Search results for: P versus NP problem
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 3742

Search results for: P versus NP problem

2872 An Intelligent Water Drop Algorithm for Solving Economic Load Dispatch Problem

Authors: S. Rao Rayapudi

Abstract:

Economic Load Dispatch (ELD) is a method of determining the most efficient, low-cost and reliable operation of a power system by dispatching available electricity generation resources to supply load on the system. The primary objective of economic dispatch is to minimize total cost of generation while honoring operational constraints of available generation resources. In this paper an intelligent water drop (IWD) algorithm has been proposed to solve ELD problem with an objective of minimizing the total cost of generation. Intelligent water drop algorithm is a swarm-based natureinspired optimization algorithm, which has been inspired from natural rivers. A natural river often finds good paths among lots of possible paths in its ways from source to destination and finally find almost optimal path to their destination. These ideas are embedded into the proposed algorithm for solving economic load dispatch problem. The main advantage of the proposed technique is easy is implement and capable of finding feasible near global optimal solution with less computational effort. In order to illustrate the effectiveness of the proposed method, it has been tested on 6-unit and 20-unit test systems with incremental fuel cost functions taking into account the valve point-point loading effects. Numerical results shows that the proposed method has good convergence property and better in quality of solution than other algorithms reported in recent literature.

Keywords: Economic load dispatch, Transmission loss, Optimization, Valve point loading, Intelligent Water Drop Algorithm.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3630
2871 GA Based Optimal Feature Extraction Method for Functional Data Classification

Authors: Jun Wan, Zehua Chen, Yingwu Chen, Zhidong Bai

Abstract:

Classification is an interesting problem in functional data analysis (FDA), because many science and application problems end up with classification problems, such as recognition, prediction, control, decision making, management, etc. As the high dimension and high correlation in functional data (FD), it is a key problem to extract features from FD whereas keeping its global characters, which relates to the classification efficiency and precision to heavens. In this paper, a novel automatic method which combined Genetic Algorithm (GA) and classification algorithm to extract classification features is proposed. In this method, the optimal features and classification model are approached via evolutional study step by step. It is proved by theory analysis and experiment test that this method has advantages in improving classification efficiency, precision and robustness whereas using less features and the dimension of extracted classification features can be controlled.

Keywords: Classification, functional data, feature extraction, genetic algorithm, wavelet.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1555
2870 Effect of Supplementary Premium on the Optimal Portfolio Policy in a Defined Contribution Pension Scheme with Refund of Premium Clauses

Authors: Edikan E. Akpanibah Obinichi C. Mandah Imoleayo S. Asiwaju

Abstract:

In this paper, we studied the effect of supplementary premium on the optimal portfolio policy in a defined contribution (DC) pension scheme with refund of premium clauses. This refund clause allows death members’ next of kin to withdraw their relative’s accumulated wealth during the accumulation period. The supplementary premium is to help sustain the scheme and is assumed to be stochastic. We considered cases when the remaining wealth is equally distributed and when it is not equally distributed among the remaining members. Next, we considered investments in cash and equity to help increase the remaining accumulated funds to meet up with the retirement needs of the remaining members and composed the problem as a continuous time mean-variance stochastic optimal control problem using the actuarial symbol and established an optimization problem from the extended Hamilton Jacobi Bellman equations. The optimal portfolio policy, the corresponding optimal fund size for the two assets and also the efficient frontier of the pension members for the two cases was obtained. Furthermore, the numerical simulations of the optimal portfolio policies with time were presented and the effect of the supplementary premium on the optimal portfolio policy was discussed and observed that the supplementary premium decreases the optimal portfolio policy of the risky asset (equity). Secondly we observed a disparity between the optimal policies for the two cases.

Keywords: Defined contribution pension scheme, extended Hamilton Jacobi Bellman equations, optimal portfolio policies, refund of premium clauses, supplementary premium.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 659
2869 Environmental Interference Cancellation of Speech with the Radial Basis Function Networks: An Experimental Comparison

Authors: Nima Hatami

Abstract:

In this paper, we use Radial Basis Function Networks (RBFN) for solving the problem of environmental interference cancellation of speech signal. We show that the Second Order Thin- Plate Spline (SOTPS) kernel cancels the interferences effectively. For make comparison, we test our experiments on two conventional most used RBFN kernels: the Gaussian and First order TPS (FOTPS) basis functions. The speech signals used here were taken from the OGI Multi-Language Telephone Speech Corpus database and were corrupted with six type of environmental noise from NOISEX-92 database. Experimental results show that the SOTPS kernel can considerably outperform the Gaussian and FOTPS functions on speech interference cancellation problem.

Keywords: Environmental interference, interference cancellation of speech, Radial Basis Function networks, Gaussian and TPS kernels.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1563
2868 An Improved Total Variation Regularization Method for Denoising Magnetocardiography

Authors: Yanping Liao, Congcong He, Ruigang Zhao

Abstract:

The application of magnetocardiography signals to detect cardiac electrical function is a new technology developed in recent years. The magnetocardiography signal is detected with Superconducting Quantum Interference Devices (SQUID) and has considerable advantages over electrocardiography (ECG). It is difficult to extract Magnetocardiography (MCG) signal which is buried in the noise, which is a critical issue to be resolved in cardiac monitoring system and MCG applications. In order to remove the severe background noise, the Total Variation (TV) regularization method is proposed to denoise MCG signal. The approach transforms the denoising problem into a minimization optimization problem and the Majorization-minimization algorithm is applied to iteratively solve the minimization problem. However, traditional TV regularization method tends to cause step effect and lacks constraint adaptability. In this paper, an improved TV regularization method for denoising MCG signal is proposed to improve the denoising precision. The improvement of this method is mainly divided into three parts. First, high-order TV is applied to reduce the step effect, and the corresponding second derivative matrix is used to substitute the first order. Then, the positions of the non-zero elements in the second order derivative matrix are determined based on the peak positions that are detected by the detection window. Finally, adaptive constraint parameters are defined to eliminate noises and preserve signal peak characteristics. Theoretical analysis and experimental results show that this algorithm can effectively improve the output signal-to-noise ratio and has superior performance.

Keywords: Constraint parameters, derivative matrix, magnetocardiography, regular term, total variation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 697
2867 Identification of Spam Keywords Using Hierarchical Category in C2C E-commerce

Authors: Shao Bo Cheng, Yong-Jin Han, Se Young Park, Seong-Bae Park

Abstract:

Consumer-to-Consumer (C2C) E-commerce has been growing at a very high speed in recent years. Since identical or nearly-same kinds of products compete one another by relying on keyword search in C2C E-commerce, some sellers describe their products with spam keywords that are popular but are not related to their products. Though such products get more chances to be retrieved and selected by consumers than those without spam keywords, the spam keywords mislead the consumers and waste their time. This problem has been reported in many commercial services like ebay and taobao, but there have been little research to solve this problem. As a solution to this problem, this paper proposes a method to classify whether keywords of a product are spam or not. The proposed method assumes that a keyword for a given product is more reliable if the keyword is observed commonly in specifications of products which are the same or the same kind as the given product. This is because that a hierarchical category of a product in general determined precisely by a seller of the product and so is the specification of the product. Since higher layers of the hierarchical category represent more general kinds of products, a reliable degree is differently determined according to the layers. Hence, reliable degrees from different layers of a hierarchical category become features for keywords and they are used together with features only from specifications for classification of the keywords. Support Vector Machines are adopted as a basic classifier using the features, since it is powerful, and widely used in many classification tasks. In the experiments, the proposed method is evaluated with a golden standard dataset from Yi-han-wang, a Chinese C2C E-commerce, and is compared with a baseline method that does not consider the hierarchical category. The experimental results show that the proposed method outperforms the baseline in F1-measure, which proves that spam keywords are effectively identified by a hierarchical category in C2C E-commerce.

Keywords: Spam Keyword, E-commerce, keyword features, spam filtering.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2508
2866 Research of Database Curriculum Construction under the Environment of Massive Open Online Courses

Authors: Wang Zhanquan, Yang Zeping, Gu Chunhua, Zhu Fazhi, Guo Weibin

Abstract:

Recently, Massive Open Online Courses (MOOCs) are becoming the new trend of education. There are many problems under the environment of Database Principle curriculum teaching process in MOOCs, such as teaching ideas and theories which are out of touch with the reality, how to carry out the technical teaching and interactive practice in the MOOCs environment, thus the methods of database course under the environment of MOOCs are proposed. There are three processes to deal with problem solving in the research, which are problems proposed, problems solved, and inductive analysis. The present research includes the design of teaching contents, teaching methods in classroom, flipped classroom teaching mode under the environment of MOOCs, learning flow method and large practice homework. The database designing ability is systematically improved based on the researching methods.

Keywords: Problem solving-driven, MOOCs, teaching art, learning flow.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1334
2865 Numerical Investigation of the Thermal Separation in a Vortex Tube

Authors: N.Pourmahmoud, S.Akhesmeh

Abstract:

This work has been carried out in order to provide an understanding of the physical behaviors of the flow variation of pressure and temperature in a vortex tube. A computational fluid dynamics model is used to predict the flow fields and the associated temperature separation within a Ranque–Hilsch vortex tube. The CFD model is a steady axisymmetric model (with swirl) that utilizes the standard k-ε turbulence model. The second–order numerical schemes, was used to carry out all the computations. Vortex tube with a circumferential inlet stream and an axial (cold) outlet stream and a circumferential (hot) outlet stream was considered. Performance curves (temperature separation versus cold outlet mass fraction) were obtained for a specific vortex tube with a given inlet mass flow rate. Simulations have been carried out for varying amounts of cold outlet mass flow rates. The model results have a good agreement with experimental data.

Keywords: Ranque–Hilsch vortex tube, Temperature separation, k–ε model, cold mass fraction.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2426
2864 Estimation of Structural Parameters in Time Domain Using One Dimensional Piezo Zirconium Titanium Patch Model

Authors: N. Jinesh, K. Shankar

Abstract:

This article presents a method of using the one dimensional piezo-electric patch on beam model for structural identification. A hybrid element constituted of one dimensional beam element and a PZT sensor is used with reduced material properties. This model is convenient and simple for identification of beams. Accuracy of this element is first verified against a corresponding 3D finite element model (FEM). The structural identification is carried out as an inverse problem whereby parameters are identified by minimizing the deviation between the predicted and measured voltage response of the patch, when subjected to excitation. A non-classical optimization algorithm Particle Swarm Optimization is used to minimize this objective function. The signals are polluted with 5% Gaussian noise to simulate experimental noise. The proposed method is applied on beam structure and identified parameters are stiffness and damping. The model is also validated experimentally.

Keywords: Structural identification, PZT patches, inverse problem, particle swarm optimization.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 931
2863 Optimum Design of Trusses by Cuckoo Search

Authors: M. Saravanan, J. Raja Murugadoss, V. Jayanthi

Abstract:

Optimal design of structure has a main role in reduction of material usage which leads to deduction in the final cost of construction projects. Evolutionary approaches are found to be more successful techniques for solving size and shape structural optimization problem since it uses a stochastic random search instead of a gradient search. By reviewing the recent literature works the problem found was the optimization of weight. A new meta-heuristic algorithm called as Cuckoo Search (CS) Algorithm has used for the optimization of the total weight of the truss structures. This paper has used set of 10 bars and 25 bars trusses for the testing purpose. The main objective of this work is to reduce the number of iterations, weight and the total time consumption. In order to demonstrate the effectiveness of the present method, minimum weight design of truss structures is performed and the results of the CS are compared with other algorithms.

Keywords: Cuckoo search algorithm, levy’s flight, meta-heuristic, optimal weight.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2105
2862 Compiler-Based Architecture for Context Aware Frameworks

Authors: Hossein Nejati, Seyed H. Mirisaee, Gholam H. Dastghaibifard

Abstract:

Computers are being integrated in the various aspects of human every day life in different shapes and abilities. This fact has intensified a requirement for the software development technologies which is ability to be: 1) portable, 2) adaptable, and 3) simple to develop. This problem is also known as the Pervasive Computing Problem (PCP) which can be implemented in different ways, each has its own pros and cons and Context Oriented Programming (COP) is one of the methods to address the PCP. In this paper a design for a COP framework, a context aware framework, is presented which has eliminated weak points of a previous design based on interpreter languages, while introducing the compiler languages power in implementing these frameworks. The key point of this improvement is combining COP and Dependency Injection (DI) techniques. Both old and new frameworks are analyzed to show advantages and disadvantages. Finally a simulation of both designs is proposed to indicating that the practical results agree with the theoretical analysis while the new design runs almost 8 times faster.

Keywords: Dependency Injection, Compiler-based architecture, Context-Oriented Programming, COP, Pervasive ComputingProblem

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1929
2861 Optimal Production Planning in Aromatic Coconuts Supply Chain Based On Mixed-Integer Linear Programming

Authors: Chaimongkol Limpianchob

Abstract:

This work addresses the problem of production planning that arises in the production of aromatic coconuts from Samudsakhorn province in Thailand. The planning involves the forwarding of aromatic coconuts from the harvest areas to the factory, which is classified into two groups; self-owned areas and contracted areas, the decisions of aromatic coconuts flow in the plant, and addressing a question of which warehouse will be in use. The problem is formulated as a mixed-integer linear programming model within supply chain management framework. The objective function seeks to minimize the total cost including the harvesting, labor and inventory costs. Constraints on the system include the production activities in the company and demand requirements. Numerical results are presented to demonstrate the feasibility of coconuts supply chain model compared with base case.

Keywords: Aromatic coconut, supply chain management, production planning, mixed-integer linear programming.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2759
2860 In Search of Robustness and Efficiency via l1− and l2− Regularized Optimization for Physiological Motion Compensation

Authors: Angelica I. Aviles, Pilar Sobrevilla, Alicia Casals

Abstract:

Compensating physiological motion in the context of minimally invasive cardiac surgery has become an attractive issue since it outperforms traditional cardiac procedures offering remarkable benefits. Owing to space restrictions, computer vision techniques have proven to be the most practical and suitable solution. However, the lack of robustness and efficiency of existing methods make physiological motion compensation an open and challenging problem. This work focusses on increasing robustness and efficiency via exploration of the classes of 1−and 2−regularized optimization, emphasizing the use of explicit regularization. Both approaches are based on natural features of the heart using intensity information. Results pointed out the 1−regularized optimization class as the best since it offered the shortest computational cost, the smallest average error and it proved to work even under complex deformations.

Keywords: Motion Compensation, Optimization, Regularization, Beating Heart Surgery, Ill-posed problem.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2027
2859 Land Reclamation Using Waste as Fill Material: A Case Study in Jakarta

Authors: Q. Han, W. Schaefer, N. Barry

Abstract:

To coop with urbanization issues and the economic need for expansion, the city of Jakarta is planning to reclaim more land in the Jakarta Bay. However, the reclamation activities of some islands have barely started and already the developers are facing difficulties in finding sufficient quantities of sand as fill material. When addressing the problem of sand scarcity in the case of Jakarta where, an excess of waste production, an inadequate solid waste management system and a lack of dumping ground pose a major problem, it is hard not to think of the use of waste as alternative fill material. This paper analyses the possibilities of using waste in the land reclamation projects, considering the governmental, social, environmental and economic context of the city. The results identify types of waste that could be used, ways of using those types of waste and implementation conditions for the city of Jakarta.

Keywords: Waste Management systems, Land reclamation, Multi Criteria Analysis, Scenario planning.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 5358
2858 New Hybrid Algorithm for Task Scheduling in Grid Computing to Decrease missed Task

Authors: Z. Pooranian, A. Harounabadi, M. Shojafar, N. Hedayat

Abstract:

The purpose of Grid computing is to utilize computational power of idle resources which are distributed in different areas. Given the grid dynamism and its decentralize resources, there is a need for an efficient scheduler for scheduling applications. Since task scheduling includes in the NP-hard problems various researches have focused on invented algorithms especially the genetic ones. But since genetic is an inherent algorithm which searches the problem space globally and does not have the efficiency required for local searching, therefore, its combination with local searching algorithms can compensate for this shortcomings. The aim of this paper is to combine the genetic algorithm and GELS (GAGELS) as a method to solve scheduling problem by which simultaneously pay attention to two factors of time and number of missed tasks. Results show that the proposed algorithm can decrease makespan while minimizing the number of missed tasks compared with the traditional methods.

Keywords: Grid Computing, Genetic Algorithm, Gravitational Emulation Local Search (GELS), missed task

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1943
2857 The Load Balancing Algorithm for the Star Interconnection Network

Authors: Ahmad M. Awwad, Jehad Al-Sadi

Abstract:

The star network is one of the promising interconnection networks for future high speed parallel computers, it is expected to be one of the future-generation networks. The star network is both edge and vertex symmetry, it was shown to have many gorgeous topological proprieties also it is owns hierarchical structure framework. Although much of the research work has been done on this promising network in literature, it still suffers from having enough algorithms for load balancing problem. In this paper we try to work on this issue by investigating and proposing an efficient algorithm for load balancing problem for the star network. The proposed algorithm is called Star Clustered Dimension Exchange Method SCDEM to be implemented on the star network. The proposed algorithm is based on the Clustered Dimension Exchange Method (CDEM). The SCDEM algorithm is shown to be efficient in redistributing the load balancing as evenly as possible among all nodes of different factor networks.

Keywords: Interconnection networks, Load balancing, Star network.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2107
2856 Robust Coordinated Design of Multiple Power System Stabilizers Using Particle Swarm Optimization Technique

Authors: Sidhartha Panda, C. Ardil

Abstract:

Power system stabilizers (PSS) are now routinely used in the industry to damp out power system oscillations. In this paper, particle swarm optimization (PSO) technique is applied to coordinately design multiple power system stabilizers (PSS) in a multi-machine power system. The design problem of the proposed controllers is formulated as an optimization problem and PSO is employed to search for optimal controller parameters. By minimizing the time-domain based objective function, in which the deviation in the oscillatory rotor speed of the generator is involved; stability performance of the system is improved. The non-linear simulation results are presented for various severe disturbances and small disturbance at different locations as well as for various fault clearing sequences to show the effectiveness and robustness of the proposed controller and their ability to provide efficient damping of low frequency oscillations.

Keywords: Low frequency oscillations, Particle swarm optimization, power system stability, power system stabilizer, multimachine power system.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 868
2855 A Hybrid Fuzzy AGC in a Competitive Electricity Environment

Authors: H. Shayeghi, A. Jalili

Abstract:

This paper presents a new Hybrid Fuzzy (HF) PID type controller based on Genetic Algorithms (GA-s) for solution of the Automatic generation Control (AGC) problem in a deregulated electricity environment. In order for a fuzzy rule based control system to perform well, the fuzzy sets must be carefully designed. A major problem plaguing the effective use of this method is the difficulty of accurately constructing the membership functions, because it is a computationally expensive combinatorial optimization problem. On the other hand, GAs is a technique that emulates biological evolutionary theories to solve complex optimization problems by using directed random searches to derive a set of optimal solutions. For this reason, the membership functions are tuned automatically using a modified GA-s based on the hill climbing method. The motivation for using the modified GA-s is to reduce fuzzy system effort and take large parametric uncertainties into account. The global optimum value is guaranteed using the proposed method and the speed of the algorithm-s convergence is extremely improved, too. This newly developed control strategy combines the advantage of GA-s and fuzzy system control techniques and leads to a flexible controller with simple stricture that is easy to implement. The proposed GA based HF (GAHF) controller is tested on a threearea deregulated power system under different operating conditions and contract variations. The results of the proposed GAHF controller are compared with those of Multi Stage Fuzzy (MSF) controller, robust mixed H2/H∞ and classical PID controllers through some performance indices to illustrate its robust performance for a wide range of system parameters and load changes.

Keywords: AGC, Hybrid Fuzzy Controller, Deregulated Power System, Power System Control, GAs.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1735
2854 A Multi-Objective Optimization Model to the Integrating Flexible Process Planning And Scheduling Based on Modified Particle Swarm Optimization Algorithm (MPSO)

Authors: R. Sahraian, A. Karampour Haghighi, E. Ghasemi

Abstract:

Process planning and production scheduling play important roles in manufacturing systems. In this paper a multiobjective mixed integer linear programming model is presented for the integrated planning and scheduling of multi-product. The aim is to find a set of high-quality trade-off solutions. This is a combinatorial optimization problem with substantially large solution space, suggesting that it is highly difficult to find the best solutions with the exact search method. To account for it, a PSO-based algorithm is proposed by fully utilizing the capability of the exploration search and fast convergence. To fit the continuous PSO in the discrete modeled problem, a solution representation is used in the algorithm. The numerical experiments have been performed to demonstrate the effectiveness of the proposed algorithm.

Keywords: Integrated process planning and scheduling, multi objective, MILP, Particle swarm optimization

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1430
2853 Application of Natural Clay to Formulate Nontraditional Completion Fluid that Triples Oil Productivity

Authors: Munawar Khalil, Badrul Mohamed Jan, Abdul Aziz Abdul Raman

Abstract:

In the last decades, the problem of perforation damage has been considered as the major factor for the reduction of oil productivity. Underbalance perforation is considered as one of the best means to minimize or overcome this problem. By maintaining wellbore pressure lower than formation pressure, perforation damage could be minimize or eliminated. This can be achieved by the use of nontraditional lightweight completion fluid. This paper presents the effect of natural clay in formulating nontraditional completion fluid to ensure successful perforation job and increase of production rate. Natural clay is used as homogenizing agent to create a stable and non-damaging low-density completion fluid. Results indicate that the addition of natural clay dramatically increase the stability of the final fluids. In addition, field test has shown that the application of nontraditional completion fluid increases oil production by three folds.

Keywords: Completion fluid, underbalance, clay, oil production.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1393
2852 CMOS Positive and Negative Resistors Based on Complementary Regulated Cascode Topology with Cross-Coupled Regulated Transistors

Authors: Kittipong Tripetch, Nobuhiko Nakano

Abstract:

Two types of floating active resistors based on a complementary regulated cascode topology with cross-coupled regulated transistors are presented in this paper. The first topology is a high swing complementary regulated cascode active resistor. The second topology is a complementary common gate with a regulated cross coupled transistor. The small-signal input resistances of the floating resistors are derived. Three graphs of the input current versus the input voltage for different aspect ratios are designed and plotted using the Cadence Spectre 0.18-µm Rohm Semiconductor process. The total harmonic distortion graphs are plotted for three different aspect ratios with different input-voltage amplitudes and different input frequencies. From the simulation results, it is observed that a resistance of approximately 8.52 MΩ can be obtained from supply voltage at  ±0.9 V.

Keywords: Complementary common gate, complementary regulated cascode, current mirror, floating active resistors.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 957
2851 Application of Intuitionistic Fuzzy Cross Entropy Measure in Decision Making for Medical Diagnosis

Authors: Shikha Maheshwari, Amit Srivastava

Abstract:

In medical investigations, uncertainty is a major challenging problem in making decision for doctors/experts to identify the diseases with a common set of symptoms and also has been extensively increasing in medical diagnosis problems. The theory of cross entropy for intuitionistic fuzzy sets (IFS) is an effective approach in coping uncertainty in decision making for medical diagnosis problem. The main focus of this paper is to propose a new intuitionistic fuzzy cross entropy measure (IFCEM), which aid in reducing the uncertainty and doctors/experts will take their decision easily in context of patient’s disease. It is shown that the proposed measure has some elegant properties, which demonstrates its potency. Further, it is also exemplified in detail the efficiency and utility of the proposed measure by using a real life case study of diagnosis the disease in medical science.

Keywords: Intuitionistic fuzzy cross entropy (IFCEM), intuitionistic fuzzy set (IFS), medical diagnosis, uncertainty.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2045
2850 Resource Allocation and Task Scheduling with Skill Level and Time Bound Constraints

Authors: Salam Saudagar, Ankit Kamboj, Niraj Mohan, Satgounda Patil, Nilesh Powar

Abstract:

Task Assignment and Scheduling is a challenging Operations Research problem when there is a limited number of resources and comparatively higher number of tasks. The Cost Management team at Cummins needs to assign tasks based on a deadline and must prioritize some of the tasks as per business requirements. Moreover, there is a constraint on the resources that assignment of tasks should be done based on an individual skill level, that may vary for different tasks. Another constraint is for scheduling the tasks that should be evenly distributed in terms of number of working hours, which adds further complexity to this problem. The proposed greedy approach to solve assignment and scheduling problem first assigns the task based on management priority and then by the closest deadline. This is followed by an iterative selection of an available resource with the least allocated total working hours for a task, i.e. finding the local optimal choice for each task with the goal of determining the global optimum. The greedy approach task allocation is compared with a variant of Hungarian Algorithm, and it is observed that the proposed approach gives an equal allocation of working hours among the resources. The comparative study of the proposed approach is also done with manual task allocation and it is noted that the visibility of the task timeline has increased from 2 months to 6 months. An interactive dashboard app is created for the greedy assignment and scheduling approach and the tasks with more than 2 months horizon that were waiting in a queue without a delivery date initially are now analyzed effectively by the business with expected timelines for completion.

Keywords: Assignment, deadline, greedy approach, hungarian algorithm, operations research, scheduling.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1201
2849 Sustainability Model for Rural Telecenter Using Business Intelligence Technique

Authors: Razak Rahmat, Azizah Ahmad, Rafidah Razak, Roshidi Din, Azizi Abas

Abstract:

Telecenter is a place where communities can access computers, the Internet, and other digital technologies to enable them to gather information, create, learn, and communicate with others. However, previous studies found that sustainability issues related to economic, political and institutional, social and technology is one of the major problem faced by the telecenter. Based on that problem this research is planning to design a possible solution on rural telecenters sustainability with the support of business intelligence (BI). The empirical study will be conducted through qualitative and quantitative method including interviews and observations with a range of stakeholders including ministry officers, telecenters managers and operators. Result from the data collection will be analyzed using causal modeling approach of SEM SmartPLS for the validity. The expected finding from this research is the Business Intelligent Requirement Model as a guild for sustainability of the rural telecenters.

Keywords: Rural ICT Telecenter (RICTT), Business Intelligence, Sustainability, Requirement Analysis Modal.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2901
2848 Time Series Forecasting Using a Hybrid RBF Neural Network and AR Model Based On Binomial Smoothing

Authors: Fengxia Zheng, Shouming Zhong

Abstract:

ANNARIMA that combines both autoregressive integrated moving average (ARIMA) model and artificial neural network (ANN) model is a valuable tool for modeling and forecasting nonlinear time series, yet the over-fitting problem is more likely to occur in neural network models. This paper provides a hybrid methodology that combines both radial basis function (RBF) neural network and auto regression (AR) model based on binomial smoothing (BS) technique which is efficient in data processing, which is called BSRBFAR. This method is examined by using the data of Canadian Lynx data. Empirical results indicate that the over-fitting problem can be eased using RBF neural network based on binomial smoothing which is called BS-RBF, and the hybrid model–BS-RBFAR can be an effective way to improve forecasting accuracy achieved by BSRBF used separately.

Keywords: Binomial smoothing (BS), hybrid, Canadian Lynx data, forecasting accuracy.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3686
2847 Subjective Versus Objective Assessment for Magnetic Resonance Images

Authors: Heshalini Rajagopal, Li Sze Chow, Raveendran Paramesran

Abstract:

Magnetic Resonance Imaging (MRI) is one of the most important medical imaging modality. Subjective assessment of the image quality is regarded as the gold standard to evaluate MR images. In this study, a database of 210 MR images which contains ten reference images and 200 distorted images is presented. The reference images were distorted with four types of distortions: Rician Noise, Gaussian White Noise, Gaussian Blur and DCT compression. The 210 images were assessed by ten subjects. The subjective scores were presented in Difference Mean Opinion Score (DMOS). The DMOS values were compared with four FR-IQA metrics. We have used Pearson Linear Coefficient (PLCC) and Spearman Rank Order Correlation Coefficient (SROCC) to validate the DMOS values. The high correlation values of PLCC and SROCC shows that the DMOS values are close to the objective FR-IQA metrics.

Keywords: Medical Resonance (MR) images, Difference Mean Opinion Score (DMOS), Full Reference Image Quality Assessment (FR-IQA).

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2218
2846 Coupled Electromagnetic and Thermal Field Modeling of a Laboratory Busbar System

Authors: Tatyana R. Radeva, Ivan S. Yatchev, Dimitar N. Karastoyanov, Nikolay I. Stoimenov, Stanislav D. Gyoshev

Abstract:

The paper presents coupled electromagnetic and thermal field analysis of busbar system (of rectangular cross-section geometry) submitted to short circuit conditions. The laboratory model was validated against both analytical solution and experimental observations. The considered problem required the computation of the detailed distribution of the power losses and the heat transfer modes. In this electromagnetic and thermal analysis, different definitions of electric busbar heating were considered and compared. The busbar system is a three phase one and consists of aluminum, painted aluminum and copper busbar. The solution to the coupled field problem is obtained using the finite element method and the QuickField™ program. Experiments have been carried out using two different approaches and compared with computed results.

Keywords: Busbar system, coupled problems, finite element method, short-circuit currents.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2976
2845 Data Transmission Reliability in Short Message Integrated Distributed Monitoring Systems

Authors: Sui Xin, Li Chunsheng, Tian Di

Abstract:

Short message integrated distributed monitoring systems (SM-DMS) are growing rapidly in wireless communication applications in various areas, such as electromagnetic field (EMF) management, wastewater monitoring, and air pollution supervision, etc. However, delay in short messages often makes the data embedded in SM-DMS transmit unreliably. Moreover, there are few regulations dealing with this problem in SMS transmission protocols. In this study, based on the analysis of the command and data requirements in the SM-DMS, we developed a processing model for the control center to solve the delay problem in data transmission. Three components of the model: the data transmission protocol, the receiving buffer pool method, and the timer mechanism were described in detail. Discussions on adjusting the threshold parameter in the timer mechanism were presented for the adaptive performance during the runtime of the SM-DMS. This model optimized the data transmission reliability in SM-DMS, and provided a supplement to the data transmission reliability protocols at the application level.

Keywords: Delay, SMS, reliability, distributed monitoringsystem (DMS), wireless communication.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1704
2844 Verified Experiment: Intelligent Fuzzy Weighted Input Estimation Method to Inverse Heat Conduction Problem

Authors: Chen-Yu Wang, Tsung-Chien Chen, Ming-Hui Lee, Jen-Feng Huang

Abstract:

In this paper, the innovative intelligent fuzzy weighted input estimation method (FWIEM) can be applied to the inverse heat transfer conduction problem (IHCP) to estimate the unknown time-varying heat flux efficiently as presented. The feasibility of this method can be verified by adopting the temperature measurement experiment. We would like to focus attention on the heat flux estimation to three kinds of samples (Copper, Iron and Steel/AISI 304) with the same 3mm thickness. The temperature measurements are then regarded as the inputs into the FWIEM to estimate the heat flux. The experiment results show that the proposed algorithm can estimate the unknown time-varying heat flux on-line.

Keywords: Fuzzy Weighted Input Estimation Method, IHCP andHeat Flux.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1540
2843 Bi-Directional Evolutionary Topology Optimization Based on Critical Fatigue Constraint

Authors: Khodamorad Nabaki, Jianhu Shen, Xiaodong Huang

Abstract:

This paper develops a method for considering the critical fatigue stress as a constraint in the Bi-directional Evolutionary Structural Optimization (BESO) method. Our aim is to reach an optimal design in which high cycle fatigue failure does not occur for a specific life time. The critical fatigue stress is calculated based on modified Goodman criteria and used as a stress constraint in our topology optimization problem. Since fatigue generally does not occur for compressive stresses, we use the p-norm approach of the stress measurement that considers the highest tensile principal stress in each point as stress measure to calculate the sensitivity numbers. The BESO method has been extended to minimize volume an object subjected to the critical fatigue stress constraint. The optimization results are compared with the results from the compliance minimization problem which shows clearly the merits of our newly developed approach.

Keywords: Topology optimization, BESO method, p-norm, fatigue constraint.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1069