. We tested our method on the FER-2013 dataset that contains static images. Instead of using Histogram equalization to preprocess the dataset, we used Unsharp Mask to emphasize texture and details and sharpened the edges. We also used ImageDataGenerator from Keras library for data augmentation. Then we used Convolutional Neural Networks (CNN) model to classify the images into 7 different facial expressions, yielding an accuracy of 69.46% on the test set. Our results show that using image preprocessing such as the sharpening technique for a CNN model can improve the performance, even when the CNN model is relatively simple.

Keywords: Facial expression recognition, image pre-processing, deep learning, CNN.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 543
11797 New Findings on the User’s Preferences about Data Visualization of Online Reviews

Authors: Elizabeth Simão Carvalho, Marcirio Silveira Chaves

Abstract:

The information visualization is still a knowledge field that lacks from a solid theory to support it and there is a myriad of existing methodologies and taxonomies that can be combined and adopted as guidelines. In this context, it is necessary to pre-evaluate as much as possible all the assumptions that are considered for its design and development. We present an exploratory study (n = 123) to detect the graphical preferences of travelers using accommodation portals of Web 2.0 (e.g. tripadvisor.com). We took into account some of the most relevant ground rules applied in the field to map visually data and design end-user interaction. Moreover, the evaluation process was completely data visualization oriented. We found out that people tend to refuse more advanced types of visualization and that a hybrid combination between radial graphs and stacked bars should be explored. In sum, this paper introduces new findings about the visual model and the cognitive response of users of accommodation booking websites.

Keywords: Information visualization, Data visualization, Visualization evaluation, Online reviews, Booking portal, Hotel booking.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1719
11796 Towards an AS Level Network Performance Model

Authors: Huan Xiong, Ming Chen

Abstract:

In order to research Internet quantificationally and better model the performance of network, this paper proposes a novel AS level network performance model (MNPM), it takes autonomous system (AS) as basic modeling unit, measures E2E performance between any two outdegrees of an AS and organizes measurement results into matrix form which called performance matrix (PM). Inter-AS performance calculation is defined according to performance information stored in PM. Simulation has been implemented to verify the correctness of MNPM and a practical application of MNPM (network congestion detection) is given.

Keywords: AS, network performance, model, metric, congestion.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1407
11795 Model-Based Automotive Partitioning and Mapping for Embedded Multicore Systems

Authors: Robert H¨ottger, Lukas Krawczyk, Burkhard Igel

Abstract:

This paper introduces novel approaches to partitioning and mapping in terms of model-based embedded multicore system engineering and further discusses benefits, industrial relevance and features in common with existing approaches. In order to assess and evaluate results, both approaches have been applied to a real industrial application as well as to various prototypical demonstrative applications, that have been developed and implemented for different purposes. Evaluations show, that such applications improve significantly according to performance, energy efficiency, meeting timing constraints and covering maintaining issues by using the AMALTHEA platform and the implemented approaches. Furthermore, the model-based design provides an open, expandable, platform independent and scalable exchange format between OEMs, suppliers and developers on different levels. Our proposed mechanisms provide meaningful multicore system utilization since load balancing by means of partitioning and mapping is effectively performed with regard to the modeled systems including hardware, software, operating system, scheduling, constraints, configuration and more data.

Keywords: Partitioning, mapping, distributed systems, scheduling, embedded multicore systems, model-based, system analysis.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3289
11794 The Factors Significant to Software Development Productivity

Authors: Zhizhong Jiang, Craig Comstock

Abstract:

The past decade has seen enormous growth in the amount of software produced. However, given the ever increasing complexity of the software being developed and the concomitant rise in the typical project size, managers are becoming increasingly aware of the importance of issues that influence the productivity levels of the project teams involved. By analyzing the latest release of ISBSG data repository, we report on the factors found to significantly influence the productivity among which average team size and language type are the two most essential ones. Building on this we present an original model for evaluating the potential productivity during the project planning stage.

Keywords: ISBSG, Linear Model, Productivity, SoftwareEngineering.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2079