Search results for: text similarity
863 Narrative and Expository Text Reading Comprehension by Fourth Grade Spanish-Speaking Children
Authors: Mariela V. De Mier, Veronica S. Sanchez Abchi, Ana M. Borzone
Abstract:
This work aims to explore the factors that have an incidence in reading comprehension process, with different type of texts. In a recent study with 2nd, 3rd and 4th grade children, it was observed that reading comprehension of narrative texts was better than comprehension of expository texts. Nevertheless it seems that not only the type of text but also other textual factors would account for comprehension depending on the cognitive processing demands posed by the text. In order to explore this assumption, three narrative and three expository texts were elaborated with different degree of complexity. A group of 40 fourth grade Spanish-speaking children took part in the study. Children were asked to read the texts and answer orally three literal and three inferential questions for each text. The quantitative and qualitative analysis of children responses showed that children had difficulties in both, narrative and expository texts. The problem was to answer those questions that involved establishing complex relationships among information units that were present in the text or that should be activated from children’s previous knowledge to make an inference. Considering the data analysis, it could be concluded that there is some interaction between the type of text and the cognitive processing load of a specific text.
Keywords: comprehension, textual factors, type of text, processing demands.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1407862 On Solution of Interval Valued Intuitionistic Fuzzy Assignment Problem Using Similarity Measure and Score Function
Authors: Gaurav Kumar, Rakesh Kumar Bajaj
Abstract:
The primary objective of the paper is to propose a new method for solving assignment problem under uncertain situation. In the classical assignment problem (AP), zpqdenotes the cost for assigning the qth job to the pth person which is deterministic in nature. Here in some uncertain situation, we have assigned a cost in the form of composite relative degree Fpq instead of and this replaced cost is in the maximization form. In this paper, it has been solved and validated by the two proposed algorithms, a new mathematical formulation of IVIF assignment problem has been presented where the cost has been considered to be an IVIFN and the membership of elements in the set can be explained by positive and negative evidences. To determine the composite relative degree of similarity of IVIFS the concept of similarity measure and the score function is used for validating the solution which is obtained by Composite relative similarity degree method. Further, hypothetical numeric illusion is conducted to clarify the method’s effectiveness and feasibility developed in the study. Finally, conclusion and suggestion for future work are also proposed.
Keywords: Assignment problem, Interval-valued Intuitionistic Fuzzy Sets, Similarity Measures, score function.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3011861 A Talking Head System for Korean Text
Authors: Sang-Wan Kim, Hoon Lee, Kyung-Ho Choi, Soon-Young Park
Abstract:
A talking head system (THS) is presented to animate the face of a speaking 3D avatar in such a way that it realistically pronounces the given Korean text. The proposed system consists of SAPI compliant text-to-speech (TTS) engine and MPEG-4 compliant face animation generator. The input to the THS is a unicode text that is to be spoken with synchronized lip shape. The TTS engine generates a phoneme sequence with their duration and audio data. The TTS applies the coarticulation rules to the phoneme sequence and sends a mouth animation sequence to the face modeler. The proposed THS can make more natural lip sync and facial expression by using the face animation generator than those using the conventional visemes only. The experimental results show that our system has great potential for the implementation of talking head for Korean text.Keywords: Talking head, Lip sync, TTS, MPEG4.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1490860 Similarity Detection in Collaborative Development of Object-Oriented Formal Specifications
Authors: Fathi Taibi, Fouad Mohammed Abbou, Md. Jahangir Alam
Abstract:
The complexity of today-s software systems makes collaborative development necessary to accomplish tasks. Frameworks are necessary to allow developers perform their tasks independently yet collaboratively. Similarity detection is one of the major issues to consider when developing such frameworks. It allows developers to mine existing repositories when developing their own views of a software artifact, and it is necessary for identifying the correspondences between the views to allow merging them and checking their consistency. Due to the importance of the requirements specification stage in software development, this paper proposes a framework for collaborative development of Object- Oriented formal specifications along with a similarity detection approach to support the creation, merging and consistency checking of specifications. The paper also explores the impact of using additional concepts on improving the matching results. Finally, the proposed approach is empirically evaluated.Keywords: Collaborative Development, Formal methods, Object-Oriented, Similarity detection
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1468859 Flocking Behaviors for Multiple Groups with Heterogeneous Agents
Authors: Jae Moon Lee
Abstract:
Most of researches for conventional simulations were studied focusing on flocks with a single species. While there exist the flocking behaviors with a single species in nature, the flocking behaviors are frequently observed with multi-species. This paper studies on the flocking simulation for heterogeneous agents. In order to simulate the flocks for heterogeneous agents, the conventional method uses the identifier of flock, while the proposed method defines the feature vector of agent and uses the similarity between agents by comparing with those feature vectors. Based on the similarity, the paper proposed the attractive force and repulsive force and then executed the simulation by applying two forces. The results of simulation showed that flock formation with heterogeneous agents is very natural in both cases. In addition, it showed that unlike the existing method, the proposed method can not only control the density of the flocks, but also be possible for two different groups of agents to flock close to each other if they have a high similarity.Keywords: Flocking behavior, heterogeneous agents, similarity, simulation
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1598858 The Morphology of Sri Lankan Text Messages
Authors: Chamindi Dilkushi Senaratne
Abstract:
Communicating via a text or an SMS (Short Message Service) has become an integral part of our daily lives. With the increase in the use of mobile phones, text messaging has become a genre by itself worth researching and studying. It is undoubtedly a major phenomenon revealing language change. This paper attempts to describe the morphological processes of text language of urban bilinguals in Sri Lanka. It will be a typological study based on 500 English text messages collected from urban bilinguals residing in Colombo. The messages are selected by categorizing the deviant forms of language use apparent in text messages. These stylistic deviations are a deliberate skilled performance by the users of the language possessing an in-depth knowledge of linguistic systems to create new words and thereby convey their linguistic identity and individual and group solidarity via the message. The findings of the study solidifies arguments that the manipulation of language in text messages is both creative and appropriate. In addition, code mixing theories will be used to identify how existing morphological processes are adapted by bilingual users in Sri Lanka when texting. The study will reveal processes such as omission, initialism, insertion and alternation in addition to other identified linguistic features in text language. The corpus reveals the most common morphological processes used by Sri Lankan urban bilinguals when sending texts.Keywords: Bilingual, deviations, morphology, texts.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1976857 Growing Self Organising Map Based Exploratory Analysis of Text Data
Authors: Sumith Matharage, Damminda Alahakoon
Abstract:
Textual data plays an important role in the modern world. The possibilities of applying data mining techniques to uncover hidden information present in large volumes of text collections is immense. The Growing Self Organizing Map (GSOM) is a highly successful member of the Self Organising Map family and has been used as a clustering and visualisation tool across wide range of disciplines to discover hidden patterns present in the data. A comprehensive analysis of the GSOM’s capabilities as a text clustering and visualisation tool has so far not been published. These functionalities, namely map visualisation capabilities, automatic cluster identification and hierarchical clustering capabilities are presented in this paper and are further demonstrated with experiments on a benchmark text corpus.
Keywords: Text Clustering, Growing Self Organizing Map, Automatic Cluster Identification, Hierarchical Clustering.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1995856 Parallel Text Processing: Alignment of Indonesian to Javanese Language
Authors: Aji P. Wibawa, Andrew Nafalski, Neil Murray, Wayan F. Mahmudy
Abstract:
Parallel text alignment is proposed as a way of aligning bahasa Indonesia to words in Javanese. Since the one-to-one word translator does not have the facility to translate pragmatic aspects of Javanese, the parallel text alignment model described uses a phrase pair combination. The algorithm aligns the parallel text automatically from the beginning to the end of each sentence. Even though the results of the phrase pair combination outperform the previous algorithm, it is still inefficient. Recording all possible combinations consume more space in the database and time consuming. The original algorithm is modified by applying the edit distance coefficient to improve the data-storage efficiency. As a result, the data-storage consumption is 90% reduced as well as its learning period (42s).
Keywords: Parallel text alignment, phrase pair combination, edit distance coefficient, Javanese-Indonesian language.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2481855 A Relational Case-Based Reasoning Framework for Project Delivery System Selection
Authors: Yang Cui, Yong Qiang Chen
Abstract:
An appropriate project delivery system (PDS) is crucial to the success of a construction projects. Case-based Reasoning (CBR) is a useful support for PDS selection. However, the traditional CBR approach represents cases as attribute-value vectors without taking relations among attributes into consideration, and could not calculate the similarity when the structures of cases are not strictly same. Therefore, this paper solves this problem by adopting the Relational Case-based Reasoning (RCBR) approach for PDS selection, considering both the structural similarity and feature similarity. To develop the feature terms of the construction projects, the criteria and factors governing PDS selection process are first identified. Then feature terms for the construction projects are developed. Finally, the mechanism of similarity calculation and a case study indicate how RCBR works for PDS selection. The adoption of RCBR in PDS selection expands the scope of application of traditional CBR method and improves the accuracy of the PDS selection system.
Keywords: Relational Cased-based Reasoning, Case-based Reasoning, Project delivery system, Selection.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1991854 Performance Evaluation of an Online Text-Based Strategy Game
Authors: Nazleeni S. Haron, Mohd K. Zaime , Izzatdin A. Aziz, Mohd H. Hasan
Abstract:
Text-based game is supposed to be a low resource consumption application that delivers good performances when compared to graphical-intensive type of games. But, nowadays, some of the online text-based games are not offering performances that are acceptable to the users. Therefore, an online text-based game called Star_Quest has been developed in order to analyze its behavior under different performance measurements. Performance metrics such as throughput, scalability, response time and page loading time are captured to yield the performance of the game. The techniques in performing the load testing are also disclosed to exhibit the viability of our work. The comparative assessment between the results obtained and the accepted level of performances are conducted as to determine the performance level of the game. The study reveals that the developed game managed to meet all the performance objectives set forth.Keywords: Online text-based games, performance evaluation
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1608853 Graph Codes-2D Projections of Multimedia Feature Graphs for Fast and Effective Retrieval
Authors: Stefan Wagenpfeil, Felix Engel, Paul McKevitt, Matthias Hemmje
Abstract:
Multimedia Indexing and Retrieval is generally de-signed and implemented by employing feature graphs. These graphs typically contain a significant number of nodes and edges to reflect the level of detail in feature detection. A higher level of detail increases the effectiveness of the results but also leads to more complex graph structures. However, graph-traversal-based algorithms for similarity are quite inefficient and computation intensive, espe-cially for large data structures. To deliver fast and effective retrieval, an efficient similarity algorithm, particularly for large graphs, is mandatory. Hence, in this paper, we define a graph-projection into a 2D space (Graph Code) as well as the corresponding algorithms for indexing and retrieval. We show that calculations in this space can be performed more efficiently than graph-traversals due to a simpler processing model and a high level of parallelisation. In consequence, we prove that the effectiveness of retrieval also increases substantially, as Graph Codes facilitate more levels of detail in feature fusion. Thus, Graph Codes provide a significant increase in efficiency and effectiveness (especially for Multimedia indexing and retrieval) and can be applied to images, videos, audio, and text information.
Keywords: indexing, retrieval, multimedia, graph code, graph algorithm
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 440852 Interactive, Topic-Oriented Search Support by a Centroid-Based Text Categorisation
Authors: Mario Kubek, Herwig Unger
Abstract:
Centroid terms are single words that semantically and topically characterise text documents and so may serve as their very compact representation in automatic text processing. In the present paper, centroids are used to measure the relevance of text documents with respect to a given search query. Thus, a new graphbased paradigm for searching texts in large corpora is proposed and evaluated against keyword-based methods. The first, promising experimental results demonstrate the usefulness of the centroid-based search procedure. It is shown that especially the routing of search queries in interactive and decentralised search systems can be greatly improved by applying this approach. A detailed discussion on further fields of its application completes this contribution.Keywords: Search algorithm, centroid, query, keyword, cooccurrence, categorisation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 622851 Connectionist Approach to Generic Text Summarization
Authors: Rajesh S.Prasad, U. V. Kulkarni, Jayashree.R.Prasad
Abstract:
As the enormous amount of on-line text grows on the World-Wide Web, the development of methods for automatically summarizing this text becomes more important. The primary goal of this research is to create an efficient tool that is able to summarize large documents automatically. We propose an Evolving connectionist System that is adaptive, incremental learning and knowledge representation system that evolves its structure and functionality. In this paper, we propose a novel approach for Part of Speech disambiguation using a recurrent neural network, a paradigm capable of dealing with sequential data. We observed that connectionist approach to text summarization has a natural way of learning grammatical structures through experience. Experimental results show that our approach achieves acceptable performance. Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1589850 Effects of Introducing Similarity Measures into Artificial Bee Colony Approach for Optimization of Vehicle Routing Problem
Authors: P. Shunmugapriya, S. Kanmani, P. Jude Fredieric, U. Vignesh, J. Reman Justin, K. Vivek
Abstract:
Vehicle Routing Problem (VRP) is a complex combinatorial optimization problem and it is quite difficult to find an optimal solution consisting of a set of routes for vehicles whose total cost is minimum. Evolutionary and swarm intelligent (SI) algorithms play a vital role in solving optimization problems. While the SI algorithms perform search, the diversity between the solutions they exploit is very important. This is because of the need to avoid early convergence and to get an appropriate balance between the exploration and exploitation. Therefore, it is important to check how far the solutions are diverse. In this paper, we measure the similarity between solutions, which ABC exploits while optimizing VRP. The similar solutions found are discarded at the end of the iteration and only unique solutions are passed on to the next iteration. The bees of discarded solutions become scouts and they start searching for new solutions. This process is continued and results show that the solution is optimized at lesser number of iterations but with the overhead of computing similarity in all the iterations. The problem instance from Solomon benchmarked dataset has been used for evaluating the presented methodology.
Keywords: ABC algorithm, vehicle routing problem, optimization, Jaccard’s similarity measure.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 844849 Graph Cuts Segmentation Approach Using a Patch-Based Similarity Measure Applied for Interactive CT Lung Image Segmentation
Authors: Aicha Majda, Abdelhamid El Hassani
Abstract:
Lung CT image segmentation is a prerequisite in lung CT image analysis. Most of the conventional methods need a post-processing to deal with the abnormal lung CT scans such as lung nodules or other lesions. The simplest similarity measure in the standard Graph Cuts Algorithm consists of directly comparing the pixel values of the two neighboring regions, which is not accurate because this kind of metrics is extremely sensitive to minor transformations such as noise or other artifacts problems. In this work, we propose an improved version of the standard graph cuts algorithm based on the Patch-Based similarity metric. The boundary penalty term in the graph cut algorithm is defined Based on Patch-Based similarity measurement instead of the simple intensity measurement in the standard method. The weights between each pixel and its neighboring pixels are Based on the obtained new term. The graph is then created using theses weights between its nodes. Finally, the segmentation is completed with the minimum cut/Max-Flow algorithm. Experimental results show that the proposed method is very accurate and efficient, and can directly provide explicit lung regions without any post-processing operations compared to the standard method.Keywords: Graph cuts, lung CT scan, lung parenchyma segmentation, patch based similarity metric.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 742848 Hybrid Machine Learning Approach for Text Categorization
Authors: Nerijus Remeikis, Ignas Skucas, Vida Melninkaite
Abstract:
Text categorization - the assignment of natural language documents to one or more predefined categories based on their semantic content - is an important component in many information organization and management tasks. Performance of neural networks learning is known to be sensitive to the initial weights and architecture. This paper discusses the use multilayer neural network initialization with decision tree classifier for improving text categorization accuracy. An adaptation of the algorithm is proposed in which a decision tree from root node until a final leave is used for initialization of multilayer neural network. The experimental evaluation demonstrates this approach provides better classification accuracy with Reuters-21578 corpus, one of the standard benchmarks for text categorization tasks. We present results comparing the accuracy of this approach with multilayer neural network initialized with traditional random method and decision tree classifiers.
Keywords: Text categorization, decision trees, neural networks, machine learning.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1805847 Maximum Common Substructure Extraction in RNA Secondary Structures Using Clique Detection Approach
Authors: Shih-Yi Chao
Abstract:
The similarity comparison of RNA secondary structures is important in studying the functions of RNAs. In recent years, most existing tools represent the secondary structures by tree-based presentation and calculate the similarity by tree alignment distance. Different to previous approaches, we propose a new method based on maximum clique detection algorithm to extract the maximum common structural elements in compared RNA secondary structures. A new graph-based similarity measurement and maximum common subgraph detection procedures for comparing purely RNA secondary structures is introduced. Given two RNA secondary structures, the proposed algorithm consists of a process to determine the score of the structural similarity, followed by comparing vertices labelling, the labelled edges and the exact degree of each vertex. The proposed algorithm also consists of a process to extract the common structural elements between compared secondary structures based on a proposed maximum clique detection of the problem. This graph-based model also can work with NC-IUB code to perform the pattern-based searching. Therefore, it can be used to identify functional RNA motifs from database or to extract common substructures between complex RNA secondary structures. We have proved the performance of this proposed algorithm by experimental results. It provides a new idea of comparing RNA secondary structures. This tool is helpful to those who are interested in structural bioinformatics.Keywords: Clique detection, labeled vertices, RNA secondary structures, subgraph, similarity.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1455846 Speech Encryption and Decryption Using Linear Feedback Shift Register (LFSR)
Authors: Tin Lai Win, Nant Christina Kyaw
Abstract:
This paper is taken into consideration the problem of cryptanalysis of stream ciphers. There is some attempts need to improve the existing attacks on stream cipher and to make an attempt to distinguish the portions of cipher text obtained by the encryption of plain text in which some parts of the text are random and the rest are non-random. This paper presents a tutorial introduction to symmetric cryptography. The basic information theoretic and computational properties of classic and modern cryptographic systems are presented, followed by an examination of the application of cryptography to the security of VoIP system in computer networks using LFSR algorithm. The implementation program will be developed Java 2. LFSR algorithm is appropriate for the encryption and decryption of online streaming data, e.g. VoIP (voice chatting over IP). This paper is implemented the encryption module of speech signals to cipher text and decryption module of cipher text to speech signals.
Keywords: Linear Feedback Shift Register.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3110845 A Similarity Function for Global Quality Assessment of Retinal Vessel Segmentations
Authors: Arturo Aquino, Manuel Emilio Gegundez, Jose Manuel Bravo, Diego Marin
Abstract:
Retinal vascularity assessment plays an important role in diagnosis of ophthalmic pathologies. The employment of digital images for this purpose makes possible a computerized approach and has motivated development of many methods for automated vascular tree segmentation. Metrics based on contingency tables for binary classification have been widely used for evaluating performance of these algorithms and, concretely, the accuracy has been mostly used as measure of global performance in this topic. However, this metric shows very poor matching with human perception as well as other notable deficiencies. Here, a new similarity function for measuring quality of retinal vessel segmentations is proposed. This similarity function is based on characterizing the vascular tree as a connected structure with a measurable area and length. Tests made indicate that this new approach shows better behaviour than the current one does. Generalizing, this concept of measuring descriptive properties may be used for designing functions for measuring more successfully segmentation quality of other complex structures.
Keywords: Retinal vessel segmentation, quality assessment, performanceevaluation, similarity function.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1499844 Improved Dynamic Bayesian Networks Applied to Arabic on Line Characters Recognition
Authors: Redouane Tlemsani, Abdelkader Benyettou
Abstract:
Work is in on line Arabic character recognition and the principal motivation is to study the Arab manuscript with on line technology.
This system is a Markovian system, which one can see as like a Dynamic Bayesian Network (DBN). One of the major interests of these systems resides in the complete models training (topology and parameters) starting from training data.
Our approach is based on the dynamic Bayesian Networks formalism. The DBNs theory is a Bayesians networks generalization to the dynamic processes. Among our objective, amounts finding better parameters, which represent the links (dependences) between dynamic network variables.
In applications in pattern recognition, one will carry out the fixing of the structure, which obliges us to admit some strong assumptions (for example independence between some variables). Our application will relate to the Arabic isolated characters on line recognition using our laboratory database: NOUN. A neural tester proposed for DBN external optimization.
The DBN scores and DBN mixed are respectively 70.24% and 62.50%, which lets predict their further development; other approaches taking account time were considered and implemented until obtaining a significant recognition rate 94.79%.
Keywords: Arabic on line character recognition, dynamic Bayesian network, pattern recognition.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1780843 Text Mining of Twitter Data Using a Latent Dirichlet Allocation Topic Model and Sentiment Analysis
Authors: Sidi Yang, Haiyi Zhang
Abstract:
Twitter is a microblogging platform, where millions of users daily share their attitudes, views, and opinions. Using a probabilistic Latent Dirichlet Allocation (LDA) topic model to discern the most popular topics in the Twitter data is an effective way to analyze a large set of tweets to find a set of topics in a computationally efficient manner. Sentiment analysis provides an effective method to show the emotions and sentiments found in each tweet and an efficient way to summarize the results in a manner that is clearly understood. The primary goal of this paper is to explore text mining, extract and analyze useful information from unstructured text using two approaches: LDA topic modelling and sentiment analysis by examining Twitter plain text data in English. These two methods allow people to dig data more effectively and efficiently. LDA topic model and sentiment analysis can also be applied to provide insight views in business and scientific fields.
Keywords: Text mining, Twitter, topic model, sentiment analysis.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1807842 A File Splitting Technique for Reducing the Entropy of Text Files
Authors: Abdel-Rahman M. Jaradat, , Mansour I. Irshid, Talha T. Nassar
Abstract:
A novel file splitting technique for the reduction of the nth-order entropy of text files is proposed. The technique is based on mapping the original text file into a non-ASCII binary file using a new codeword assignment method and then the resulting binary file is split into several subfiles each contains one or more bits from each codeword of the mapped binary file. The statistical properties of the subfiles are studied and it is found that they reflect the statistical properties of the original text file which is not the case when the ASCII code is used as a mapper. The nth-order entropy of these subfiles are determined and it is found that the sum of their entropies is less than that of the original text file for the same values of extensions. These interesting statistical properties of the resulting subfiles can be used to achieve better compression ratios when conventional compression techniques are applied to these subfiles individually and on a bit-wise basis rather than on character-wise basis.
Keywords: Bit-wise compression, entropy, file splitting, source mapping.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1442841 A Novel Arabic Text Steganography Method Using Letter Points and Extensions
Authors: Adnan Abdul-Aziz Gutub, Manal Mohammad Fattani
Abstract:
This paper presents a new steganography approach suitable for Arabic texts. It can be classified under steganography feature coding methods. The approach hides secret information bits within the letters benefiting from their inherited points. To note the specific letters holding secret bits, the scheme considers the two features, the existence of the points in the letters and the redundant Arabic extension character. We use the pointed letters with extension to hold the secret bit 'one' and the un-pointed letters with extension to hold 'zero'. This steganography technique is found attractive to other languages having similar texts to Arabic such as Persian and Urdu.Keywords: Arabic text, Cryptography, Feature coding, Information security, Text steganography, Text watermarking.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3503840 SAF: A Substitution and Alignment Free Similarity Measure for Protein Sequences
Authors: Abdellali Kelil, Shengrui Wang, Ryszard Brzezinski
Abstract:
The literature reports a large number of approaches for measuring the similarity between protein sequences. Most of these approaches estimate this similarity using alignment-based techniques that do not necessarily yield biologically plausible results, for two reasons. First, for the case of non-alignable (i.e., not yet definitively aligned and biologically approved) sequences such as multi-domain, circular permutation and tandem repeat protein sequences, alignment-based approaches do not succeed in producing biologically plausible results. This is due to the nature of the alignment, which is based on the matching of subsequences in equivalent positions, while non-alignable proteins often have similar and conserved domains in non-equivalent positions. Second, the alignment-based approaches lead to similarity measures that depend heavily on the parameters set by the user for the alignment (e.g., gap penalties and substitution matrices). For easily alignable protein sequences, it's possible to supply a suitable combination of input parameters that allows such an approach to yield biologically plausible results. However, for difficult-to-align protein sequences, supplying different combinations of input parameters yields different results. Such variable results create ambiguities and complicate the similarity measurement task. To overcome these drawbacks, this paper describes a novel and effective approach for measuring the similarity between protein sequences, called SAF for Substitution and Alignment Free. Without resorting either to the alignment of protein sequences or to substitution relations between amino acids, SAF is able to efficiently detect the significant subsequences that best represent the intrinsic properties of protein sequences, those underlying the chronological dependencies of structural features and biochemical activities of protein sequences. Moreover, by using a new efficient subsequence matching scheme, SAF more efficiently handles protein sequences that contain similar structural features with significant meaning in chronologically non-equivalent positions. To show the effectiveness of SAF, extensive experiments were performed on protein datasets from different databases, and the results were compared with those obtained by several mainstream algorithms.Keywords: Protein, Similarity, Substitution, Alignment.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1408839 Improved Zero Text Watermarking Algorithm against Meaning Preserving Attacks
Authors: Jalil Z., Farooq M., Zafar H., Sabir M., Ashraf E.
Abstract:
Internet is largely composed of textual contents and a huge volume of digital contents gets floated over the Internet daily. The ease of information sharing and re-production has made it difficult to preserve author-s copyright. Digital watermarking came up as a solution for copyright protection of plain text problem after 1993. In this paper, we propose a zero text watermarking algorithm based on occurrence frequency of non-vowel ASCII characters and words for copyright protection of plain text. The embedding algorithm makes use of frequency non-vowel ASCII characters and words to generate a specialized author key. The extraction algorithm uses this key to extract watermark, hence identify the original copyright owner. Experimental results illustrate the effectiveness of the proposed algorithm on text encountering meaning preserving attacks performed by five independent attackers.Keywords: Copyright protection, Digital watermarking, Document authentication, Information security, Watermark.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2158838 MHD Stagnation Point Flow towards a Shrinking Sheet with Suction in an Upper-Convected Maxwell (UCM) Fluid
Authors: K. Jafar, R. Nazar, A. Ishak, I. Pop
Abstract:
The present analysis considers the steady stagnation point flow and heat transfer towards a permeable shrinking sheet in an upper-convected Maxwell (UCM) electrically conducting fluid, with a constant magnetic field applied in the transverse direction to flow and a local heat generation within the boundary layer, with a heat generation rate proportional to (T-T)p Using a similarity transformation, the governing system of partial differential equations is first transformed into a system of ordinary differential equations, which is then solved numerically using a finite-difference scheme known as the Keller-box method. Numerical results are obtained for the flow and thermal fields for various values of the stretching/shrinking parameter λ, the magnetic parameter M, the elastic parameter K, the Prandtl number Pr, the suction parameter s, the heat generation parameter Q, and the exponent p. The results indicate the existence of dual solutions for the shrinking sheet up to a critical value λc whose value depends on the value of M, K, and s. In the presence of internal heat absorption (Q<0) the surface heat transfer rate decreases with increasing p but increases with parameters Q and s when the sheet is either stretched or shrunk.
Keywords: Magnetohydrodynamic (MHD), boundary layer flow, UCM fluid, stagnation point, shrinking sheet.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2067837 Experimental Study of Hyperparameter Tuning a Deep Learning Convolutional Recurrent Network for Text Classification
Authors: Bharatendra Rai
Abstract:
Sequences of words in text data have long-term dependencies and are known to suffer from vanishing gradient problem when developing deep learning models. Although recurrent networks such as long short-term memory networks help overcome this problem, achieving high text classification performance is a challenging problem. Convolutional recurrent networks that combine advantages of long short-term memory networks and convolutional neural networks, can be useful for text classification performance improvements. However, arriving at suitable hyperparameter values for convolutional recurrent networks is still a challenging task where fitting of a model requires significant computing resources. This paper illustrates the advantages of using convolutional recurrent networks for text classification with the help of statistically planned computer experiments for hyperparameter tuning.
Keywords: Convolutional recurrent networks, hyperparameter tuning, long short-term memory networks, Tukey honest significant differences
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 113836 Sequence Relationships Similarity of Swine Influenza a (H1N1) Virus
Authors: Patsaraporn Somboonsak, Mud-Armeen Munlin
Abstract:
In April 2009, a new variant of Influenza A virus subtype H1N1 emerged in Mexico and spread all over the world. The influenza has three subtypes in human (H1N1, H1N2 and H3N2) Types B and C influenza tend to be associated with local or regional epidemics. Preliminary genetic characterization of the influenza viruses has identified them as swine influenza A (H1N1) viruses. Nucleotide sequence analysis of the Haemagglutinin (HA) and Neuraminidase (NA) are similar to each other and the majority of their genes of swine influenza viruses, two genes coding for the neuraminidase (NA) and matrix (M) proteins are similar to corresponding genes of swine influenza. Sequence similarity between the 2009 A (H1N1) virus and its nearest relatives indicates that its gene segments have been circulating undetected for an extended period. Nucleic acid sequence Maximum Likelihood (MCL) and DNA Empirical base frequencies, Phylogenetic relationship amongst the HA genes of H1N1 virus isolated in Genbank having high nucleotide sequence homology. In this paper we used 16 HA nucleotide sequences from NCBI for computing sequence relationships similarity of swine influenza A virus using the following method MCL the result is 28%, 36.64% for Optimal tree with the sum of branch length, 35.62% for Interior branch phylogeny Neighber – Join Tree, 1.85% for the overall transition/transversion, and 8.28% for Overall mean distance.Keywords: Sequence DNA, Relationship of swine, Swineinfluenza, Sequence Similarity
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2123835 Robust Face Recognition using AAM and Gabor Features
Authors: Sanghoon Kim, Sun-Tae Chung, Souhwan Jung, Seoungseon Jeon, Jaemin Kim, Seongwon Cho
Abstract:
In this paper, we propose a face recognition algorithm using AAM and Gabor features. Gabor feature vectors which are well known to be robust with respect to small variations of shape, scaling, rotation, distortion, illumination and poses in images are popularly employed for feature vectors for many object detection and recognition algorithms. EBGM, which is prominent among face recognition algorithms employing Gabor feature vectors, requires localization of facial feature points where Gabor feature vectors are extracted. However, localization method employed in EBGM is based on Gabor jet similarity and is sensitive to initial values. Wrong localization of facial feature points affects face recognition rate. AAM is known to be successfully applied to localization of facial feature points. In this paper, we devise a facial feature point localization method which first roughly estimate facial feature points using AAM and refine facial feature points using Gabor jet similarity-based facial feature localization method with initial points set by the rough facial feature points obtained from AAM, and propose a face recognition algorithm using the devised localization method for facial feature localization and Gabor feature vectors. It is observed through experiments that such a cascaded localization method based on both AAM and Gabor jet similarity is more robust than the localization method based on only Gabor jet similarity. Also, it is shown that the proposed face recognition algorithm using this devised localization method and Gabor feature vectors performs better than the conventional face recognition algorithm using Gabor jet similarity-based localization method and Gabor feature vectors like EBGM.Keywords: Face Recognition, AAM, Gabor features, EBGM.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2205834 Application of l1-Norm Minimization Technique to Image Retrieval
Authors: C. S. Sastry, Saurabh Jain, Ashish Mishra
Abstract:
Image retrieval is a topic where scientific interest is currently high. The important steps associated with image retrieval system are the extraction of discriminative features and a feasible similarity metric for retrieving the database images that are similar in content with the search image. Gabor filtering is a widely adopted technique for feature extraction from the texture images. The recently proposed sparsity promoting l1-norm minimization technique finds the sparsest solution of an under-determined system of linear equations. In the present paper, the l1-norm minimization technique as a similarity metric is used in image retrieval. It is demonstrated through simulation results that the l1-norm minimization technique provides a promising alternative to existing similarity metrics. In particular, the cases where the l1-norm minimization technique works better than the Euclidean distance metric are singled out.
Keywords: l1-norm minimization, content based retrieval, modified Gabor function.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3431