Search results for: Automatic machine translation
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 1895

Search results for: Automatic machine translation

1025 Multi-Stage Multi-Period Production Planning in Wire and Cable Industry

Authors: Mahnaz Hosseinzadeh, Shaghayegh Rezaee Amiri

Abstract:

This paper presents a methodology for serial production planning problem in wire and cable manufacturing process that addresses the problem of input-output imbalance in different consecutive stations, hoping to minimize the halt of machines in each stage. To this end, a linear Goal Programming (GP) model is developed, in which four main categories of constraints as per the number of runs per machine, machines’ sequences, acceptable inventories of machines at the end of each period, and the necessity of fulfillment of the customers’ orders are considered. The model is formulated based upon on the real data obtained from IKO TAK Company, an important supplier of wire and cable for oil and gas and automotive industries in Iran. By solving the model in GAMS software the optimal number of runs, end-of-period inventories, and the possible minimum idle time for each machine are calculated. The application of the numerical results in the target company has shown the efficiency of the proposed model and the solution in decreasing the lead time of the end product delivery to the customers by 20%. Accordingly, the developed model could be easily applied in wire and cable companies for the aim of optimal production planning to reduce the halt of machines in manufacturing stages.

Keywords: Serial manufacturing process, production planning, wire and cable industry, goal programming approach.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 931
1024 Multiscale Analysis and Change Detection Based on a Contrario Approach

Authors: F.Katlane, M.S.Naceur, M.A.Loghmari

Abstract:

Automatic methods of detecting changes through satellite imaging are the object of growing interest, especially beca²use of numerous applications linked to analysis of the Earth’s surface or the environment (monitoring vegetation, updating maps, risk management, etc...). This work implemented spatial analysis techniques by using images with different spatial and spectral resolutions on different dates. The work was based on the principle of control charts in order to set the upper and lower limits beyond which a change would be noted. Later, the a contrario approach was used. This was done by testing different thresholds for which the difference calculated between two pixels was significant. Finally, labeled images were considered, giving a particularly low difference which meant that the number of “false changes” could be estimated according to a given limit.

Keywords: multi-scale, a contrario approach, significantthresholds, change detection.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1465
1023 A Generalized Coordination Setting Method for Distribution Systems with Closed-loop

Authors: Kang-Le Guan, Seung-Jae Lee, Myeon-Song Choi

Abstract:

The protection issues in distribution systems with open and closed-loop are studied, and a generalized protection setting scheme based on the traditional over current protection theories is proposed to meet the new requirements. The setting method is expected to be easier realized using computer program, so that the on-line adaptive setting for coordination in distribution system can be implemented. An automatic setting program is created and several cases are taken into practice. The setting results are verified by the coordination curves of the protective devices which are plotted using MATLAB.

Keywords: protection setting, on-line system analysis, over current protection, closed-loop distribution system

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2169
1022 Artificial Intelligence: A Comprehensive and Systematic Literature Review of Applications and Comparative Technologies

Authors: Z. M. Najmi

Abstract:

Over the years, the question around Artificial Intelligence has always been one with many answers. Whether by means of use in business and industry or complicated algorithmic programming, management of these technologies has always been the core focus. More recently, technologies have been questioned in industry and society alike as to whether they have improved human-centred design, assisted choices and objectives, and had a hand in systematic processes across the board. With these questions the answer may lie within AI technologies, and the steps needed in removing common human error. Elements such as Machine Learning, Deep Learning, Recommender Systems and Natural Language Processing will all be features to consider moving forward. Our previous intervention with AI applications has resulted in increased productivity, however, raised concerns for the continuation of traditional human-centred occupations. Emerging technologies such as Augmented Reality and Virtual Reality have all played a part in this during AI’s prominent rise. As mentioned, AI has been constantly under the microscope; the benefits and drawbacks may seem endless is wide, but AI is something we must take notice of and adapt into our everyday lives. The aim of this paper is to give an overview of the technologies surrounding A.I. and its’ related technologies. A comprehensive review has been written as a timeline of the developing events and key points in the history of Artificial Intelligence. This research is gathered entirely from secondary research, academic statements of knowledge and gathered to produce an understanding of the timeline of AI.

Keywords: Artificial Intelligence, Deep Learning, Augmented Reality, Reinforcement Learning, Machine Learning, Supervised Learning.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 576
1021 Kinematic Analysis of 2-DOF Planer Robot Using Artificial Neural Network

Authors: Jolly Shah, S.S.Rattan, B.C.Nakra

Abstract:

Automatic control of the robotic manipulator involves study of kinematics and dynamics as a major issue. This paper involves the forward and inverse kinematics of 2-DOF robotic manipulator with revolute joints. In this study the Denavit- Hartenberg (D-H) model is used to model robot links and joints. Also forward and inverse kinematics solution has been achieved using Artificial Neural Networks for 2-DOF robotic manipulator. It shows that by using artificial neural network the solution we get is faster, acceptable and has zero error.

Keywords: Artificial Neural Network, Forward Kinematics, Inverse Kinematics, Robotic Manipulator

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 4364
1020 Intelligent Recognition of Diabetes Disease via FCM Based Attribute Weighting

Authors: Kemal Polat

Abstract:

In this paper, an attribute weighting method called fuzzy C-means clustering based attribute weighting (FCMAW) for classification of Diabetes disease dataset has been used. The aims of this study are to reduce the variance within attributes of diabetes dataset and to improve the classification accuracy of classifier algorithm transforming from non-linear separable datasets to linearly separable datasets. Pima Indians Diabetes dataset has two classes including normal subjects (500 instances) and diabetes subjects (268 instances). Fuzzy C-means clustering is an improved version of K-means clustering method and is one of most used clustering methods in data mining and machine learning applications. In this study, as the first stage, fuzzy C-means clustering process has been used for finding the centers of attributes in Pima Indians diabetes dataset and then weighted the dataset according to the ratios of the means of attributes to centers of theirs. Secondly, after weighting process, the classifier algorithms including support vector machine (SVM) and k-NN (k- nearest neighbor) classifiers have been used for classifying weighted Pima Indians diabetes dataset. Experimental results show that the proposed attribute weighting method (FCMAW) has obtained very promising results in the classification of Pima Indians diabetes dataset.

Keywords: Fuzzy C-means clustering, Fuzzy C-means clustering based attribute weighting, Pima Indians diabetes dataset, SVM.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1763
1019 Intragenic MicroRNAs Binding Sites in MRNAs of Genes Involved in Carcinogenesis

Authors: Olga A. Berillo, Assel S. Issabekova, Anatoly T. Ivashchenko

Abstract:

MiRNAs participate in gene regulation of translation. Some studies have investigated the interactions between genes and intragenic miRNAs. It is important to study the miRNA binding sites of genes involved in carcinogenesis. RNAHybrid 2.1 and ERNAhybrid programmes were used to compute the hybridization free energy of miRNA binding sites. Of these 54 mRNAs, 22.6%, 37.7%, and 39.7% of miRNA binding sites were present in the 5'UTRs, CDSs, and 3'UTRs, respectively. The density of the binding sites for miRNAs in the 5'UTR ranged from 1.6 to 43.2 times and from 1.8 to 8.0 times greater than in the CDS and 3'UTR, respectively. Three types of miRNA interactions with mRNAs have been revealed: 5'- dominant canonical, 3'-compensatory, and complementary binding sites. MiRNAs regulate gene expression, and information on the interactions between miRNAs and mRNAs could be useful in molecular medicine. We recommend that newly described sites undergo validation by experimental investigation.

Keywords: Exon, intron, miRNA, oncogene.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2006
1018 Development of Genetic-based Machine Learning for Network Intrusion Detection (GBML-NID)

Authors: Wafa' S.Al-Sharafat, Reyadh Naoum

Abstract:

Society has grown to rely on Internet services, and the number of Internet users increases every day. As more and more users become connected to the network, the window of opportunity for malicious users to do their damage becomes very great and lucrative. The objective of this paper is to incorporate different techniques into classier system to detect and classify intrusion from normal network packet. Among several techniques, Steady State Genetic-based Machine Leaning Algorithm (SSGBML) will be used to detect intrusions. Where Steady State Genetic Algorithm (SSGA), Simple Genetic Algorithm (SGA), Modified Genetic Algorithm and Zeroth Level Classifier system are investigated in this research. SSGA is used as a discovery mechanism instead of SGA. SGA replaces all old rules with new produced rule preventing old good rules from participating in the next rule generation. Zeroth Level Classifier System is used to play the role of detector by matching incoming environment message with classifiers to determine whether the current message is normal or intrusion and receiving feedback from environment. Finally, in order to attain the best results, Modified SSGA will enhance our discovery engine by using Fuzzy Logic to optimize crossover and mutation probability. The experiments and evaluations of the proposed method were performed with the KDD 99 intrusion detection dataset.

Keywords: MSSGBML, Network Intrusion Detection, SGA, SSGA.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1672
1017 Improved Wavelet Neural Networks for Early Cancer Diagnosis Using Clustering Algorithms

Authors: Zarita Zainuddin, Ong Pauline

Abstract:

Wavelet neural networks (WNNs) have emerged as a vital alternative to the vastly studied multilayer perceptrons (MLPs) since its first implementation. In this paper, we applied various clustering algorithms, namely, K-means (KM), Fuzzy C-means (FCM), symmetry-based K-means (SBKM), symmetry-based Fuzzy C-means (SBFCM) and modified point symmetry-based K-means (MPKM) clustering algorithms in choosing the translation parameter of a WNN. These modified WNNs are further applied to the heterogeneous cancer classification using benchmark microarray data and were compared against the conventional WNN with random initialization method. Experimental results showed that a WNN classifier with the MPKM algorithm is more precise than the conventional WNN as well as the WNNs with other clustering algorithms.

Keywords: Clustering, microarray, symmetry, wavelet neural networks.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1616
1016 Some Laws of Rhythm Formulas of Ussuli in the Dancing Culture of People in the Middle and the Central Asia

Authors: G. Saitova, A. Mashurova, F. Mashurova

Abstract:

In the national and professional music of oral tradition of many people in the East there is the metric formula called “ussuli", that is to say rhythmic constructions of different character and a composition. Ussuli in translation from Arabic means the law. The cultural contacts of the ancient and medieval inhabitants of the Central Asia, India, China, East Turkestan, Iraq, Afghanistan, Turkey, and Iran have played a certain role in formation of both musical and dancing heritage of each of these people. During theatrical shows many dances were performed under the accompaniment of percussion instruments as nagra, dayulpaz, doll. The abovementioned tools are used as the obligatory accompanying tool in an orchestra and at support of dancing acts as the solo tool. Dynamics of development of a dancing composition, at times execution of technique of movement depends on various combinations of ussuli and their receptions of execution.

Keywords: Dancing, plastic, rhythm, ussuli.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2217
1015 A Novel SVM-Based OOK Detector in Low SNR Infrared Channels

Authors: J. P. Dubois, O. M. Abdul-Latif

Abstract:

Support Vector Machine (SVM) is a recent class of statistical classification and regression techniques playing an increasing role in applications to detection problems in various engineering problems, notably in statistical signal processing, pattern recognition, image analysis, and communication systems. In this paper, SVM is applied to an infrared (IR) binary communication system with different types of channel models including Ricean multipath fading and partially developed scattering channel with additive white Gaussian noise (AWGN) at the receiver. The structure and performance of SVM in terms of the bit error rate (BER) metric is derived and simulated for these channel stochastic models and the computational complexity of the implementation, in terms of average computational time per bit, is also presented. The performance of SVM is then compared to classical binary signal maximum likelihood detection using a matched filter driven by On-Off keying (OOK) modulation. We found that the performance of SVM is superior to that of the traditional optimal detection schemes used in statistical communication, especially for very low signal-to-noise ratio (SNR) ranges. For large SNR, the performance of the SVM is similar to that of the classical detectors. The implication of these results is that SVM can prove very beneficial to IR communication systems that notoriously suffer from low SNR at the cost of increased computational complexity.

Keywords: Least square-support vector machine, on-off keying, matched filter, maximum likelihood detector, wireless infrared communication.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1953
1014 Modeling Aeration of Sharp Crested Weirs by Using Support Vector Machines

Authors: Arun Goel

Abstract:

The present paper attempts to investigate the prediction of air entrainment rate and aeration efficiency of a free overfall jets issuing from a triangular sharp crested weir by using regression based modelling. The empirical equations, Support vector machine (polynomial and radial basis function) models and the linear regression techniques were applied on the triangular sharp crested weirs relating the air entrainment rate and the aeration efficiency to the input parameters namely drop height, discharge, and vertex angle. It was observed that there exists a good agreement between the measured values and the values obtained using empirical equations, Support vector machine (Polynomial and rbf) models and the linear regression techniques. The test results demonstrated that the SVM based (Poly & rbf) model also provided acceptable prediction of the measured values with reasonable accuracy along with empirical equations and linear regression techniques in modelling the air entrainment rate and the aeration efficiency of a free overfall jets issuing from triangular sharp crested weir. Further sensitivity analysis has also been performed to study the impact of input parameter on the output in terms of air entrainment rate and aeration efficiency.

Keywords: Air entrainment rate, dissolved oxygen, regression, SVM, weir.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1956
1013 GMDH Modeling Based on Polynomial Spline Estimation and Its Applications

Authors: LI qiu-min, TIAN yi-xiang, ZHANG gao-xun

Abstract:

GMDH algorithm can well describe the internal structure of objects. In the process of modeling, automatic screening of model structure and variables ensure the convergence rate.This paper studied a new GMDH model based on polynomial spline  stimation. The polynomial spline function was used to instead of the transfer function of GMDH to characterize the relationship between the input variables and output variables. It has proved that the algorithm has the optimal convergence rate under some conditions. The empirical results show that the algorithm can well forecast Consumer Price Index (CPI).

Keywords: spline, GMDH, nonparametric, bias, forecast.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2135
1012 Automatic Segmentation of the Clean Speech Signal

Authors: M. A. Ben Messaoud, A. Bouzid, N. Ellouze

Abstract:

Speech Segmentation is the measure of the change point detection for partitioning an input speech signal into regions each of which accords to only one speaker. In this paper, we apply two features based on multi-scale product (MP) of the clean speech, namely the spectral centroid of MP, and the zero crossings rate of MP. We focus on multi-scale product analysis as an important tool for segmentation extraction. The MP is based on making the product of the speech wavelet transform coefficients (WTC). We have estimated our method on the Keele database. The results show the effectiveness of our method. It indicates that the two features can find word boundaries, and extracted the segments of the clean speech.

Keywords: Speech segmentation, Multi-scale product, Spectral centroid, Zero crossings rate.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2508
1011 Interactive, Topic-Oriented Search Support by a Centroid-Based Text Categorisation

Authors: Mario Kubek, Herwig Unger

Abstract:

Centroid terms are single words that semantically and topically characterise text documents and so may serve as their very compact representation in automatic text processing. In the present paper, centroids are used to measure the relevance of text documents with respect to a given search query. Thus, a new graphbased paradigm for searching texts in large corpora is proposed and evaluated against keyword-based methods. The first, promising experimental results demonstrate the usefulness of the centroid-based search procedure. It is shown that especially the routing of search queries in interactive and decentralised search systems can be greatly improved by applying this approach. A detailed discussion on further fields of its application completes this contribution.

Keywords: Search algorithm, centroid, query, keyword, cooccurrence, categorisation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 623
1010 Component-based Segmentation of Words from Handwritten Arabic Text

Authors: Jawad H AlKhateeb, Jianmin Jiang, Jinchang Ren, Stan S Ipson

Abstract:

Efficient preprocessing is very essential for automatic recognition of handwritten documents. In this paper, techniques on segmenting words in handwritten Arabic text are presented. Firstly, connected components (ccs) are extracted, and distances among different components are analyzed. The statistical distribution of this distance is then obtained to determine an optimal threshold for words segmentation. Meanwhile, an improved projection based method is also employed for baseline detection. The proposed method has been successfully tested on IFN/ENIT database consisting of 26459 Arabic words handwritten by 411 different writers, and the results were promising and very encouraging in more accurate detection of the baseline and segmentation of words for further recognition.

Keywords: Arabic OCR, off-line recognition, Baseline estimation, Word segmentation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2206
1009 Identifying Autism Spectrum Disorder Using Optimization-Based Clustering

Authors: Sharifah Mousli, Sona Taheri, Jiayuan He

Abstract:

Autism spectrum disorder (ASD) is a complex developmental condition involving persistent difficulties with social communication, restricted interests, and repetitive behavior. The challenges associated with ASD can interfere with an affected individual’s ability to function in social, academic, and employment settings. Although there is no effective medication known to treat ASD, to our best knowledge, early intervention can significantly improve an affected individual’s overall development. Hence, an accurate diagnosis of ASD at an early phase is essential. The use of machine learning approaches improves and speeds up the diagnosis of ASD. In this paper, we focus on the application of unsupervised clustering methods in ASD, as a large volume of ASD data generated through hospitals, therapy centers, and mobile applications has no pre-existing labels. We conduct a comparative analysis using seven clustering approaches, such as K-means, agglomerative hierarchical, model-based, fuzzy-C-means, affinity propagation, self organizing maps, linear vector quantisation – as well as the recently developed optimization-based clustering (COMSEP-Clust) approach. We evaluate the performances of the clustering methods extensively on real-world ASD datasets encompassing different age groups: toddlers, children, adolescents, and adults. Our experimental results suggest that the COMSEP-Clust approach outperforms the other seven methods in recognizing ASD with well-separated clusters.

Keywords: Autism spectrum disorder, clustering, optimization, unsupervised machine learning.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 417
1008 Scanning Device for Sampling the Spatial Distribution of the E-field

Authors: Juan Blas, Alfonso Bahillo, Santiago Mazuelas, David Bullido, Patricia Fernandez, Ruben M. Lorenzo, Evaristo J. Abril

Abstract:

This paper presents a low cost automatic system for sampling the electric field in a limited area. The scanning area is a flat surface parallel to the ground at a selected height. We discuss in detail the hardware, software and all the arrangements involved in the system operation. In order to show the system performance we include a campaign of narrow band measurements with 6017 sample points in the surroundings of a cellular base station. A commercial isotropic antenna with three orthogonal axes was used as sampling device. The results are analyzed in terms of its space average, standard deviation and statistical distribution.

Keywords: measurement device, propagation, spatial sampling.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1385
1007 Geometry Design Supported by Minimizing and Visualizing Collision in Dynamic Packing

Authors: Johan Segeborn, Johan S. Carlson, Robert Bohlin, Rikard Söderberg

Abstract:

This paper presents a method to support dynamic packing in cases when no collision-free path can be found. The method, which is primarily based on path planning and shrinking of geometries, suggests a minimal geometry design change that results in a collision-free assembly path. A supplementing approach to optimize geometry design change with respect to redesign cost is described. Supporting this dynamic packing method, a new method to shrink geometry based on vertex translation, interweaved with retriangulation, is suggested. The shrinking method requires neither tetrahedralization nor calculation of medial axis and it preserves the topology of the geometry, i.e. holes are neither lost nor introduced. The proposed methods are successfully applied on industrial geometries.

Keywords: Dynamic packing, path planning, shrinking.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1388
1006 JREM: An Approach for Formalising Models in the Requirements Phase with JSON and NoSQL Databases

Authors: Aitana Alonso-Nogueira, Helia Estévez-Fernández, Isaías García

Abstract:

This paper presents an approach to reduce some of its current flaws in the requirements phase inside the software development process. It takes the software requirements of an application, makes a conceptual modeling about it and formalizes it within JSON documents. This formal model is lodged in a NoSQL database which is document-oriented, that is, MongoDB, because of its advantages in flexibility and efficiency. In addition, this paper underlines the contributions of the detailed approach and shows some applications and benefits for the future work in the field of automatic code generation using model-driven engineering tools.

Keywords: Conceptual modeling, JSON, NoSQL databases, requirements engineering, software development.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1082
1005 Quantitative Analysis of Weld Defect Images in Industrial Radiography Based Invariant Attributes

Authors: N. Nacereddine, M. Tridi, S. S. Belaïfa, M. Zelmat

Abstract:

For the characterization of the weld defect region in the radiographic image, looking for features which are invariant regarding the geometrical transformations (rotation, translation and scaling) proves to be necessary because the same defect can be seen from several angles according to the orientation and the distance from the welded framework to the radiation source. Thus, panoply of geometrical attributes satisfying the above conditions is proposed and which result from the calculation of the geometrical parameters (surface, perimeter, etc.) on the one hand and the calculation of the different order moments, on the other hand. Because the large range in values of the raw features and taking into account other considerations imposed by some classifiers, the scaling of these values to lie between 0 and 1 is indispensable. The principal component analysis technique is used in order to reduce the number of the attribute variables in the aim to give better performance to the further defect classification.

Keywords: Geometric parameters, invariant attributes, principal component analysis, weld defect image.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2181
1004 A Novel Machining Signal Filtering Technique: Z-notch Filter

Authors: Nuawi M. Z., Lamin F., Ismail A. R., Abdullah S., Wahid Z.

Abstract:

A filter is used to remove undesirable frequency information from a dynamic signal. This paper shows that the Znotch filter filtering technique can be applied to remove the noise nuisance from a machining signal. In machining, the noise components were identified from the sound produced by the operation of machine components itself such as hydraulic system, motor, machine environment and etc. By correlating the noise components with the measured machining signal, the interested components of the measured machining signal which was less interfered by the noise, can be extracted. Thus, the filtered signal is more reliable to be analysed in terms of noise content compared to the unfiltered signal. Significantly, the I-kaz method i.e. comprises of three dimensional graphical representation and I-kaz coefficient, Z∞ could differentiate between the filtered and the unfiltered signal. The bigger space of scattering and the higher value of Z∞ demonstrated that the signal was highly interrupted by noise. This method can be utilised as a proactive tool in evaluating the noise content in a signal. The evaluation of noise content is very important as well as the elimination especially for machining operation fault diagnosis purpose. The Z-notch filtering technique was reliable in extracting noise component from the measured machining signal with high efficiency. Even though the measured signal was exposed to high noise disruption, the signal generated from the interaction between cutting tool and work piece still can be acquired. Therefore, the interruption of noise that could change the original signal feature and consequently can deteriorate the useful sensory information can be eliminated.

Keywords: Digital signal filtering, I-kaz method, Machiningmonitoring, Noise Cancelling, Sound

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1884
1003 Least Square-SVM Detector for Wireless BPSK in Multi-Environmental Noise

Authors: J. P. Dubois, Omar M. Abdul-Latif

Abstract:

Support Vector Machine (SVM) is a statistical learning tool developed to a more complex concept of structural risk minimization (SRM). In this paper, SVM is applied to signal detection in communication systems in the presence of channel noise in various environments in the form of Rayleigh fading, additive white Gaussian background noise (AWGN), and interference noise generalized as additive color Gaussian noise (ACGN). The structure and performance of SVM in terms of the bit error rate (BER) metric is derived and simulated for these advanced stochastic noise models and the computational complexity of the implementation, in terms of average computational time per bit, is also presented. The performance of SVM is then compared to conventional binary signaling optimal model-based detector driven by binary phase shift keying (BPSK) modulation. We show that the SVM performance is superior to that of conventional matched filter-, innovation filter-, and Wiener filter-driven detectors, even in the presence of random Doppler carrier deviation, especially for low SNR (signal-to-noise ratio) ranges. For large SNR, the performance of the SVM was similar to that of the classical detectors. However, the convergence between SVM and maximum likelihood detection occurred at a higher SNR as the noise environment became more hostile.

Keywords: Colour noise, Doppler shift, innovation filter, least square-support vector machine, matched filter, Rayleigh fading, Wiener filter.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1813
1002 Development of an Efficient CVT using Electromecanical System

Authors: A. A. Shafie, M. H. Ali

Abstract:

Continuously variable transmission (CVT) is a type of automatic transmission that can change the gear ratio to any arbitrary setting within the limits. The most common type of CVT operates on a pulley system that allows an infinite variability between highest and lowest gears with no discrete steps. However, the current CVT system with hydraulic actuation method suffers from the power loss. It needs continuous force for the pulley to clamp the belt and hold the torque resulting in large amount of energy consumption. This study focused on the development of an electromechanical actuated control CVT to eliminate the problem that faced by the existing CVT. It is conducted with several steps; computing and selecting the appropriate sizing for stroke length, lead screw system and etc. From the visual observation it was found that the CVT system of this research is satisfactory.

Keywords: CVT, Hydraulic Actuator, Discrete shifts, Electromechanical system, Lead screws.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2226
1001 Calcification Classification in Mammograms Using Decision Trees

Authors: S. Usha, S. Arumugam

Abstract:

Cancer affects people globally with breast cancer being a leading killer. Breast cancer is due to the uncontrollable multiplication of cells resulting in a tumour or neoplasm. Tumours are called ‘benign’ when cancerous cells do not ravage other body tissues and ‘malignant’ if they do so. As mammography is an effective breast cancer detection tool at an early stage which is the most treatable stage it is the primary imaging modality for screening and diagnosis of this cancer type. This paper presents an automatic mammogram classification technique using wavelet and Gabor filter. Correlation feature selection is used to reduce the feature set and selected features are classified using different decision trees.

Keywords: Breast Cancer, Mammogram, Symlet Wavelets, Gabor Filters, Decision Trees

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1751
1000 Sequential Partitioning Brainbow Image Segmentation Using Bayesian

Authors: Yayun Hsu, Henry Horng-Shing Lu

Abstract:

This paper proposes a data-driven, biology-inspired neural segmentation method of 3D drosophila Brainbow images. We use Bayesian Sequential Partitioning algorithm for probabilistic modeling, which can be used to detect somas and to eliminate crosstalk effects. This work attempts to develop an automatic methodology for neuron image segmentation, which nowadays still lacks a complete solution due to the complexity of the image. The proposed method does not need any predetermined, risk-prone thresholds, since biological information is inherently included inside the image processing procedure. Therefore, it is less sensitive to variations in neuron morphology; meanwhile, its flexibility would be beneficial for tracing the intertwining structure of neurons.

Keywords: Brainbow, 3D imaging, image segmentation, neuron morphology, biological data mining, non-parametric learning.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2259
999 MiRNAs as Regulators of Tumour Suppressor Expression

Authors: Olga A. Berillo, Gaukhar K. Baidildinova, Аnatoliy Т. Ivashchenko

Abstract:

Tumour suppressors are key participants in the prevention of cancer. Regulation of their expression through miRNAs is important for comprehensive translation inhibition of tumour suppressors and elucidation of carcinogenesis mechanisms. We studies the possibility of 1521 miRNAs to bind with 873 mRNAs of human tumour suppressors using RNAHybrid 2.1 and ERNAhybrid programmes. Only 978 miRNAs were found to be translational regulators of 812 mRNAs, and 61 mRNAs did not have any miRNA binding sites. Additionally, 45.9% of all miRNA binding sites were located in coding sequences (CDSs), 33.8% were located in 3' untranslated region (UTR), and 20.3% were located in the 5'UTR. MiRNAs binding with more than 50 target mRNAs and mRNAs binding with several miRNAs were selected. Hsa-miR-5096 had 15 perfectly complementary binding sites with mRNAs of 14 tumour suppressors. These newly indentified miRNA binding sites can be used in the development of medicines (anti-sense therapies) for cancer treatment.

Keywords: Exonic miRNA, intergenic miRNA, intronic miRNA, tumor suppressor.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1834
998 Face Recognition Using Morphological Shared-weight Neural Networks

Authors: Hossein Sahoolizadeh, Mahdi Rahimi, Hamid Dehghani

Abstract:

We introduce an algorithm based on the morphological shared-weight neural network. Being nonlinear and translation-invariant, the MSNN can be used to create better generalization during face recognition. Feature extraction is performed on grayscale images using hit-miss transforms that are independent of gray-level shifts. The output is then learned by interacting with the classification process. The feature extraction and classification networks are trained together, allowing the MSNN to simultaneously learn feature extraction and classification for a face. For evaluation, we test for robustness under variations in gray levels and noise while varying the network-s configuration to optimize recognition efficiency and processing time. Results show that the MSNN performs better for grayscale image pattern classification than ordinary neural networks.

Keywords: Face recognition, Neural Networks, Multi-layer Perceptron, masking.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1516
997 20 GHz Fractional Phased Locked Loop Circuit for the Gbps Wireless Communication

Authors: Ki-Jin Kim, Sanghoon Park, K. H. Ahn

Abstract:

This paper presents the 20-GHz fractional PLL (Phase Locked Loop) circuit for the next generation Wi-Fi by using 90 nm TSMC process. The newly suggested millimeter wave 16/17 pre-scalar is designed and verified by measurement to make the fractional PLL having a low quantization noise. The operational bandwidth of the 60 GHz system is 15 % of the carrier frequency which requires large value of Kv (VCO control gain) resulting in degradation of phase noise. To solve this problem, this paper adopts AFC (Automatic Frequency Controller) controlled 4-bit millimeter wave VCO with small value of Kv. Also constant Kv is implemented using 4-bit varactor bank. The measured operational bandwidth is 18.2 ~ 23.2 GHz which is 25 % of the carrier frequency. The phase noise of -58 and -96.2 dBc/Hz at 100 KHz and 1 MHz offset is measured respectively. The total power consumption of the PLL is only 30 mW.

Keywords: Millimeter Wave Fractional PLL, Wide band VCO, WPAN Transceiver.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1883
996 ReSeT : Reverse Engineering System Requirements Tool

Authors: Rosziati Ibrahim, Tiu Kian Yong

Abstract:

Reverse Engineering is a very important process in Software Engineering. It can be performed backwards from system development life cycle (SDLC) in order to get back the source data or representations of a system through analysis of its structure, function and operation. We use reverse engineering to introduce an automatic tool to generate system requirements from its program source codes. The tool is able to accept the Cµ programming source codes, scan the source codes line by line and parse the codes to parser. Then, the engine of the tool will be able to generate system requirements for that specific program to facilitate reuse and enhancement of the program. The purpose of producing the tool is to help recovering the system requirements of any system when the system requirements document (SRD) does not exist due to undocumented support of the system.

Keywords: System Requirements, Reverse Engineering, SourceCodes.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1674